Climate Change Implications for Optimal Sizing of Residential Rooftop Solar Photovoltaic Systems in Qatar
Abstract
:1. Introduction
- ▪
- Develop an energy model for a case study villa to simulate current and future energy demand under different climate projections.
- ▪
- Conduct a techno-economic optimization to design an optimal rooftop PV system for the villa minimizing costs.
- ▪
- Assess the energy, economic and environmental performance of the optimal rooftop PV system under present and future climate conditions.
Potentials of Solar PV in Qatar
2. Research Methods and Approach
2.1. Step 1: Energy Modeling of a Single Family Residential Building
2.2. Step 2: Simulations for Base Case Scenario
2.3. Step 3: Rooftop PV System Optimization
2.4. Step 4: Analysis of Different Scenarios
- ▪
- How will increases in the villa’s annual cooling load from climate change impact the self-consumption ability of the rooftop PV system?
- ▪
- Will solar energy contribution remain stable or decline as cooling loads rise faster than PV output?
- ▪
- How will financial returns and the payback period change considering higher air conditioning electricity consumption?
- ▪
- Can rooftop PV sizes based on current code recommendations meet substantially greater future demands?
- ▪
- Will residential solar PV remain a cost-effective emissions reduction strategy for households given climate change?
3. Results and Discussions
3.1. Energy Demand Modeling Outcomes
3.2. Climate Change Impacts on Energy Demand
3.3. Rooftop PV System Optimization
3.4. Performance of Optimal Rooftop PV System
3.5. Climate Change Implications for PV Performance
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Seo, S.; Zelezna, J.; Hajek, P.; Birgisdottir, H.; Rasmussen, F.N.; Passer, A.; Luetzkendorf, T.; Balouktsi, M.; Yokoyama, K.; Chae, C.-U. Evaluation of Embodied Energy and CO2eq for Building Construction (Annex 57): [Summary Report of Annex 57]; Institute for Building Environment and Energy Conservation: Tokyo, Japan, 2016. [Google Scholar]
- International Energy Agency. Buildings: A Source of Enormous Untapped Efficiency Potential; International Energy Agency: Paris, France, 2021.
- World Green Building Council. Bringing Embodied Carbon Upfront. Available online: https://worldgbc.org/article/bringing-embodied-carbon-upfront/ (accessed on 16 January 2023).
- Global Alliance for Buildings and Construction. Global Status Report for Buildings and Construction; Global Alliance for Buildings and Construction: Paris, France, 2020. [Google Scholar]
- Tricoire, J.-P. Why Buildings Are the Foundation of an Energy-Efficient Future; World Economic Forum: Cologny, Switzerland, 2021. [Google Scholar]
- In Focus: Energy Efficiency in Buildings. Available online: https://commission.europa.eu/news/focus-energy-efficiency-buildings-2020-02-17_en (accessed on 9 January 2023).
- Dean, B.; Dulac, J.; Petrichenko, K.; Graham, P. Global Status Report 2016: Towards Zero-Emission Efficient and Resilient Buildings; United Nations Framework Convention on Climate Change (UNFCCC): New York, NY, USA, 2016. [Google Scholar]
- Bienert, S.; Wein, J.; Spanner, M.; Kuhlwein, H.; Huber, V.; Künzle, C.; Ulterino, M.; Carlin, D.; Arshad, M. Managing Transition Risk in Real Estate: Aligning to the Paris Climate Accord. Wörgl, Austria. 2022. Available online: https://www.unepfi.org/wordpress/wp-content/uploads/2022/03/Managing-transition-risk-in-real-estate.pdf (accessed on 15 March 2022).
- IEA. Buildings—Energy System. Available online: https://www.iea.org/energy-system/buildings (accessed on 23 October 2023).
- Denholm, P.; Margolis, R.M. Evaluating the limits of solar photovoltaics (PV) in traditional electric power systems. Energy Policy 2007, 35, 2852–2861. [Google Scholar] [CrossRef]
- Borenstein, S. The private and public economics of renewable electricity generation. J. Econ. Perspect. 2012, 26, 67–92. [Google Scholar] [CrossRef]
- Manoj Kumar, N.; Ghosh, A.; Chopra, S.S. Power resilience enhancement of a residential electricity user using photovoltaics and a battery energy storage system under uncertainty conditions. Energies 2020, 13, 4193. [Google Scholar] [CrossRef]
- Darghouth, N.R.; Barbose, G.; Wiser, R.H. Customer-economics of residential photovoltaic systems (Part 1): The impact of high renewable energy penetrations on electricity bill savings with net metering. Energy Policy 2014, 67, 290–300. [Google Scholar] [CrossRef]
- Luthander, R.; Widén, J.; Nilsson, D.; Palm, J. Photovoltaic self-consumption in buildings: A review. Appl. Energy 2015, 142, 80–94. [Google Scholar] [CrossRef]
- Wiginton, L.K.; Nguyen, H.T.; Pearce, J.M. Quantifying rooftop solar photovoltaic potential for regional renewable energy policy. Comput. Environ. Urban Syst. 2010, 34, 345–357. [Google Scholar] [CrossRef]
- KAHRAMAA. Annual Statistics Report 2020; Qatar General Electricity & Water Corporation “KAHRAMAA”. 2021. Available online: https://www.km.qa/MediaCenter/Publications/Annual%20Statistics%20Report%202020%20English.pdf (accessed on 17 March 2022).
- KAHRAMAA. Annual Statistics Report 2022; Qatar General Electricity & Water Corporation “KAHRAMAA”. 2023. Available online: https://www.km.qa/MediaCenter/Publications/Annual%20Statistics%20Report%202022-English.pdf (accessed on 22 April 2022).
- Al-Marri, W.; Al-Habaibeh, A.; Watkins, M. An investigation into domestic energy consumption behaviour and public awareness of renewable energy in Qatar. Sustain. Cities Soc. 2018, 41, 639–646. [Google Scholar] [CrossRef]
- Kankana, D.; Howard, N.; Krarti, M. Estimating the Multiple Benefits of Building Energy Efficiency in GCC Countries Using an Energy Productivity Framework–Summary Report; King Abdullah Petroleum Studies and Research Center (KAPSARC): Riyadh, Saudi Arabia, 2019. [Google Scholar]
- Alhaj, M.A.E.; Amato, D.A. Implementation of Rooftop Solar in Qatar: Lessons Learnt from SolarCity Business and Finance Models in the US. In Qatar Foundation Annual Research Conference Proceedings; HBKU Press: Ar-Rayyan, Qatar, 2016; p. EEPP2390. [Google Scholar]
- Alrawi, O.; Bayram, I.S.; Al-Ghamdi, S.G.; Koc, M. High-resolution household load profiling and evaluation of rooftop PV systems in selected houses in Qatar. Energies 2019, 12, 3876. [Google Scholar] [CrossRef]
- PSA. Qatar in Figures: 2022 37th Issue, Planning and Statistics Authority, State of Qatar. Available online: https://www.psa.gov.qa/en/statistics/Statistical%20Releases/General/QIF/Qatar_in_Figures_37_2022_EN.pdf (accessed on 17 March 2022).
- IEA. World Energy Balances—Data Product. Available online: https://www.iea.org/data-and-statistics/data-product/world-energy-balances (accessed on 23 October 2023).
- Bazilian, M.; Onyeji, I.; Liebreich, M.; MacGill, I.; Chase, J.; Shah, J.; Gielen, D.; Arent, D.; Landfear, D.; Zhengrong, S. Re-considering the economics of photovoltaic power. Renew. Energy 2013, 53, 329–338. [Google Scholar] [CrossRef]
- Griffiths, S. A review and assessment of energy policy in the Middle East and North Africa region. Energy Policy 2017, 102, 249–269. [Google Scholar] [CrossRef]
- Gillingham, K.; Palmer, K. Bridging the energy efficiency gap: Policy insights from economic theory and empirical evidence. Rev. Environ. Econ. Policy 2014, 1–30. [Google Scholar] [CrossRef]
- Mohandes, N.; Sanfilippo, A.; Al Fakhri, M. Modeling residential adoption of solar energy in the Arabian Gulf Region. Renew. Energy 2019, 131, 381–389. [Google Scholar] [CrossRef]
- Alrawi, O.F.; Al-Siddiqi, T.; Al-Muhannadi, A.; Al-Siddiqi, A.; Al-Ghamdi, S.G. Determining the influencing factors in the residential rooftop solar photovoltaic systems adoption: Evidence from a survey in Qatar. Energy Rep. 2022, 8, 257–262. [Google Scholar] [CrossRef]
- Al-Janahi, S.A.; Ellabban, O.; Al-Ghamdi, S.G. Technoeconomic feasibility study of grid-connected building-integrated photovoltaics system for clean electrification: A case study of Doha metro. Energy Rep. 2020, 6, 407–414. [Google Scholar] [CrossRef]
- Abu-Rub, H.; Iqbal, A.; Amin, S.; Abdelkadar, G.; Salem, N.; Mansoor, S.; Mirza, T.; Ahmed, S. Feasibility analysis of solar photovoltaic array cladding on commercial towers in Doha, Qatar–a case study. Int. J. Sustain. Energy 2010, 29, 76–86. [Google Scholar] [CrossRef]
- Al-Mohannadi, S.A. Using Solar Energy in Electrification: A Case of an Office Building. Master’s Thesis, Qatar University, Doha, Qatar, 2023. Available online: https://qspace.qu.edu.qa/handle/10576/40573 (accessed on 20 March 2022).
- Usman, Z.; Tah, J.; Abanda, H.; Nche, C. A critical appraisal of pv-systems’ performance. Buildings 2020, 10, 192. [Google Scholar] [CrossRef]
- Crook, J.A.; Jones, L.A.; Forster, P.M.; Crook, R. Climate change impacts on future photovoltaic and concentrated solar power energy output. Energy Environ. Sci. 2011, 4, 3101–3109. [Google Scholar] [CrossRef]
- Niu, J.; Qin, W.; Wang, L.; Zhang, M.; Wu, J.; Zhang, Y. Climate change impact on photovoltaic power potential in China based on CMIP6 models. Sci. Total Environ. 2023, 858, 159776. [Google Scholar] [CrossRef]
- Cocco, D.S.; Costa, A.M.S. Effect of a global warming model on the energetic performance of a typical solar photovoltaic system. Case Stud. Therm. Eng. 2019, 14, 100450. [Google Scholar] [CrossRef]
- Altamimi, A.; Jayaweera, D. Reliability of power systems with climate change impacts on hierarchical levels of PV systems. Electr. Power Syst. Res. 2021, 190, 106830. [Google Scholar] [CrossRef]
- Mas’ud, A.A.; Wirba, A.V.; Alshammari, S.J.; Muhammad-Sukki, F.; Abdullahi, M.M.; Albarracín, R.; Hoq, M.Z. Solar energy potentials and benefits in the gulf cooperation council countries: A review of substantial issues. Energies 2018, 11, 372. [Google Scholar] [CrossRef]
- Mühlbauer, M. Smart building-integrated photovoltaics (BIPV) for Qatar. QScience Connect 2017, 2017, 3. [Google Scholar] [CrossRef]
- Bachour, D.; Perez-Astudillo, D. Ground-measurement GHI Map for Qatar. Energy Procedia 2014, 49, 2297–2302. [Google Scholar] [CrossRef]
- Martín-Pomares, L.; Martínez, D.; Polo, J.; Perez-Astudillo, D.; Bachour, D.; Sanfilippo, A. Analysis of the long-term solar potential for electricity generation in Qatar. Renew. Sustain. Energy Rev. 2017, 73, 1231–1246. [Google Scholar] [CrossRef]
- Qatar Solar Energy. Available online: https://www.trade.gov/market-intelligence/qatar-solar-energy (accessed on 23 October 2023).
- Energy & Utilities. Qatar Celebrates First Large Solar PV Plant—800 MW Now in Operation. Available online: https://energy-utilities.com/qatar-celebrates-first-large-solar-pv-plant-800-news119133.html (accessed on 24 October 2023).
- Power Technology. kgi-admin, “Power Plant Profile: Ras Laffan Industrial Solar PV Park, Qatar”. Available online: https://www.power-technology.com/data-insights/power-plant-profile-ras-laffan-industrial-solar-pv-park-qatar/ (accessed on 24 October 2023).
- Newspaper, T.P. Qatar to Build Two More 880 MW Solar Power Plants. Available online: https://thepeninsulaqatar.com/article/08/04/2023/qatar-to-build-two-more-880mw-solar-power-plants (accessed on 24 October 2023).
- Newspaper, T.P. Qatar to Have about 1700 MW Solar Power by 2024: Minister. Available online: https://thepeninsulaqatar.com/article/19/10/2022/qatar-to-have-about-1700-mw-solar-power-by-2024-minister (accessed on 24 October 2023).
- Average Monthly Hours of Sunshine in Doha, Qatar. World Weather & Climate Information. Available online: https://weather-and-climate.com:80/average-monthly-hours-Sunshine,doha,Qatar (accessed on 24 October 2023).
- DesignBuilder Software Ltd—Simulation. Available online: https://designbuilder.co.uk/simulation (accessed on 24 October 2023).
- US DOE. EnergyPlus Energy Simulation Software. DOE Office of Energy Efficiency & Renewable Energy, 2022. [version 9.1]. Available online: https://energyplus.net/ (accessed on 5 January 2022).
- ArcGIS 8.0 Documentation; Environmental Systems Research Institute: Esri, CA, USA, 1999.
- Aldawoud, A.; Salameh, T.; Ki Kim, Y. Double skin façade: Energy performance in the United Arab Emirates. Energy Sources Part B Econ. Plan. Policy 2021, 16, 387–405. [Google Scholar] [CrossRef]
- Mahmoud, A.S.; Asif, M.; Hassanain, M.A.; Babsail, M.O.; Sanni-Anibire, M.O. Energy and economic evaluation of green roofs for residential buildings in hot-humid climates. Buildings 2017, 7, 30. [Google Scholar] [CrossRef]
- Radhi, H.; Sharples, S. Global warming implications of facade parameters: A life cycle assessment of residential buildings in Bahrain. Environ. Impact Assess. Rev. 2013, 38, 99–108. [Google Scholar] [CrossRef]
- Alyami, M.; Omer, S. Building energy performance simulation: A case study of modelling an existing residential building in Saudi Arabia. Environ. Res. Infrastruct. Sustain. 2021, 1, 035001. [Google Scholar] [CrossRef]
- Haj Hussein, M.; Monna, S.; Abdallah, R.; Juaidi, A.; Albatayneh, A. Improving the Thermal Performance of Building Envelopes: An Approach to Enhancing the Building Energy Efficiency Code. Sustainability 2022, 14, 16264. [Google Scholar] [CrossRef]
- Abdullah, A.K.; Darsaleh, A.; Abdelbaqi, S.; Khoukhi, M. Thermal Performance Evaluation of Window Shutters for Residential Buildings: A Case Study of Abu Dhabi, UAE. Energies 2022, 15, 5858. [Google Scholar] [CrossRef]
- Al-Saadi, S.N.; Al-Jabri, K.S. Energy-efficient envelope design for residential buildings: A case study in Oman. In 2017 Smart City Symposium Prague (SCSP); IEEE: Piscataway, NJ, USA, 2017; pp. 1–8. [Google Scholar]
- GSO. GCC Building Code. Available online: https://www.gso.org.sa/wp-content/uploads/2018/02/GCCBuildingCode_En.pdf (accessed on 5 January 2022).
- QCS. The Qatar National Construction Standards 2010; Ministry of Environment and Climate Change, State of Qatar: Doha, Qatar, 2010.
- HOMER Pro—Download, Install, and License. Available online: https://homerenergy.my.site.com/supportcenter/s/article/homer-pro---download-install-and-license (accessed on 29 November 2023).
- Qatar General Electricity & Water Corporation—المؤسسة العامة القطرية للكهرباء والماء. Available online: https://km.qa/Pages/default.aspx/ (accessed on 29 November 2023).
- Atalla, T.N.; Hunt, L.C. Modelling residential electricity demand in the GCC countries. Energy Econ. 2016, 59, 149–158. [Google Scholar] [CrossRef]
- Almasri, R.A.; Alshitawi, M.S. Electricity consumption indicators and energy efficiency in residential buildings in GCC countries: Extensive review. Energy Build. 2022, 255, 111664. [Google Scholar] [CrossRef]
- Azar, E.; Alaifan, B.; Lin, M.; Trepci, E.; El Asmar, M. Drivers of energy consumption in Kuwaiti buildings: Insights from a hybrid statistical and building performance simulation approach. Energy Policy 2021, 150, 112154. [Google Scholar] [CrossRef]
- Krarti, M.; Aldubyan, M.; Williams, E. Residential building stock model for evaluating energy retrofit programs in Saudi Arabia. Energy 2020, 195, 116980. [Google Scholar] [CrossRef]
- Esmaeil, K.K.; Alshitawi, M.S.; Almasri, R.A. Analysis of energy consumption pattern in Saudi Arabia’s residential buildings with specific reference to Qassim region. Energy Effic. 2019, 12, 2123–2145. [Google Scholar] [CrossRef]
- Radhi, H. Evaluating the potential impact of global warming on the UAE residential buildings—A contribution to reduce the CO2 emissions. Build. Environ. 2009, 44, 2451–2462. [Google Scholar] [CrossRef]
- Aldossary, N.A.; Rezgui, Y.; Kwan, A. Domestic energy consumption patterns in a hot and arid climate: A multiple-case study analysis. Renew. Energy 2014, 62, 369–378. [Google Scholar] [CrossRef]
- Li, D.H.W.; Yang, L.; Lam, J.C. Impact of climate change on energy use in the built environment in different climate zones—A review. Energy 2012, 42, 103–112. [Google Scholar] [CrossRef]
- Lenton, T.M.; Xu, C.; Abrams, J.F.; Ghadiali, A.; Loriani, S.; Sakschewski, B.; Zimm, C.; Ebi, K.L.; Dunn, R.R.; Svenning, J.-C.; et al. Quantifying the human cost of global warming. Nat. Sustain. 2023, 6, 1237–1247. [Google Scholar] [CrossRef]
- Pal, J.S.; Eltahir, E.A.B. Future temperature in southwest Asia projected to exceed a threshold for human adaptability. Nat. Clim. Change 2016, 6, 197–200. [Google Scholar] [CrossRef]
- Nik, V.M. Making energy simulation easier for future climate–Synthesizing typical and extreme weather data sets out of regional climate models (RCMs). Appl. Energy 2016, 177, 204–226. [Google Scholar] [CrossRef]
- Fumo, N. A review on the basics of building energy estimation. Renew. Sustain. Energy Rev. 2014, 31, 53–60. [Google Scholar] [CrossRef]
- Jentsch, M.F.; James, P.A.B.; Bourikas, L.; Bahaj, A.S. Transforming existing weather data for worldwide locations to enable energy and building performance simulation under future climates. Renew. Energy 2013, 55, 514–524. [Google Scholar] [CrossRef]
- Azimi Fereidani, N.; Rodrigues, E.; Gaspar, A.R. A review of the energy implications of passive building design and active measures under climate change in the Middle East. J. Clean. Prod. 2021, 305, 127152. [Google Scholar] [CrossRef]
- Chan, H.-Y.; Riffat, S.B.; Zhu, J. Review of passive solar heating and cooling technologies. Renew. Sustain. Energy Rev. 2010, 14, 781–789. [Google Scholar] [CrossRef]
- Abdul Mujeebu, M.; Bano, F. Energy-saving potential and cost-effectiveness of active energy-efficiency measures for residential building in warm-humid climate. Energy Sustain. Dev. 2022, 67, 163–176. [Google Scholar] [CrossRef]
- Friess, W.A.; Rakhshan, K. A review of passive envelope measures for improved building energy efficiency in the UAE. Renew. Sustain. Energy Rev. 2017, 72, 485–496. [Google Scholar] [CrossRef]
- Klein, S.J.W.; Hargreaves, A.; Coffey, S. A financial benefit-cost analysis of different community solar approaches in the Northeastern US. Sol. Energy 2021, 213, 225–245. [Google Scholar] [CrossRef]
- Tongsopit, S.; Moungchareon, S.; Aksornkij, A.; Potisat, T. Business models and financing options for a rapid scale-up of rooftop solar power systems in Thailand. Energy Policy 2016, 95, 447–457. [Google Scholar] [CrossRef]
- Bertoldi, P.; Economidou, M.; Palermo, V.; Boza-Kiss, B.; Todeschi, V. How to finance energy renovation of residential buildings: Review of current and emerging financing instruments in the EU. Wiley Interdiscip. Rev. Energy Environ. 2021, 10, e384. [Google Scholar] [CrossRef]
- Tantiwechwuttikul, R.; Yarime, M. Financing Solar Photovoltaic Transitions: From Utility to Residential Market Adoption in Emerging Economies; ADBI Working Paper; Asian Development Bank Institute (ADBI): Tokyo, Japan, 2018. [Google Scholar]
- Wu, J.; Ma, C.; Tang, K. The static and dynamic heterogeneity and determinants of marginal abatement cost of CO2 emissions in Chinese cities. Energy 2019, 178, 685–694. [Google Scholar] [CrossRef]
- Skoplaki, E.; Palyvos, J.A. On the temperature dependence of photovoltaic module electrical performance: A review of efficiency/power correlations. Sol. Energy 2009, 83, 614–624. [Google Scholar] [CrossRef]
- Dubey, S.; Sarvaiya, J.N.; Seshadri, B. Temperature Dependent Photovoltaic (PV) Efficiency and Its Effect on PV Production in the World—A Review. Energy Procedia 2013, 33, 311–321. [Google Scholar] [CrossRef]
- Makrides, G.; Zinsser, B.; Georghiou, G.E.; Schubert, M.; Werner, J.H. Temperature behaviour of different photovoltaic systems installed in Cyprus and Germany. Sol. Energy Mater. Sol. Cells 2009, 93, 1095–1099. [Google Scholar] [CrossRef]
- Ghabuzyan, L.; Pan, K.; Fatahi, A.; Kuo, J.; Baldus-Jeursen, C. Thermal effects on photovoltaic array performance: Experimentation, modeling, and simulation. Appl. Sci. 2021, 11, 1460. [Google Scholar] [CrossRef]
- Kratochvil, J.A.; Boyson, W.E.; King, D.L. Photovoltaic Array Performance Model; Sandia National Laboratories (SNL): Albuquerque, NM, USA; Livermore, CA, USA, 2004.
- Thakur, J.; Chakraborty, B. Impact of increased solar penetration on bill savings of net metered residential consumers in India. Energy 2018, 162, 776–786. [Google Scholar] [CrossRef]
- Mateo, C.; Cossent, R.; Gómez, T.; Prettico, G.; Frías, P.; Fulli, G.; Meletiou, A.; Postigo, F. Impact of solar PV self-consumption policies on distribution networks and regulatory implications. Sol. Energy 2018, 176, 62–72. [Google Scholar] [CrossRef]
Municipality | Housing Units | Palace/ Villa | Arabic/ Elderly | Flats/ Apartments | Additional Buildings | Others |
---|---|---|---|---|---|---|
Doha | 153,297 | 31,685 | 8172 | 98,606 | 2865 | 11,969 |
Al Rayyan | 86,646 | 44,151 | 9854 | 19,539 | 2995 | 10,107 |
Al Wakra | 31,734 | 9668 | 1982 | 17,791 | 443 | 1850 |
Umm Salal | 9582 | 7055 | 882 | 356 | 377 | 912 |
Al Khor | 13,020 | 6193 | 1555 | 2697 | 253 | 2322 |
Al Shamal | 1607 | 457 | 534 | 17 | 98 | 501 |
Al Daayen | 6890 | 5683 | 514 | 78 | 157 | 458 |
Al Sheehaniya | 11,105 | 1084 | 1705 | 2240 | 1291 | 4785 |
QATAR | 313,881 | 105,976 | 25,198 | 141,324 | 8479 | 32,904 |
Component | Details |
---|---|
External Walls | 200 mm concrete block, 24 mm of plaster inside and outside, 50 mm extruded polystyrene |
Internal Walls | 100 mm concrete block, 15 mm plaster both sides |
Internal Floor | Tile on 75 mm concrete slab on grade |
Roof | 200 mm Concrete roof deck, 50 mm insulation, 10 mm ceramic tiles |
Ceiling | Suspended acoustic tile (10 mm) ceiling |
Windows | Double glazed low-e argon filled, Aluminum frame |
Doors | Solid core wood |
Glazing | 6 mm double glass with U-value 2.5 W/(m2 °K) |
Infiltration Rate | 5.0 m3/h/m2 |
Ventilation Rate | 7.5 L/second/person |
Lighting | 9 W/m2 (LED bulbs) |
Appliances | 6 W/m2 |
Occupancy | 55 m2/person |
HVAC | Split units |
Cooling set point temperature | 22 °C (summer) and 26 °C (winter) |
Year | Architecture | Cost | SRE (%) | Compare Economic | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Solar Panel (kW) | Battery (kWh) | Grid | Inverter (kW) | NPC ($) | COE ($) | Operating Cost ($/year) | Initial Capital ($) | IRR (%) | Simple Payback (year) | Utility Bill Savings ($/year) | Total Bill Savings ($) | ||
2002 | 7.4 | - | 1 | 4.46 | 24,178 | 0.0327 | 1623 | 3193 | 18.1 | 10 | 7.8 | 463 | 5981 |
7.39 | 1 | 1 | 4.47 | 25,109 | 0.0341 | 1657 | 3685 | 18.3 | 7.4 | 13 | 465 | 6009 | |
- | - | 1 | - | 25,631 | 0.0375 | 1983 | 0 | 0 | - | - | 0 | 0 | |
2016 | 7.4 | - | 1 | 4.48 | 25,566 | 0.0333 | 1730 | 3197 | 17.4 | 11 | 7.8 | 465 | 6015 |
7.4 | 1 | 1 | 4.51 | 26,488 | 0.0346 | 1763 | 3696 | 17.6 | 7.5 | 13 | 468 | 6052 | |
- | - | 1 | - | 27,046 | 0.0379 | 2092 | 0 | 0 | - | - | 0 | 0 | |
2050 | 7.4 | - | 1 | 4.48 | 27,499 | 0.0339 | 1880 | 16.5 | 16.5 | 11 | 7.6 | 475 | 6140 |
7.4 | 1 | 1 | 4.51 | 28,403 | 0.0351 | 1911 | 3696 | 16.7 | 7.9 | 9 | 478 | 6179 | |
- | - | 1 | - | 29,104 | 0.0385 | 2251 | 0 | 0 | - | - | 0 | 0 | |
2100 | 7.4 | - | 1 | 4.48 | 27,475 | 0.034 | 1878 | 3197 | 16.5 | 11 | 7.6 | 474 | 6132 |
7.4 | 1 | 1 | 4.51 | 28,396 | 0.0352 | 1911 | 3696 | 16.7 | 7.9 | 9 | 477 | 6173 | |
- | - | 1 | - | 29,073 | 0.0385 | 2249 | 0 | 0 | - | - | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, M.I.; Al Huneidi, D.I.; Asfand, F.; Al-Ghamdi, S.G. Climate Change Implications for Optimal Sizing of Residential Rooftop Solar Photovoltaic Systems in Qatar. Sustainability 2023, 15, 16815. https://doi.org/10.3390/su152416815
Khan MI, Al Huneidi DI, Asfand F, Al-Ghamdi SG. Climate Change Implications for Optimal Sizing of Residential Rooftop Solar Photovoltaic Systems in Qatar. Sustainability. 2023; 15(24):16815. https://doi.org/10.3390/su152416815
Chicago/Turabian StyleKhan, Muhammad Imran, Dana I. Al Huneidi, Faisal Asfand, and Sami G. Al-Ghamdi. 2023. "Climate Change Implications for Optimal Sizing of Residential Rooftop Solar Photovoltaic Systems in Qatar" Sustainability 15, no. 24: 16815. https://doi.org/10.3390/su152416815
APA StyleKhan, M. I., Al Huneidi, D. I., Asfand, F., & Al-Ghamdi, S. G. (2023). Climate Change Implications for Optimal Sizing of Residential Rooftop Solar Photovoltaic Systems in Qatar. Sustainability, 15(24), 16815. https://doi.org/10.3390/su152416815