Presence and Flow as Moderators in XR-Based Sustainability Education
Abstract
:1. Introduction
2. Literature Review
2.1. Classification of VR/AR Technology
2.2. Learning with VR/AR
2.3. Determinants of VR/AR Learning
2.4. Experiencing Presence and Flow in VR/AR
3. Hypotheses and Key Questions
- Q1:
- To what degree did the students perceive long-term effects regarding their knowledge on, interest in, and attitude towards the Amazon rainforest?
- Q2:
- Which cognitive and/or affective processes did the students experience while learning with the XR application?
4. Materials and Methods
4.1. The Greenpeace XR Application
4.2. Design and Participants
4.3. Procedure
4.4. Instruments
5. Results
5.1. Quantitative Data Analysis
5.1.1. Descriptive Statistics
5.1.2. Correlations
5.1.3. Moderator Analyses
5.2. Qualitative Data Analysis
5.2.1. Key Question 1: Learning Effects
5.2.2. Key Question 2: Cognitive and Affective Processes
6. Discussion
6.1. Interpretation of Results
6.2. Implications
6.3. Limitations
6.4. Future Perspectives
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Elmqaddem, N. Augmented Reality and Virtual Reality in Education. Myth or Reality? Int. J. Emerg. Technol. Learn. iJET 2019, 14, 234–242. [Google Scholar] [CrossRef]
- Garzón, J. An Overview of Twenty-Five Years of Augmented Reality in Education. Multimodal Technol. Interact. 2021, 5, 37. [Google Scholar] [CrossRef]
- Kavanagh, S.; Luxton-Reilly, A.; Wuensche, B.; Plimmer, B. A Systematic Review of Virtual Reality in Education. Themes Sci. Technol. Educ. 2017, 10, 85–119. [Google Scholar]
- Milgram, P.; Kishino, F. A Taxonomy of Mixed Reality Visual Displays. IEICE Trans. Inf. Syst. 1994, E77-D, 1321–1329. [Google Scholar]
- Rauschnabel, P.A.; Felix, R.; Hinsch, C.; Shahab, H.; Alt, F. What Is XR? Towards a Framework for Augmented and Virtual Reality. Comput. Hum. Behav. 2022, 133, 107289. [Google Scholar] [CrossRef]
- Chuah, S.H.-W. Why and Who Will Adopt Extended Reality Technology? Literature Review, Synthesis, and Future Research Agenda. 2018. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3300469 (accessed on 28 September 2023).
- Greenpeace. Augmented Reality-Anwendung: Der Artenvielfalt auf der Spur. Available online: https://www.greenpeace.de/ueber-uns/umweltbildung/augmented-reality-anwendung-artenvielfalt-spur (accessed on 5 June 2023).
- Mulders, M.; Träg, K.H.; Kirner, L. Go Green: Evaluating an XR Application on Biodiversity in German Secondary School Classrooms. Instr. Sci. 2023. submitted. [Google Scholar]
- Smutny, P. Learning with Virtual Reality: A Market Analysis of Educational and Training Applications. Interact. Learn. Environ. 2022, 1–14. [Google Scholar] [CrossRef]
- Burbules, N.C. Rethinking the Virtual. In The International Handbook of Virtual Learning Environments; Weiss, J., Nolan, J., Hunsinger, J., Trifonas, P., Eds.; Springer: Dordrecht, The Netherlands, 2006; pp. 37–58. ISBN 978-1-40203-803-7. [Google Scholar]
- Sherman, W.R.; Craig, A.B. Understanding Virtual Reality: Interface, Application, and Design; Morgan Kaufmann Series in Computer Graphics and Geometric Modeling; Morgan Kaufmann: San Francisco, CA, USA, 2003; ISBN 978-1-55860-353-0. [Google Scholar]
- Bower, M. Design of Technology-Enhanced Learning—Integrating Research and Practice; Emerald Publishing: Leeds, UK, 2017; ISBN 978-1-78714-183-4. [Google Scholar]
- Mikropoulos, T.A.; Natsis, A. Educational Virtual Environments: A Ten-Year Review of Empirical Research (1999–2009). Comput. Educ. 2011, 56, 769–780. [Google Scholar] [CrossRef]
- Dalgarno, B.; Lee, M.J.W. What Are the Learning Affordances of 3-D Virtual Environments? Br. J. Educ. Technol. 2010, 41, 10–32. [Google Scholar] [CrossRef]
- Freina, L.; Ott, M. A Literature Review on Immersive Virtual Reality in Education: State Of The Art and Perspectives. In Proceedings of the eLearning and Software for Education (eLSE), Bucharest, Romania, 23–24 April 2015; Volume 1, pp. 133–141. [Google Scholar]
- Dunleavy, M.; Dede, C. Augmented Reality Teaching and Learning. In Handbook of Research on Educational Communications and Technology; Spector, J.M., Merrill, M.D., Elen, J., Bishop, M.J., Eds.; Springer: New York, NY, USA, 2014; pp. 735–745. ISBN 978-1-46143-185-5. [Google Scholar]
- Bekele, M.K.; Champion, E. Redefining Mixed Reality: User-Reality-Virtuality and Virtual Heritage Perspectives. In Intelligent & Informed—Proceedings of the 24th CAADRIA Conference—Volume 2, Wellington, New Zealand, 15–18 April 2019; Haeusler, M., Schnabel, M.A., Fukuda, T., Eds.; CUMINCAD: Wellington, New Zealand, 2019; pp. 675–684. [Google Scholar]
- Fast-Berglund, Å.; Gong, L.; Li, D. Testing and Validating Extended Reality (xR) Technologies in Manufacturing. Procedia Manuf. 2018, 25, 31–38. [Google Scholar] [CrossRef]
- Wu, B.; Yu, X.; Gu, X. Effectiveness of Immersive Virtual Reality Using Head-mounted Displays on Learning Performance: A Meta-analysis. Br. J. Educ. Technol. 2020, 51, 1991–2005. [Google Scholar] [CrossRef]
- Buchner, J.; Buntins, K.; Kerres, M. The Impact of Augmented Reality on Cognitive Load and Performance: A Systematic Review. J. Comput. Assist. Learn. 2022, 38, 285–303. [Google Scholar] [CrossRef]
- Rauschnabel, P.; Babin, B.; Tom Dieck, M.C.; Krey, N.; Jung, T. What Is Augmented Reality Marketing? Its Definition, Complexity, and Future. J. Bus. Res. 2022, 142, 1140–1150. [Google Scholar] [CrossRef]
- Fowler, C. Virtual Reality and Learning: Where Is the Pedagogy? Br. J. Educ. Technol. 2015, 46, 412–422. [Google Scholar] [CrossRef]
- Makransky, G.; Petersen, G.B. The Cognitive Affective Model of Immersive Learning (CAMIL): A Theoretical Research-Based Model of Learning in Immersive Virtual Reality. Educ. Psychol. Rev. 2021, 33, 937–958. [Google Scholar] [CrossRef]
- Mulders, M.; Weise, M.; Schmitz, A.; Zender, R.; Kerres, M.; Lucke, U. Handwerkliches Lackieren Mit Virtual Reality (HandLeVR): VR-Basierter Kompetenzerwerb in Der Beruflichen Ausbildung. MedienPädagogik. Z. Theor. Prax. Medien 2023, 51, 214–245. [Google Scholar] [CrossRef]
- Steffen, W.; Richardson, K.; Rockström, J.; Cornell, S.E.; Fetzer, I.; Bennett, E.M.; Biggs, R.; Carpenter, S.R.; de Vries, W.; de Wit, C.A.; et al. Planetary Boundaries: Guiding Human Development on a Changing Planet. Science 2015, 347, 1259855. [Google Scholar] [CrossRef]
- Bailenson, J. Experience on Demand: What Virtual Reality Is, How It Works, and What It Can Do; W. W. Norton & Company: New York, NY, USA, 2018; p. 290. ISBN 978-0-39325-369-6. [Google Scholar]
- Saidin, N.; Halim, N.A.; Yahaya, N. A Review of Research on Augmented Reality in Education: Advantages and Applications. Int. Educ. Stud. 2015, 8, 1–8. [Google Scholar] [CrossRef]
- Cosio, L.D.; Buruk, O.; Fernández Galeote, D.; Bosman, I.D.V.; Hamari, J. Virtual and Augmented Reality for Environmental Sustainability: A Systematic Review. In Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems, Hamburg, Germany, 23–28 April 2023; Association for Computing Machinery: New York, NY, USA, 2023; pp. 1–23. [Google Scholar]
- Spangenberger, P.; Geiger, S.M.; Freytag, S.-C. Becoming Nature: Effects of Embodying a Tree in Immersive Virtual Reality on Nature Relatedness. Sci. Rep. 2022, 12, 1311. [Google Scholar] [CrossRef]
- Mayer, F.S.; Frantz, C.M. The Connectedness to Nature Scale: A Measure of Individuals’ Feeling in Community with Nature. J. Environ. Psychol. 2004, 24, 503–515. [Google Scholar] [CrossRef]
- Hu-Au, E.; Lee, J.J. Virtual Reality in Education: A Tool for Learning in the Experience Age. Int. J. Innov. Educ. 2017, 4, 215–226. [Google Scholar] [CrossRef]
- Spangenberger, P.; Matthes, N.; Geiger, S.; Draeger, I.; Kybart, M.; Schmidt, K.; Kruse, L.; Kapp, F. How to Bring Immersive VR into the Classroom: German Vocational Teachers’ Perception of Immersive VR Technology. J. Tech. Educ. 2023, 11, 91–106. [Google Scholar] [CrossRef]
- Akçayır, M.; Akçayır, G. Advantages and Challenges Associated with Augmented Reality for Education: A Systematic Review of the Literature. Educ. Res. Rev. 2017, 20, 1–11. [Google Scholar] [CrossRef]
- Pellas, N.; Kazanidis, I.; Palaigeorgiou, G. A Systematic Literature Review of Mixed Reality Environments in K-12 Education. Educ. Inf. Technol. 2020, 25, 2481–2520. [Google Scholar] [CrossRef]
- Zhang, J.; Li, G.; Huang, Q.; Feng, Q.; Luo, H. Augmented Reality in K–12 Education: A Systematic Review and Meta-Analysis of the Literature from 2000 to 2020. Sustainability 2022, 14, 9725. [Google Scholar] [CrossRef]
- Johnson-Glenberg, M.C.; Birchfield, D.A.; Tolentino, L.; Koziupa, T. Collaborative Embodied Learning in Mixed Reality Motion-Capture Environments: Two Science Studies. J. Educ. Psychol. 2014, 106, 86–104. [Google Scholar] [CrossRef]
- Bodzin, A.; Araujo-Junior, R.; Hammond, T.; Anastasio, D. Investigating Engagement and Flow with a Placed-Based Immersive Virtual Reality Game. J. Sci. Educ. Technol. 2021, 30, 347–360. [Google Scholar] [CrossRef]
- Tai, K.H.; Hong, J.C.; Tsai, C.R.; Lin, C.Z.; Hung, Y.H. Virtual Reality for Car-Detailing Skill Development: Learning Outcomes of Procedural Accuracy and Performance Quality Predicted by VR Self-Efficacy, VR Using Anxiety, VR Learning Interest and Flow Experience. Comput. Educ. 2022, 182, 104458. [Google Scholar] [CrossRef]
- Choi, H.; Kim, Y.R.; Kim, G.J. Presence, Immersion and Usability of Mobile Augmented Reality. In Proceedings of the Virtual, Augmented and Mixed Reality—Multimodal Interaction, Orlando, FL, USA, 26–31 July 2019; Chen, J.Y.C., Fragomeni, G., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 3–15. [Google Scholar]
- Mulders, M. Learning about Victims of Holocaust in Virtual Reality: The Main, Mediating and Moderating Effects of Technology, Instructional Method, Flow, Presence, and Prior Knowledge. Multimodal Technol. Interact. 2023, 7, 28. [Google Scholar] [CrossRef]
- Dengel, A.; Mägdefrau, J. Immersive Learning Explored: Subjective and Objective Factors Influencing Learning Outcomes in Immersive Educational Virtual Environments. In Proceedings of the 2018 IEEE International Conference on Teaching, Assessment, and Learning for Engineering (TALE), Wollongong, Australia, 4–7 December 2018; pp. 608–615. [Google Scholar]
- Buchner, J.; Kerres, M. Students as Designers of Augmented Reality: Impact on Learning and Motivation in Computer Science. Multimodal Technol. Interact. 2021, 5, 41. [Google Scholar] [CrossRef]
- Biocca, F. The Cyborg’s Dilemma: Progressive Embodiment in Virtual Environments. J. Comput.-Mediat. Commun. 1997, 3, JCMC324. [Google Scholar] [CrossRef]
- Dengel, A. Effects of Immersion and Presence on Learning Outcomes in Immersive Educational Virtual Environments for Computer Science Education. Ph.D. Thesis, Universität Passau, Passau, Germany, 2020. [Google Scholar]
- Campo, A.; Michałko, A.; Van Kerrebroeck, B.; Stajic, B.; Pokric, M.; Leman, M. The Assessment of Presence and Performance in an AR Environment for Motor Imitation Learning: A Case-Study on Violinists. Comput. Hum. Behav. 2023, 146, 107810. [Google Scholar] [CrossRef] [PubMed]
- Volkmann, T.; Wessel, D.; Jochems, N.; Franke, T. German Translation of the Multimodal Presence Scale. In Proceedings of the Mensch und Computer 2018—Tagungsband, Dresden, Germany, 2–5 September 2018. [Google Scholar] [CrossRef]
- Dengel, A.; Mägdefrau, J. Immersive Learning Predicted: Presence, Prior Knowledge, and School Performance Influence Learning Outcomes in Immersive Educational Virtual Environments. In Proceedings of the 2020 6th International Conference of the Immersive Learning Research Network (iLRN), San Luis Obispo, CA, USA, 21–25 June 2020; pp. 163–170. [Google Scholar]
- Steed, A.; Friston, S.; Lopez, M.M.; Drummond, J.; Pan, Y.; Swapp, D. An ‘In the Wild’ Experiment on Presence and Embodiment Using Consumer Virtual Reality Equipment. IEEE Trans. Vis. Comput. Graph. 2016, 22, 1406–1414. [Google Scholar] [CrossRef] [PubMed]
- Makransky, G.; Terkildsen, T.S.; Mayer, R.E. Adding Immersive Virtual Reality to a Science Lab Simulation Causes More Presence but Less Learning. Learn. Instr. 2019, 60, 225–236. [Google Scholar] [CrossRef]
- Rutrecht, H.; Wittmann, M.; Khoshnoud, S.; Igarzábal, F.A. Time Speeds Up During Flow States: A Study in Virtual Reality with the Video Game Thumper. Timing Time Percept. 2021, 9, 353–376. [Google Scholar] [CrossRef]
- Csikszentmihalyi, M. Flow and Education. NAMTA J. 1997, 22, 2–35. [Google Scholar]
- Rheinberg, F.; Vollmeyer, R.; Engeser, S. Die Erfassung Des Flow-Erlebens. In Diagnostik von Selbstkonzept, Lernmotivation und Selbstregulation; Stiensmeier-Pelster, J., Rheinberg, F., Eds.; Hogrefe: Göttingen, Germany, 2003; pp. 261–279. [Google Scholar]
- Hamari, J.; Shernoff, D.J.; Rowe, E.; Coller, B.; Asbell-Clarke, J.; Edwards, T. Challenging Games Help Students Learn: An Empirical Study on Engagement, Flow and Immersion in Game-Based Learning. Comput. Hum. Behav. 2016, 54, 170–179. [Google Scholar] [CrossRef]
- Kye, B.; Kim, Y. Investigation of the Relationships between Media Characteristics, Presence, Flow, and Learning Effects in Augmented Reality Based Learning. Int. J. Educ. Media Technol. 2008, 2, 4–14. [Google Scholar]
- Janssen, D.; Tummel, C.; Richert, A.; Isenhardt, I. Virtual Environments in Higher Education—Immersion as a Key Construct for Learning 4.0. Int. J. Adv. Corp. Learn. 2016, 9, 20. [Google Scholar] [CrossRef]
- Wahyu, Y.; Suastra, I.W.; Sadia, I.W.; Suarni, N.K. The Effectiveness of Mobile Augmented Reality Assisted STEM-Based Learning on Scientific Literacy and Students’ Achievement. Int. J. Instr. 2020, 13, 343–356. [Google Scholar] [CrossRef]
- Yoon, S.A.; Elinich, K.; Wang, J.; Steinmeier, C.; Tucker, S. Using Augmented Reality and Knowledge-Building Scaffolds to Improve Learning in a Science Museum. Int. J. Comput.-Support. Collab. Learn. 2012, 7, 519–541. [Google Scholar] [CrossRef]
- Buchner, J.; Kerres, M. Media Comparison Studies Dominate Comparative Research on Augmented Reality in Education. Comput. Educ. 2023, 195, 104711. [Google Scholar] [CrossRef]
- Ainley, M.; Hidi, S.; Berndorff, D. Interest, Learning, and the Psychological Processes That Mediate Their Relationship. J. Educ. Psychol. 2002, 94, 545–561. [Google Scholar] [CrossRef]
- Ajzen, I.; Fishbein, M. Attitudes and the Attitude-Behavior Relation: Reasoned and Automatic Processes. Eur. Rev. Soc. Psychol. 2000, 11, 1–33. [Google Scholar] [CrossRef]
- Mayring, P.; Fenzl, T. Qualitative Inhaltsanalyse. In Handbuch Methoden der Empirischen Sozialforschung; Baur, N., Blasius, J., Eds.; Springer Fachmedien: Wiesbaden, Germany, 2019; pp. 633–648. ISBN 978-3-65821-308-4. [Google Scholar]
- Kuckartz, U.; Rädiker, S. Fokussierte Interviewanalyse mit MAXQDA: Schritt für Schritt; Springer Fachmedien: Wiesbaden, Germany, 2020; ISBN 978-3-65831-467-5. [Google Scholar]
- Haws, K.L.; Winterich, K.P.; Naylor, R.W. Seeing the World through GREEN-Tinted Glasses: Green Consumption Values and Responses to Environmentally Friendly Products. J. Consum. Psychol. 2014, 24, 336–354. [Google Scholar] [CrossRef]
- Spangenberger, P. Erfassung von Nachhaltigkeit Für Die Berufswahlmotivation Im Beruflichen Lehramt. In Praxisbezogene Lerngelegenheiten und Berufswahlmotivation im beruflichen Lehramtsstudium; Pfetsch, J., Stellmacher, A., Eds.; Waxmann: Kornwestheim, Germany, 2021; pp. 133–145. ISBN 978-3-83094-087-6. [Google Scholar]
- Rieß, W.; Mischo, C. Evaluationsbericht “Bildung Für Nachhaltige Entwicklung (BNE) an Weiterführenden Schulen in Baden-Württemberg”; Maßnahme Lfd. 15 Im Aktionsplan Baden-Württemberg; Umweltministerium Baden-Württemberg: Stuttgart, Germany, 2008. [Google Scholar]
- Waltner, E.-M.; Rieß, W.; Mischo, C.; Hörsch, C.; Scharenberg, K. Abschlussbericht: Bildung für Nachhaltige Entwicklung—Umsetzung Eines Neuen Leitprinzips und Seine Effekte auf Schüler/-Innenseite; Freiburg University of Education: Freiburg im Breisgau, Germany, 2021. [Google Scholar]
- Rheinberg, F.; Vollmeyer, R.; Engster, S.; Sreeramoju, R.R. FSS—Flow Short Scale (English Version). In The Acquisition of the Flow Experience; Stiensmeier-Pelster, J., Rheinberg, F., Eds.; Hogrefe: Göttingen, Germany, 2002; pp. 261–279. [Google Scholar]
- Rheinberg, F.; Vollmeyer, R.; Engeser, S. FKS—Flow-Kurzskala. Leibniz-Zent. Psychol. Inf. Dok. ZPID 2019. [Google Scholar] [CrossRef]
- Makransky, G.; Lilleholt, L.; Aaby, A. Development and Validation of the Multimodal Presence Scale for Virtual Reality Environments: A Confirmatory Factor Analysis and Item Response Theory Approach. Comput. Hum. Behav. 2017, 72, 276–285. [Google Scholar] [CrossRef]
- McKinney, W. Python for Data Analysis: Data Wrangling with Pandas, NumPy, and Jupyter, 3rd ed.; O’Reilly Media: Beijing, China; Boston, MA, USA; Farnham, UK; Sebastopol, Russia; Tokyo, Japan, 2022; ISBN 978-1-09810-403-0. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022. [Google Scholar]
- Fox, J.; Weisberg, S.; Price, B.; Adler, D.; Bates, D.; Baud-Bovy, G.; Bolker, B.; Ellison, S.; Firth, D.; Friendly, M.; et al. Car: Companion to Applied Regression; R Foundation for Statistical Computing: Vienna, Austria, 2023. [Google Scholar]
- Yentes, R.; Wilhelm, F. Careless: Procedures for Computing Indices of Careless Responding; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- Signorell, A.; Aho, K.; Alfons, A.; Anderegg, N.; Aragon, T.; Arachchige, C.; Arppe, A.; Baddeley, A.; Barton, K.; Bolker, B.; et al. DescTools: Tools for Descriptive Statistics; R Foundation for Statistical Computing: Vienna, Austria, 2023. [Google Scholar]
- Long, J.A. Interactions: Comprehensive, User-Friendly Toolkit for Probing Interactions; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- Navarro, D. Lsr: Companion to “Learning Statistics with R”; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- Komsta, L.; Novomestky, F. Moments: Moments, Cumulants, Skewness, Kurtosis and Related Tests; R Foundation for Statistical Computing: Vienna, Austria, 2022. [Google Scholar]
- Revelle, W. Psych: Procedures for Psychological, Psychometric, and Personality Research; R Foundation for Statistical Computing: Vienna, Austria, 2023. [Google Scholar]
- Cronbach, L.J. Coefficient Alpha and the Internal Structure of Tests. Psychometrika 1951, 16, 297–334. [Google Scholar] [CrossRef]
- Field, Z.; Miley, J.; Field, A. Discovering Statistics Using R; Sage: Thousand Oaks, CA, USA, 2012; ISBN 978-1-44625-846-0. [Google Scholar]
- Mulders, M.; Träg, K.; Kirner, L. Artenvielfalt im Unterricht—Ergebnisse qualitativer Befragungen von Schüler:innen zum Einsatz von XR [Manuscript submitted for publication]. 2023. [Google Scholar]
- Jung, T.; tom Dieck, M.C.; Moorhouse, N.; tom Dieck, D. Tourists’ Experience of Virtual Reality Applications. In Proceedings of the 2017 IEEE International Conference on Consumer Electronics (ICCE), Las Vegas, NV, USA, 8–10 January 2017; pp. 208–210. [Google Scholar]
- Chang, Y.M.; Lai, C.L. Exploring the Experiences of Nursing Students in Using Immersive Virtual Reality to Learn Nursing Skills. Nurse Educ. Today 2021, 97, 104670. [Google Scholar] [CrossRef] [PubMed]
- Forsyth, D.R.; Zyzniewski, L.E.; Giammanco, C.A. Responsibility Diffusion in Cooperative Collectives. Pers. Soc. Psychol. Bull. 2002, 28, 54–65. [Google Scholar] [CrossRef]
- Alnuaimi, O.A.; Robert, L.P.; Maruping, L.M. Team Size, Dispersion, and Social Loafing in Technology-Supported Teams: A Perspective on the Theory of Moral Disengagement. J. Manag. Inf. Syst. 2010, 27, 203–230. [Google Scholar] [CrossRef]
- Spagnolli, A.; Gamberini, L. Immersion/Emersion: Presence in Hybrid Environments. In Proceedings of the Fifth Annual International Workshop Presence, Porto, Portugal, 9–11 October 2002. [Google Scholar]
- Bunnenberg, C. Mittendrin Im Historischen Geschehen? Gesch. Heute 2020, 13, 45–59. [Google Scholar] [CrossRef]
- Lewers, E. Durch Raum und Zeit?: Medienkritische Auseinandersetzung mit Virtual Reality im Geschichtsunterricht. Medienimpulse 2022, 60, 41. [Google Scholar] [CrossRef]
- Engel, J.; Karpowitz, L. Global forms of digitality intersect with local visual cultures—Zu einer postdigitalen Relationalität von Bildungsprozessen. In Jahrbuch Dokumentarische Methode. Heft 4/2021; Geimer, A., Klinge, D., Rundel, S., Thomsen, S., Eds.; JDM—Jahrbuch Dokumentarische Methode; Centrum für Qualitative Evaluations- und Sozialforschung e.V. (ces): Berlin, Germany, 2021; Volume 4, pp. 185–210. [Google Scholar]
- Astleitner, H. Designing Emotionally Sound Instruction: The FEASP-Approach. Instr. Sci. 2000, 28, 169–198. [Google Scholar] [CrossRef]
Scale | Cronbach’s α |
---|---|
Flow Short Scale | 0.92 |
Multimodal Presence Scale | 0.92 |
Multimodal Presence Scale—physical | 0.85 |
Multimodal Presence Scale—social | 0.88 |
Pretest | M | SD | NA | Posttest | M | SD | NA |
---|---|---|---|---|---|---|---|
K * | 3.06 | 0.81 | 0 | 3.37 | 0.85 | 25 | |
I * | 4.58 | 1.29 | 0 | 4.60 | 1.43 | 28 | |
A * | 5.00 | 1.26 | 1 | 5.26 | 1.35 | 42 | |
G * | 3.24 | 0.69 | 0 | 3.29 | 0.81 | 43 | |
E * | 3.57 | 0.58 | 0 | 3.58 | 0.68 | 45 | |
Flow | X | X | X | 4.31 | 1.23 | 46 | |
MPS * | X | X | X | 2.75 | 0.83 | 45 | |
MPS ph * | X | X | X | 2.80 | 0.83 | 45 | |
MPS so * | X | X | X | 2.72 | 0.89 | 46 |
Pretest | Posttest | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Pretest | K | I | A | G | E | K | I | A | G | E | Flow |
K * | 1 | ||||||||||
I * | 0.38 | 1 | |||||||||
A * | 0.22 | 0.43 | 1 | ||||||||
G * | −0.01 | 0.43 | 0.36 | 1 | |||||||
E * | 0.12 | 0.38 | 0.45 | 0.57 | 1 | ||||||
Posttest | |||||||||||
K | 0.38 | 0.33 | 0.20 | 0.13 | 0.30 | 1 | |||||
I | 0.20 | 0.57 | 0.37 | 0.45 | 0.48 | 0.45 | 1 | ||||
A | 0.18 | 0.28 | 0.58 | 0.42 | 0.57 | 0.23 | 0.44 | 1 | |||
G | 0.04 | 0.29 | 0.32 | 0.76 | 0.59 | 0.24 | 0.43 | 0.52 | 1 | ||
E | −0.07 | 0.26 | 0.39 | 0.55 | 0.76 | 0.20 | 0.42 | 0.57 | 0.73 | 1 | |
Flow | 0.13 | 0.28 | 0.28 | 0.40 | 0.34 | 0.34 | 0.47 | 0.39 | 0.55 | 0.42 | 1 |
MPS | −0.03 | 0.17 | −0.03 | 0.30 | 0.11 | 0.17 | 0.20 | 0.01 | 0.38 | 0.10 | 0.58 |
K * | I * | A * | G * | E * | ||
---|---|---|---|---|---|---|
Flow | r | 0.214 | 0.241 | 0.164 | 0.276 | 0.197 |
p | 0.026 | 0.011 | 0.092 | 0.004 | 0.042 | |
Presence | r | 0.194 | 0.058 | 0.028 | 0.101 | −0.001 |
p | 0.043 | 0.545 | 0.772 | 0.297 | 0.989 |
Model | Interaction | ||||
---|---|---|---|---|---|
F (df) | p | R² | t | p | |
K *: Flow | 13.00 (3, 104) | <0.001 | 0.252 | −2.19 | 0.031 |
I *: Flow | 26.43 (3, 106) | <0.001 | 0.412 | 0.41 | 0.682 |
A *: Flow | 25.09 (3, 103) | <0.001 | 0.405 | −1.53 | 0.128 |
G *: Flow | 56.76 (3, 104) | <0.001 | 0.610 | −0.59 | 0.557 |
E *: Flow | 53.49 (3, 103) | <0.001 | 0.598 | −0.37 | 0.711 |
K: Presence | 10.10 (3, 105) | <0.001 | 0.202 | −2.19 | 0.031 |
I: Presence | 18.75 (3, 107) | <0.001 | 0.326 | −1.87 | 0.064 |
A: Presence | 19.69 (3, 104) | <0.001 | 0.344 | −0.47 | 0.641 |
G: Presence | 44.93 (3, 105) | <0.001 | 0.550 | −0.65 | 0.515 |
E: Presence | 52.39 (3, 104) | <0.001 | 0.590 | −2.56 | 0.012 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mulders, M.; Träg, K.H. Presence and Flow as Moderators in XR-Based Sustainability Education. Sustainability 2023, 15, 16496. https://doi.org/10.3390/su152316496
Mulders M, Träg KH. Presence and Flow as Moderators in XR-Based Sustainability Education. Sustainability. 2023; 15(23):16496. https://doi.org/10.3390/su152316496
Chicago/Turabian StyleMulders, Miriam, and Kristian Heinrich Träg. 2023. "Presence and Flow as Moderators in XR-Based Sustainability Education" Sustainability 15, no. 23: 16496. https://doi.org/10.3390/su152316496
APA StyleMulders, M., & Träg, K. H. (2023). Presence and Flow as Moderators in XR-Based Sustainability Education. Sustainability, 15(23), 16496. https://doi.org/10.3390/su152316496