Heavy Metal Pollution Assessment in the Agricultural Soils of Bonao, Dominican Republic
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Soil Sample Collection and Processing
2.3. Physicochemical Analysis in Soils
2.4. Data Analysis and Spatial Distribution
2.5. Quality Control and Quality Assurance
2.6. Pollution Indices and Potential Ecological Risk Index
2.6.1. Single Pollution Index (PI)
2.6.2. Integrated Pollution Index (IPI)
2.6.3. Enrichment Factor (EF)
2.6.4. Potential Ecological Risk Index (RI)
3. Results and Discussion
3.1. Physicochemical Properties in Soils
3.2. Heavy Metal Concentration in Soils
3.3. Spatial Distribution of Heavy Metals
3.4. Assessment of Heavy Metal Pollution in Soils and Potential Ecological Risk Index
3.5. The Correlation of Soil Heavy Metals and Physicochemical Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baltas, H.; Sirin, M.; Gökbayrak, E.; Ozcelik, A.E. A Case Study on Pollution and a Human Health Risk Assessment of Heavy Metals in Agricultural Soils around Sinop Province, Turkey. Chemosphere 2020, 241, 125015. [Google Scholar] [CrossRef]
- Akter, M.; Kabir, M.H.; Alam, M.A.; Al Mashuk, H.; Rahman, M.M.; Alam, M.S.; Brodie, G.; Islam, S.M.M.; Gaihre, Y.K.; Rahman, G.K.M.M. Geospatial Visualization and Ecological Risk Assessment of Heavy Metals in Rice Soil of a Newly Developed Industrial Zone in Bangladesh. Sustainability 2023, 15, 7208. [Google Scholar] [CrossRef]
- Ali, H.; Khan, E. Trophic Transfer, Bioaccumulation, and Biomagnification of Non-Essential Hazardous Heavy Metals and Metalloids in Food Chains/Webs—Concepts and Implications for Wildlife and Human Health. Hum. Ecol. Risk Assess. 2019, 25, 1353–1376. [Google Scholar] [CrossRef]
- Gebeyehu, H.R.; Bayissa, L.D. Levels of Heavy Metals in Soil and Vegetables and Associated Health Risks in Mojo Area, Ethiopia. PLoS ONE 2020, 15, e0227883. [Google Scholar] [CrossRef]
- Bilo, F.; Lodolo, M.; Borgese, L.; Bosio, A.; Benassi, L.; Depero, L.E.; Bontempi, E. Evaluation of Heavy Metals Contamination from Environment to Food Matrix by TXRF: The Case of Rice and Rice Husk. J. Chem. 2015, 2015, 274340. [Google Scholar] [CrossRef]
- Alengebawy, A.; Abdelkhalek, S.T.; Qureshi, S.R.; Wang, M.Q. Heavy Metals and Pesticides Toxicity in Agricultural Soil and Plants: Ecological Risks and Human Health Implications. Toxics 2021, 9, 42. [Google Scholar] [CrossRef]
- Weissmannová, H.D.; Pavlovský, J. Indices of Soil Contamination by Heavy Metals—Methodology of Calculation for Pollution Assessment (Minireview). Environ. Monit. Assess. 2017, 189, 616. [Google Scholar] [CrossRef]
- Rezapour, S.; Azizi, M.; Nouri, A. Pollution Analysis and Health Implications of Heavy Metals under Different Urban Soil Types in a Semi-Arid Environment. Sustainability 2023, 15, 12157. [Google Scholar] [CrossRef]
- Haghnazar, H.; Pourakbar, M.; Mahdavianpour, M.; Aghayani, E. Spatial Distribution and Risk Assessment of Agricultural Soil Pollution by Hazardous Elements in a Transboundary River Basin. Environ. Monit. Assess. 2021, 193, 158. [Google Scholar] [CrossRef]
- Li, M.; Liu, J.; Xu, Y.; Qian, G. Phosphate Adsorption on Metal Oxides and Metal Hydroxides: A Comparative Review. Environ. Rev. 2016, 24, 319–332. [Google Scholar] [CrossRef]
- Wuana, R.A.; Okieimen, F.E. Heavy Metals in Contaminated Soils: A Review of Sources, Chemistry, Risks and Best Available Strategies for Remediation. ISRN Ecol. 2011, 2011, 402647. [Google Scholar] [CrossRef]
- Zhang, B.; Jia, T.; Peng, S.; Yu, X.; She, D. Spatial Distribution, Source Identification, and Risk Assessment of Heavy Metals in the Cultivated Soil of the Qinghai–Tibet Plateau Region: Case Study on Huzhu County. Glob. Ecol. Conserv. 2022, 35, e02073. [Google Scholar] [CrossRef]
- Liu, Y.; Cao, X.; Hu, Y.; Cheng, H. Pollution, Risk and Transfer of Heavy Metals in Soil and Rice: A Case Study in a Typical Industrialized Region in South China. Sustainability 2022, 14, 10225. [Google Scholar] [CrossRef]
- Huang, H.; Mao, J.; Tan, J.; Zhong, K.; Chen, J.; Huang, D.; Gu, X.; Zhang, C. Heavy Metal Contamination, Accumulation, and Risk Assessment in a Paddy Field near Pb-Zn Mine, in Guangxi Province, China. J. Soils Sediments 2023, 23, 1345–1355. [Google Scholar] [CrossRef]
- Al-Taani, A.A.; Nazzal, Y.; Howari, F.M.; Iqbal, J.; Orm, N.B.; Xavier, C.M.; Bărbulescu, A.; Sharma, M.; Dumitriu, C.S. Contamination Assessment of Heavy Metals in Agricultural Soil, in the Liwa Area (UAE). Toxics 2021, 9, 53. [Google Scholar] [CrossRef]
- Ersoy, A. Critical Review of the Environmental Investigation on Soil Heavy Metal Contamination. Appl. Ecol. Environ. Res. 2021, 19, 3853–3878. [Google Scholar] [CrossRef]
- Delanoy, R.; Espinosa, C.M.; Herrera, Y. Heavy Metals in the Northwest Agricultural Region Dominican Republic. J. Geosci. Environ. Prot. 2022, 10, 16–24. [Google Scholar] [CrossRef]
- Delanoy, R.; Espinosa, C.M.; Herrera, Y.; Delanoy, R.; Espinosa, C.M.; Herrera, Y. Heavy Metals in Agricultural Soils of San Francisco de Macorís and La Vega, Dominican Republic. J. Geosci. Environ. Prot. 2022, 10, 54–65. [Google Scholar] [CrossRef]
- Hernández, A.J.; Alexis, S.; Pastor, J. Soil Degradation in the Tropical Forests of the Dominican Republic’s Pedernales Province in Relation to Heavy Metal Contents. Sci. Total Environ. 2007, 378, 36–41. [Google Scholar] [CrossRef]
- Pastor, J.; Alexis, S.; Vizcayno, C.; Hernández, A.J. Estudio de La Fertilidad y de Los Metales Pesados En Suelos de Agroecosistemas Tropicales de Una Zona Transfronteriza de La República Dominicana-Haití. Rev. Ciências Agrárias 2010, 33, 150–162. [Google Scholar] [CrossRef]
- USDA DR Rice Snapshot Record High Production Higher Retail Prices and Trade Updates. 2022. Available online: https://fas.usda.gov/data/dominican-republic-dr-rice-snapshot-record-high-productionhigher-retail-prices-and-trade (accessed on 9 November 2023).
- Oficina Nacional de Meteorología (ONAMET). Datos Normales 1971–2000—Bonao, Cotuí, San Francisco, Pimentel, Villa Riva. (Unpublished Raw Data). 2022. Available online: https://onamet.gob.do/index.php/pronosticos/informe-del-tiempo (accessed on 9 November 2023).
- MINAM. Guía Para Muestreo de Suelos. Available online: http://www.minam.gob.pe/wp-content/uploads/2014/04/GUIA-MUESTREO-SUELO_MINAM1.pdf (accessed on 9 November 2023).
- De Vos, B.; Lettens, S.; Muys, B.; Deckers, J.A. Walkley-Black Analysis of Forest Soil Organic Carbon: Recovery, Limitations and Uncertainty. Soil Use Manag. 2007, 23, 221–229. [Google Scholar] [CrossRef]
- Bouyoucos, G.J. Directions for Making Mechanical Analyses of Soil by the Hydrometer Method. Soil Sci. 1936, 42, 225–230. [Google Scholar] [CrossRef]
- Chapman, H.D. Cation-Exchange Capacity. In Methods of Soil Analysis, Part 2: Chemical and Microbiological Properties; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2016; pp. 891–901. ISBN 9780891182047. [Google Scholar]
- Alloway, B.J. Heavy Metals in Soils: Trace Metals and Metalloids in Soils and Their Bioavailability, 3rd ed.; Alloway, B.J., Ed.; Springer: Dordrecht, The Netherlands, 2014; ISBN 978-94-007-4470-7. [Google Scholar]
- Díaz Rizo, O.; Echeverría Castillo, F.; Arado López, J.O.; Hernández Merlo, M. Assessment of Heavy Metal Pollution in Urban Soils of Havana City, Cuba. Bull. Environ. Contam. Toxicol. 2011, 87, 414–419. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.; Khan, M.S.; Hadi, F.; Saddiq, G.; Khan, A.N. Energy-Dispersive X-ray (EDX) Fluorescence Based Analysis of Heavy Metals in Marble Powder, Paddy Soil and Rice (Oryza sativa L.) with Potential Health Risks in District Malakand, Khyber Pakhtunkhwa, Pakistan. Environ. Pollut. Bioavailab. 2021, 33, 301–316. [Google Scholar] [CrossRef]
- Quevauviller, P.; Maier, E.A. Quality Assurance and Quality Control for Environmental Monitoring. In Quality Assurance in Environmental Monitoring: Sampling and Sample Pretreatment; VCH: Brussels, Belgium, 1995; pp. 1–306. ISBN 9783527615216. [Google Scholar]
- Hakanson, L. An Ecological Risk Index for Aquatic Pollution Control.a Sedimentological Approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Wei, B.; Yang, L. A Review of Heavy Metal Contaminations in Urban Soils, Urban Road Dusts and Agricultural Soils from China. Microchem. J. 2010, 94, 99–107. [Google Scholar] [CrossRef]
- Cai, L.M.; Wang, Q.S.; Wen, H.H.; Luo, J.; Wang, S. Heavy Metals in Agricultural Soils from a Typical Township in Guangdong Province, China: Occurrences and Spatial Distribution. Ecotoxicol. Environ. Saf. 2019, 168, 184–191. [Google Scholar] [CrossRef]
- Marrugo-Negrete, J.; Pinedo-Hernández, J.; Díez, S. Assessment of Heavy Metal Pollution, Spatial Distribution and Origin in Agricultural Soils along the Sinú River Basin, Colombia. Environ. Res. 2017, 154, 380–388. [Google Scholar] [CrossRef]
- Keshavarzi, A.; Kumar, V. Ecological Risk Assessment and Source Apportionment of Heavy Metal Contamination in Agricultural Soils of Northeastern Iran. Int. J. Environ. Health Res. 2019, 29, 544–560. [Google Scholar] [CrossRef]
- Sutherland, R.A. Bed Sediment-Associated Trace Metals in an Urban Stream, Oahu, Hawaii. Cases Solut. Environ. Geol. 2000, 39, 611–627. [Google Scholar] [CrossRef]
- Gao, J.; Wang, L. Ecological and Human Health Risk Assessments in the Context of Soil Heavy Metal Pollution in a Typical Industrial Area of Shanghai, China. Environ. Sci. Pollut. Res. 2018, 25, 27090–27105. [Google Scholar] [CrossRef] [PubMed]
- Khalid, A.; Bukhari, H.; Riaz, M.; Rehman, G.; Ain, Q.; Bokhari, T.; Rasool, N.; Zubair, M.; Munir, S. Determination of Lead, Cadmium, Chromium, and Nickel in Different Brands of Lipsticks. Int. J. Biol. Pharm. Allied Sci. 2013, 2, 1003–1009. [Google Scholar]
- Guo, B.; Hong, C.; Tong, W.; Xu, M.; Huang, C.; Yin, H.; Lin, Y.; Fu, Q. Health Risk Assessment of Heavy Metal Pollution in a Soil-Rice System: A Case Study in the Jin-Qu Basin of China. Sci. Rep. 2020, 10, 11490. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Xie, J.; Cheng, Z.; Wu, X. Characteristics, Chemical Speciation and Health Risk Assessment of Heavy Metals in Paddy Soil and Rice around an Abandoned High-Arsenic Coal Mine Area, Southwest China. Minerals 2023, 13, 629. [Google Scholar] [CrossRef]
- Rodriguez Eugenio, N.; McLaughlin, M.; Pennock, D. La Contaminación Del Suelo: Una Realidad Oculta; FAO: Roma, Italy, 2019. [Google Scholar]
- Kabata-Pendias, A. Trace Elements in Soils and Plants: Fourth Edition; CRC Press: Boca Raton, FL, USA, 2010; ISBN 9781420093704. [Google Scholar]
- Zhang, C.; Zou, X.; Yang, H.; Liang, J.; Zhu, T. Bioaccumulation and Risk Assessment of Potentially Toxic Elements in Soil-Rice System in Karst Area, Southwest China. Front. Environ. Sci. 2022, 10, 866427. [Google Scholar] [CrossRef]
- Schloeder, C.A.; Zimmerman, N.E.; Jacobs, M.J. Comparison of Methods for Interpolating Soil Properties Using Limited Data. Soil Sci. Soc. Am. J. 2001, 65, 470–479. [Google Scholar] [CrossRef]
- Dragović, S.; Mihailović, N.; Gajić, B. Heavy Metals in Soils: Distribution, Relationship with Soil Characteristics and Radionuclides and Multivariate Assessment of Contamination Sources. Chemosphere 2008, 72, 491–495. [Google Scholar] [CrossRef]
Soil Parameter | Min | Max | Mean ± STD * | |
---|---|---|---|---|
pH (1:2) | 4.8 | 6.7 | 5.8 ± 0.4 | |
Electrical conductivity (mS/cm) | 0.1 | 0.6 | 0.2 ± 0.1 | |
Organic matter (%) | 2.6 | 13.4 | 5.2 ± 1.9 | |
Cation exchange capacity (meq/100 g) | 3.8 | 21.2 | 12.1 ± 4.5 | |
Soil texture | % Silt | 16.7 | 41.3 | 30.4 ± 5.9 |
% Clay | 8.2 | 50.2 | 35.4 ± 8.5 | |
% Sand | 18.5 | 73.2 | 33.6 ± 10.3 | |
Texture class | Clay |
Heavy Metal | Min | Max | Mean ± STD * | Local Background Value ± STD * | FAO a | Kabata Pendias b |
---|---|---|---|---|---|---|
Fe | 57,800 | 157,700 | 102,577 ± 25,569 | 71,000 ± 60,200 | - | - |
Mn | 400 | 5300 | 2040 ± 1014 | 1900 ± 500 | <0.01 | - |
Cr | 121 | 843 | 347 ± 164 | 354 ± 22 | 70 | 50–200 |
Cu | 8 | 185 | 36 ± 44 | 23 ± 10 | 30 | 60–150 |
Ni | 2 | 332 | 92 ± 93 | 58 ± 2 | 50 | 20–60 |
Zn | 2 | 121 | 32 ± 30 | 35 ± 18 | 90 | 1–300 |
Pb | <0.1 | 59 | 10 ± 17 | 12 ± 9 | 35 | 20–300 |
As | 3.6 | 5.0 | 4.2 ± 0.4 | <0.1 | - | 1.5–3 |
Heavy Metal | Pollution Index (PI) | Enrichment Factor (EF) | Potential Ecological Risk Index (RI) | ||||||
---|---|---|---|---|---|---|---|---|---|
Min | Max | Mean ± STD * | Min | Max | Mean ± STD * | Min | Max | Mean ± STD * | |
Mn | 0.2 | 2.8 | 1.1 ± 0.5 | 0.3 | 2.3 | 1.1 ± 0.5 | 0.2 | 2.8 | 1.1 ± 0.5 |
Cr | 0.3 | 2.4 | 1.0 ± 0.5 | 0.3 | 2.8 | 1.1 ± 0.6 | 0.7 | 4.8 | 2.0 ± 0.9 |
Cu | 0.3 | 8.2 | 1.6 ± 1.9 | 0.3 | 11.0 | 2.0 ± 2.6 | 0.3 | 8.2 | 1.6 ± 2.0 |
Ni | 0.03 | 5.6 | 1.6 ± 1.6 | 0.03 | 7.6 | 1.9 ± 2.0 | 0.2 | 28.0 | 7.8 ± 7.8 |
Zn | 0.1 | 3.5 | 0.9 ± 0.8 | 0.05 | 5.8 | 1.1 ± 1.1 | 0.1 | 3.5 | 0.9 ± 0.9 |
Pb | 0.0 | 4.8 | 0.8 ± 1.4 | 0.05 | 5.6 | 0.7 ± 1.5 | 0.0 | 24.0 | 3.9 ± 7.0 |
As | 0.90 | 1.25 | 1.06 ± 0.09 | 0.04 | 5.7 | 0.8 ± 1.4 | 9.0 | 12.5 | 10.6 ± 0.9 |
Fe | Mn | Cr | Cu | Ni | Zn | Pb | As | EC | % Sand | % Silt | % Clay | pH | CEC | %OM | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Fe | 1 | ||||||||||||||
Mn | 0.35 | 1 | |||||||||||||
Cr | 0.05 | −0.01 | 1 | ||||||||||||
Cu | −0.27 | −0.03 | −0.25 | 1 | |||||||||||
Ni | −0.33 | −0.08 | 0.17 | −0.12 | 1 | ||||||||||
Zn | −0.37 * | −0.22 | −0.09 | 0.12 | 0.04 | 1 | |||||||||
Pb | −0.08 | −0.07 | 0.45 | −0.18 | 0.48 | −0.19 | 1 | ||||||||
As | −0.53 ** | −0.33 | 0.11 | 0.11 | 0.31 | 0.29 | 0.78 * | 1 | |||||||
EC | 0.34 | 0.49 ** | −0.10 | −0.04 | −0.05 | −0.31 | −0.67 | −0.33 | 1 | ||||||
% Sand | −0.11 | 0.16 | −0.16 | −0.09 | 0.25 | −0.31 | −0.67 | −0.33 | 0.08 | 1 | |||||
% Silt | −0.29 | −0.45 * | 0.02 | 0.32 | 0.04 | −0.31 | −0.67 | −0.33 | −0.42 * | −0.55 ** | 1 | ||||
% Clay | 0.34 | 0.11 | 0.18 | −0.11 | −0.33 | −0.31 | −0.67 | −0.33 | 0.19 | −0.82 ** | −0.03 | 1 | |||
pH | −0.10 | 0.07 | −0.38 * | 0.25 | −0.24 | −0.31 | −0.67 | −0.33 | −0.05 | −0.21 | 0.43 * | −0.04 | 1 | ||
CEC | −0.03 | 0.02 | −0.34 | 0.23 | −0.30 | −0.31 | −0.67 | −0.33 | 0.41 * | −0.02 | 0.13 | −0.06 | 0.41 * | 1 | |
% OM | −0.12 | 0.07 | −0.03 | 0.52 * | 0.05 | −0.31 | −0.67 | −0.33 | −0.38 * | 0.1 | 0.01 | −0.12 | −0.38 * | 0.15 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alberto Then, N.M.; Delanoy, R.; Rodríguez Alberto, D.; Méndez Henández, R.; Díaz Rizo, O.; Bello, L. Heavy Metal Pollution Assessment in the Agricultural Soils of Bonao, Dominican Republic. Sustainability 2023, 15, 16510. https://doi.org/10.3390/su152316510
Alberto Then NM, Delanoy R, Rodríguez Alberto D, Méndez Henández R, Díaz Rizo O, Bello L. Heavy Metal Pollution Assessment in the Agricultural Soils of Bonao, Dominican Republic. Sustainability. 2023; 15(23):16510. https://doi.org/10.3390/su152316510
Chicago/Turabian StyleAlberto Then, Natividad Miledy, Ramón Delanoy, Diana Rodríguez Alberto, Ronaldo Méndez Henández, Oscar Díaz Rizo, and Lizaira Bello. 2023. "Heavy Metal Pollution Assessment in the Agricultural Soils of Bonao, Dominican Republic" Sustainability 15, no. 23: 16510. https://doi.org/10.3390/su152316510
APA StyleAlberto Then, N. M., Delanoy, R., Rodríguez Alberto, D., Méndez Henández, R., Díaz Rizo, O., & Bello, L. (2023). Heavy Metal Pollution Assessment in the Agricultural Soils of Bonao, Dominican Republic. Sustainability, 15(23), 16510. https://doi.org/10.3390/su152316510