Removal of Brilliant Green Cationic Dye Using Bioadsorbent Material from Oyster Shells
Abstract
:1. Introduction
2. Experimental Procedure
2.1. Preparation of the Biosorbent Material
2.2. Characterization of the Biosorbent Material
2.2.1. Point of Zero Charges (PZC)
2.2.2. BET Analysis
2.2.3. X-ray Diffraction Analysis
2.2.4. FTIR Analysis
2.2.5. Thermogravimetry Analysis
2.3. Colorant Removal Evaluation
2.4. Estimation of Kinetic Parameters
3. Results and Discussion
3.1. Characterization of the Bioadsorbent Material
3.1.1. Points of Zero Charge (PZCs)
3.1.2. BET Analysis
3.1.3. XRD Analysis
3.1.4. FTIR Analysis
3.1.5. TGA Analysis
3.2. Brilliant Green Dye Removal Tests
3.2.1. Analysis to Determine Operating pH
3.2.2. Variation of Initial Dye Concentration
3.2.3. Bioadsorbent Dose Variation
3.3. Adsorption Kinetics
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kishor, R.; Raj, A.; Bharagava, R.N. Synergistic role of bacterial consortium (RKS-AMP) for treatment of recalcitrant coloring pollutants of textile industry wastewater. J. Water Process. Eng. 2022, 47, 102700. [Google Scholar] [CrossRef]
- Chourasiya, R.; Pandey, S.; Kumar Malviya, R. Developing a framework to analyze the effect of sustainable manufacturing adoption in Indian textile industries. Clean. Logist. Supply Chain. 2022, 4, 100045. [Google Scholar] [CrossRef]
- Streit, F.M.; Grassi, P.; Drumm, F.C.; Silva, L.F.O.; Oliveira, M.L.S. Preparation of carbonaceous materials from flotation-sludge of the poultry industry and its application in the methylene blue adsorption. Environ. Sci. Pollut. 2023, 30, 78139–78151. [Google Scholar] [CrossRef]
- Okafor, C.C.; Madu, C.N.; Ajaero, C.C.; Ibekwe, J.C.; Nzekwe, C.A. Sustainable management of textile and clothing. Clean Technol. Recycl. 2021, 1, 70–87. [Google Scholar] [CrossRef]
- Katheresan, V.; Kansedo, J.; Lau, S.Y. Efficiency of various recent wastewater dye removal methods: A review. J. Environ. Chem. Eng. 2018, 6, 4676–4697. [Google Scholar] [CrossRef]
- Holkar, C.; Jadhav, A.; Pinjari, D.; Mahamuni, N.; Pandit, A. A critical review on textile wastewater treatments: Possible approaches. J. Environ. Manag. 2016, 356–358. [Google Scholar] [CrossRef]
- Hasanpour, M.; Hatami, M. Photocatalytic performance of aerogels for organic dyes removal from wastewaters: Review study. J. Mol. Liq. 2020, 309, 113094. [Google Scholar] [CrossRef]
- Shirzad-Siboni, M.; Khataee, A.; Joo, S.W. Kinetics and equilibrium studies of removal of an azo dye from aqueous solution by adsorption onto scallop. J. Ind. Eng. Chem. 2014, 20, 610–615. [Google Scholar] [CrossRef]
- Ezechi, E.H.; Kutty, S.R.; Bin, M.; Malakahmad, A.; Isa, M.H. Characterization and optimization of effluent dye removal using a new low-cost adsorbent: Equilibrium, kinetics and thermodynamic study. Process Saf. Environ. Prot. 2015, 98, 16–32. [Google Scholar] [CrossRef]
- Diehl, M.; Silva, L.F.O.; Schnorr, C.; Netto, M.S.; Bruckmann, F.S.; Dotto, G.L. Cassava bagasse as an alternative biosorbent to uptake methylene blue environmental pollutant from water. Environ. Sci. Pollut. Res. 2023, 30, 51920–51931. [Google Scholar] [CrossRef]
- Sukmana, H.; Ballai, G.; Gyulavári, T.; Illés, E.; Kozma, G.; Kónya, Z.; Hodúr, C. Hungarian and Indonesian rice husk as bioadsorbents for binary biosorption of cationic dyes from aqueous solutions: A factorial design analysis. Heliyon 2023, 9, e17154. [Google Scholar] [CrossRef] [PubMed]
- Veni, K.; Brenda, T.H. Preparation of raw oyster shell for removal of coomassie brilliant blue R-250 dye from aqueous solution. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2021; Volume 765, p. 012039. Available online: https://iopscience.iop.org/article/10.1088/1755-1315/765/1/012039 (accessed on 24 November 2023).
- Ali, K.; Javaid, M.U.; Ali, Z.; Zaghum, M.J. Biomass-Derived Adsorbents for Dye and Heavy Metal Removal from Wastewater. Adsorpt. Sci. Technol. 2021, 2021, 9357509. [Google Scholar] [CrossRef]
- Singh, D.; Sowmya, V.; Abinandan, S.; Shanthakumar, S. Removal of Malachite Green Dye by Mangifera indica Seed Kernel Powder. Ser. D J. Inst. Eng. 2017, 99, 103–111. [Google Scholar] [CrossRef]
- Sartape, A.S.; Mandhare, A.M.; Jadhav, V.V.; Raut, P.D.; Anuse, M.A.; Kolekar, S.S. Removal of malachite green dye from aqueous solution with adsorption technique using Limonia acidissima (wood apple) shell as low-cost adsorbent. Arab. J. Chem. 2017, 10, S3229–S3238. [Google Scholar] [CrossRef]
- Toniciolli, R.C.V.; Piccin, J.S.; Dettmer, A.; Rosseto, M.; Dotto, G.L.; de Oliveira, S.A.P.; Perondi, D.; Loss, R.P.; Geraldi, C.A.Q. Water hyacinth (Eichhornia crassipes) roots, an amazon natural waste, as an alternative biosorbent to uptake a reactive textile dye from aqueous solutions. Ecol. Eng. 2020, 150, 105817. [Google Scholar] [CrossRef]
- Nascimento, V.X.; Schnorr, C.; Lütke, S.F.; Da Silva, M.C.F.; Machado, F.M.; Thue, P.S.; Lima, E.C.; Vieillard, J.; Silva, L.F.O.; Dotto, G.L. Adsorptive Features of Magnetic Activated Carbons Prepared by a One-Step Process towards Brilliant Blue Dye. Molecules 2023, 28, 1821. [Google Scholar] [CrossRef]
- Su, H.; Guo, X.; Zhang, X.; Zhang, Q.; Huang, D.; Lin, L.; Qiang, X. Ultrafine biosorbent from waste oyster shell: A comparative study of Congo red and Methylene blue adsorption. Bioresour. Technol. Rep. 2022, 19, 101124. [Google Scholar] [CrossRef]
- Katha, P.S.; Ahmed, Z.; Alam, R.; Saha, B.; Acharjee, A.; Rahman, M.S. Efficiency analysis of eggshell and tea waste as Low-cost adsorbents for Cr removal from wastewater sample. S. Afr. J. Chem. Eng. 2021, 37, 186–195. [Google Scholar] [CrossRef]
- Chen, Y.; Xu, J.; Lv, Z.; Xie, R.; Huang, L.; Jiang, J. Impacts of biochar and oyster shells waste on the immobilization of arsenic in highly contaminated soils. J. Environ. Manag. 2018, 217, 646–653. [Google Scholar] [CrossRef]
- Jung, S.; Heo, N.S.; Kim, E.J.; Oh, S.Y.; Lee, H.U.; Kim, I.T.; Hur, J.; Lee, G.-W.; Lee, Y.-C.; Huh, Y.S. Feasibility test of waste oyster shell powder for water treatment. Process Saf. Environ. Prot. 2016, 102, 129–139. [Google Scholar] [CrossRef]
- Cheng, M.; Liu, M.; Chang, L.; Liu, Q.; Wang, C.; Hu, L.; Zhang, Z.; Ding, W.; Chen, L.; Guo, S.; et al. Overview of structure, function and integrated utilization of marine shell. Sci. Total Environ. 2023, 870, 161950. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Wang, Y.; Sun, S.; Wang, Y.; Xu, L. Preparation of PVA/waste oyster shell powder composite as an efficient adsorbent of heavy metals from wastewater. Heliyon 2022, 8, e11938. [Google Scholar] [CrossRef] [PubMed]
- Cabral, D.S.; Campos, M.L.C.; Barbosa, A.B.V.; Passos, L.S.; Pereira, T.M.; Merçon, J.; Castheloge, V.D.; Chippari-Gomes, A.R. Do iron and manganese affect the health of the estuarine oyster Crassostrea rhizophorae? Estuar. Coast. Shelf Sci. 2022, 268, 107800. [Google Scholar] [CrossRef]
- Zhou, Z.; Xu, Q.; Wu, Z.; Fang, X.; Zhong, Q.; Yang, J.; Yan, J.; Li, Q. Preparation and characterization of clay-oyster shell composite adsorption material and its application in phosphorus removal from wastewater. Sustain. Chem. Pharm. 2023, 32, 101023. [Google Scholar] [CrossRef]
- Díaz, A.; Rodelo, E. Evaluación de Materiales Bioadsorbentes Modificados Térmicamente en la Remoción de Nutrientes Presentes en Aguas Residuales Municipales de la Ciudad de Barranquilla. Repositorio.cuc.edu.co. 2019. Available online: https://repositorio.cuc.edu.co/handle/11323/4914 (accessed on 24 November 2023).
- Cruz, R. Evaluación de Distintos Adsorbentes Basados en Calcio en la Adsorción del Colorante Índigo Carmín. 2019. Available online: https://hdl.handle.net/20.500.12371/4578 (accessed on 24 November 2023).
- Shih, P.K.; Chang, W.L. The effect of water purification by oyster shell contact bed. Ecol. Eng. 2015, 77, 382–390. [Google Scholar] [CrossRef]
- Corbett, P.W.M.; Wang, H.; Câmara, R.N.; Tavares, A.C.; de Almeida, L.F.; Perosi, F.; Machado, A.; Jiang, Z.; Ma, J.; Bagueira, R. Using the porosity exponent (m) and pore-scale resistivity modelling to understand pore fabric types in coquinas (Barremian-Aptian) of the Morro do Chaves Formation, NE Brazil. Mar. Pet. Geol. 2017, 88, 628–647. [Google Scholar] [CrossRef]
- Nazari, M.T.; Schnorr, C.; Rigueto, C.V.T.; Alessandretti, I.; Melara, F.; da Silva, N.F.; Crestani, L.; Ferrari, V.; Vieillard, J.; Dotto, G.L.; et al. A review of the main methods for composite adsorbents characterization. Environ. Sci. Pollut. Res. 2022, 29, 88488–88506. [Google Scholar] [CrossRef]
- Umh, H.N.; Kim, Y. Sensitivity of nanoparticles’ stability at the point of zero charge (PZC). J. Ind. Eng. Chem. 2014, 20, 3175–3178. [Google Scholar] [CrossRef]
- Bergslien, E.T. X-ray diffraction (XRD) evaluation of questioned cremains. Forensic Sci. Int. 2022, 332, 111171. [Google Scholar] [CrossRef]
- Ghosh, S.; Islam, S.; Pramanik, S.; Seth, S.K. Structural elucidation of phenoxybenzaldehyde derivatives from laboratory powder X-ray diffraction: A combined experimental and theoretical quantum mechanical study. J. Mol. Struct. 2022, 1268, 133697. [Google Scholar] [CrossRef]
- Adeleke, O.A.; Latiff, A.A.A.; Saphira, M.R.; Daud, Z.; Ismail, N.; Ahsan, A.; Ab Aziz, N.A.; Al-Gheethi, A.; Kumar, V.; Fadilat, A.; et al. Principles and Mechanism of Adsorption for the Effective Treatment of Palm Oil Mill Effluent for Water Reuse. In Nanotechnology in Water and Wastewater Treatment; Elsevier: Amsterdam, The Netherlands, 2019; pp. 1–33. [Google Scholar] [CrossRef]
- da Silva, M.C.F.; Lütke, S.F.; Nascimento, V.X.; Lima, E.C.; Silva, L.F.O.; Oliveira, M.L.S.; Dotto, G.L. Activated carbon prepared from Brazil nut shells towards phenol removal from aqueous solutions. Environ. Sci. Pollut. Res. 2023, 30, 82795–82806. [Google Scholar] [CrossRef] [PubMed]
- Simonin, J.P. On the comparison of pseudo-first order and pseudo-second order rate laws in the modeling of adsorption kinetics. J. Chem. Eng. 2016, 300, 254–263. [Google Scholar] [CrossRef]
- Haladu, S.A. Highly efficient adsorption of malachite green dye onto a cross-linked pH-responsive cycloterpolymer resin: Kinetic, equilibrium and thermodynamic studies. J. Mol. Liq. 2022, 357, 119115. [Google Scholar] [CrossRef]
- Soudagar, S.; Akash, S.; Venkat, S.; Poiba, V.; Vangalapati, M. Adsorption of methylene blue dye on nano graphene oxide-thermodynamics and kinetic studies. Mater. Today Proc. 2021, 59, 667–672. [Google Scholar] [CrossRef]
- Li, Q.; Zhai, J.; Zhang, W.; Wang, M.; Zhou, J. Kinetic studies of adsorption of Pb(II), Cr(III) and Cu(II) from aqueous solution by sawdust and modified peanut husk. J. Hazard. Mater. 2007, 141, 163–167. [Google Scholar] [CrossRef]
- Nemr, A.E.; Sikaily, A.E.; Khaled, A. Modeling of adsorption isotherms of Methylene Blue onto rice husk activated carbon. Egypt. J. Aquat. Res. 2010, 36, 403–425. Available online: https://www.researchgate.net/publication/233783421 (accessed on 24 November 2023).
- Largitte, L.; Paquier, R. A review of the kinetics adsorption models and their application to the adsorption of lead by an activated carbon. Chem. Eng. Res. Des. 2016, 109, 495–504. [Google Scholar] [CrossRef]
- Kosmulski, M. The pH dependent surface charging and points of zero charge. X. Update. Adv. Colloid Interface Sci. 2023, 319, 102973. [Google Scholar] [CrossRef]
- Henrique, D.C.; Quitela, D.U.; Ide, A.H.; Lins, P.V.S.; Perazzini, M.T.B.; Perazzini, H.; Oliverida, L.M.T.M.; Duarte, J.L.S.; Meili, L. Mollusk shells as adsorbent for removal of endocrine disruptor in different water matrix. J. Environ. Chem. Eng. 2021, 9, 105704. [Google Scholar] [CrossRef]
- Wu, J.; Yang, J.; Feng, P.; Wen, L.; Huang, G.; Xu, C.; Lin, B. Highly efficient and ultra-rapid adsorption of malachite green by recyclable crab shell biochar. J. Ind. Eng. Chem. 2022, 113, 206–214. [Google Scholar] [CrossRef]
- Brunauer, S.; Emmett, P.H.; Teller, E. Adsorption of Gases in Multimolecular Layers. J. Am. Chem. Soc. 1938, 60, 309–319. [Google Scholar] [CrossRef]
- de Brião, G.V.; da Silva, M.G.C.; Vieira, M.G.A.; Chu, K.H. Correlation of type II adsorption isotherms of water contaminants using modified BET equations. Colloids Interface Sci. Commun. 2022, 46, 100557. [Google Scholar] [CrossRef]
- Chang, H.Y.; Kuo, Y.L.; Liu, J. Fluoride at waste oyster shell surfaces–Role of magnesium. Sci. Total Environ. 2019, 652, 1331–1338. [Google Scholar] [CrossRef] [PubMed]
- Uddin, M.K.; Mashkoor, F.; AlArifi, I.M.; Nasar, A. Simple one-step synthesis process of novel MoS2@bentonite magnetic nanocomposite for efficient adsorption of crystal violet from aqueous solution. Mater. Res. Bull. 2021, 139, 111279. [Google Scholar] [CrossRef]
- Mijan, A.N.; Yap, T.Y.; Lee, H. Synthesis of clamshell derived Ca(OH)2 nanoparticles via simple surfactant-hydration treatment. J. Chem. Eng. 2015, 262, 1043–1051. [Google Scholar] [CrossRef]
- Nguyen, T.; Ngo, H.; Guo, W.; Nguyen, T.; Vu, N.; Soda, S.; Nguyen, T.; Nguyen, M.; Tran, T.; Dang, T.; et al. White hard clam (Meretrix lyrata) shells as novel filter media to augment the phosphorus removal from wastewater. Sci. Total Environ. 2020, 741, 140483. [Google Scholar] [CrossRef]
- Wang, H.; Yan, K.; Chen, J. Preparation of hydroxyapatite microspheres by hydrothermal self-assembly of marine shell for effective adsorption of Congo Red. Mater. Lett. 2021, 304, 130573. [Google Scholar] [CrossRef]
- Torre, N.; Torre, M.; Puri, L.; Rallini, M. Thermal degradation of phenolics and their carbon fiber derived composites: A feasible protocol to assess the heat capacity as a function of temperature through the use of common DSC and TGA analysis. Polym. Degrad. Stab. 2022, 195, 109793. [Google Scholar] [CrossRef]
- Risso, R.; Ferraz, P.; Meireles, S.; Fonseca, I.; Vital, J. Highly active Cao catalysts from waste shells of egg, oyster and clam for biodiesel production. Appl. Catal. A Gen. 2018, 567, 56–64. [Google Scholar] [CrossRef]
- Fan, X.; Deng, L.; Li, K.; Lu, H.; Wang, R.; Li, W. Adsorption of malachite green in aqueous solution using sugarcane bagasse-barium carbonate composite. Colloids Interface Sci. Commun. 2021, 44, 100485. [Google Scholar] [CrossRef]
- Rashid, S.; Shen, C.; Yang, J.; Liu, J.; Li, J. Preparation and properties of chitosan–metal complex: Some factors influencing the adsorption capacity for dyes in aqueous solution. J. Environ. Sci. 2018, 66, 301–309. [Google Scholar] [CrossRef] [PubMed]
- Ruscasso, F.; Bezus, B.; Garmendia, G.; Vero, S.; Curutchet, G.; Cavello, I.; Cavalitto, S. Debaryomyces hansenii F39A as biosorbent for textile dye removal. Rev. Argent. Microbiol. 2021, 53, 257–265. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Ren, D.; Zhang, X.; Zhang, S.; Chen, W. Adsorption-degradation of malachite green using alkali-modified biochar immobilized laccase under multi-methods. Adv. Powder. Technol. 2022, 33, 103821. [Google Scholar] [CrossRef]
- Ortega, T.R.; Tovar, C.T.; Ortíz, A.V.; Bermúdez, F.A.; Moreno, Y.P. Effective adsorption of Tartrazine by modified biomaterial from wheat residues. Ing. Compet. 2022, 24, e22211139. Available online: https://www.redalyc.org/journal/2913/291371829022/html/ (accessed on 24 November 2023). [CrossRef]
- Inthapanya, X.; Wu, S.; Han, Z.; Zeng, G.; Wu, M.; Yang, C. Adsorptive removal of anionic dye using calcined oyster shells: Isotherms, kinetics, and thermodynamics. Environ. Sci. Pollut. 2019, 26, 5944–5954. [Google Scholar] [CrossRef]
- Ho, Y.S.; McKay, G. Pseudo-second order model for sorption processes. Process Biochem. 1999, 34, 451–465. [Google Scholar] [CrossRef]
- Ravindir, G.; Sundaram, H.; Marimuthu, R.E.; Ramasamy, S.; Nabil, A.Z.; Ahmed, B. Removal of azo dyes from synthetic wastewater using biochar derived from sewage sludge to prevent groundwater contamination. Urban Clim. 2023, 49, 101502. [Google Scholar] [CrossRef]
Kinetic Model | Equation | Parameters |
---|---|---|
Pseudo-first-order [38]. | k1 (L min−1): first order rate constant; qe (mg/g): amount of adsorbate adsorbed at equilibrium; qt: amount of adsorbate adsorbed at time t. The values of qe and k1 can be obtained by fitting the nonlinear curve of the experimental data log (qe − qt) against t. | |
Pseudo-second-order [38]. | k2 (g mg−1min−1) second order rate constant; qe (mg/g): amount of adsorbate adsorbed at equilibrium; qt: amount of adsorbate adsorbed at time t. | |
Elovich Model [40,41]. | α: initial rate of adsorption (mg g−1 min−1); β (g mg−1) desorption constant related to surface reach and chemisorption activation energy; qt: amount of adsorbate adsorbed at time t. | |
Intraparticle model [39]. | Donde kip (mmol g−1 min−1/2) is the intraparticle diffusion rate constant. |
Model | Initial Concentration (mg L−1) | ||
---|---|---|---|
25 | 50 | 75 | |
Pseudo-First-Order | |||
q1 (mg g−1) | 117.37 ± 1.46 | 227.80 ± 7.07 | 390.87 ± 2.08 |
k1 (min−1) | 5.39 | 43.11 | 0.03 |
R2 | 0.99 | 0.91 | 0.93 |
R2adj | 0.98 | 0.90 | 0.93 |
Χ2 | 21.28 | 499.64 | 518.16 |
MSE (mg g−1) | 4.6139 | 22.3525 | 22.76 |
Pseudo-Second-Order | |||
q2 (mg g−1) | 119.37 ± 2.02 | 253.37 ± 4.32 | 515.55 ± 0.99 |
k2 (min−1) | 0.01 | 9.31 | 4.83 |
R2 | 0.99 | 0.99 | 0.99 |
R2adj | 0.99 | 0.99 | 0.99 |
Χ2 | 17.70 | 55.03 | 27.12 |
MSE (mg g−1) | 4.21 | 7.42 | 5.21 |
Intraparticle Model | |||
q (mg g−1) | 7.72 ± 2.55 | 17.99 ± 4.17 | 34.25 ± 4.02 |
k (min−1) | 7.73 | 17.99 | 34.25 |
C | 55.01 | 86.65 | 31.71 |
R2 | 0.50 | 0.67 | 0.89 |
R2adj | 0.44 | 0.64 | 0.87 |
Χ2 | 699.64 | 1870.53 | 1737.37 |
MSE (mg g−1) | 26.45 | 43.25 | 41.68 |
Elovich Model | |||
a | 102.62 ± 5.19 | 4934.43 ± 7433.91 | 16.91 ± 0.09 |
b | 0,05 | 0.04 | 0.01 |
R2 | 0.91 | 0.98 | 0.99 |
R2adj | 0.91 | 0.98 | 0.99 |
Χ2 | 37.18 | 115.80 | 24.48 |
MSE (mg g−1) | 6.09 | 10.76 | 4.95 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moreno-Ríos, A.L.; Coronado-Herrera, C.; Rhenals-Navarro, J.C.; Hernandez-Palma, H.G.; Dotto, G.L.; Gindri Ramos, C.; Gómez-Plata, L. Removal of Brilliant Green Cationic Dye Using Bioadsorbent Material from Oyster Shells. Sustainability 2023, 15, 16443. https://doi.org/10.3390/su152316443
Moreno-Ríos AL, Coronado-Herrera C, Rhenals-Navarro JC, Hernandez-Palma HG, Dotto GL, Gindri Ramos C, Gómez-Plata L. Removal of Brilliant Green Cationic Dye Using Bioadsorbent Material from Oyster Shells. Sustainability. 2023; 15(23):16443. https://doi.org/10.3390/su152316443
Chicago/Turabian StyleMoreno-Ríos, Andrea Liliana, Carolanne Coronado-Herrera, Jean C. Rhenals-Navarro, Hugo Gaspar Hernandez-Palma, Guilherme Luiz Dotto, Claudete Gindri Ramos, and Leandro Gómez-Plata. 2023. "Removal of Brilliant Green Cationic Dye Using Bioadsorbent Material from Oyster Shells" Sustainability 15, no. 23: 16443. https://doi.org/10.3390/su152316443