Hydrogel Based on Cashew Gum and Polyacrylamide as a Potential Water Supplier in Mombaça Grass Pastures: A Sustainable Alternative for Agriculture
Abstract
:1. Introduction
2. Material and Methods
2.1. Experimental Location
2.2. Experimental Treatments
2.3. Hydrogels Used
2.4. Experimental Units
2.5. Evaluation of the Morphogenic and Production Characteristics of the Grasses
2.6. Analysis of the Chemical and Mineral Composition of the Grasses
2.7. Statistical Analysis
3. Results
3.1. Morphogenesis
3.2. Structure and Production Characteristics
3.3. Chemical and Mineral Composition
4. Discussion
4.1. Morphogenesis
4.2. Structure and Production Characteristics
4.3. Chemical and Mineral Composition
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Fonseca, D.M.; Martuscello, J.A. Plantas Forrageiras, 2nd ed.; UFV: Minas Gerais, Brasil, 2022; p. 591. [Google Scholar]
- Abril, B.; Roncallo, B. Efecto de la inoculación con bacterias del género Bacillus sobre el crecimiento de Megathyrsus maximus Jacq, en condiciones de estrés hídrico. Rev. Agron. Noroeste Arg. 2017, 37, 25–37. [Google Scholar]
- Rodriguez-Soto, A.; Jose, V. Desarrollo de un material compuesto de fibras de henequén utilizando uma matriz termofija development of composite with henequen’s fibres and termofix matrix. Rev. Cient. Ing. Mec. 2014, 17, 264–272. [Google Scholar]
- Palmese, L.L.; Thapa, R.K.; Sullivan, M.O.; Kiick, K.L. Hybrid Hydrogels for Biomedical Applications. Curr. Opin. Chem. Eng. 2019, 24, 143–157. [Google Scholar] [CrossRef] [PubMed]
- Madduma-Bandarage, U.S.; Madihally, S.V. Synthetic hydrogels: Synthesis, novel trends, and applications. J. Appl. Polym. Sci. 2020, 19, 50376. [Google Scholar] [CrossRef]
- Edvan, R.; SÁ, M.; Magalhães, R.; Ratke, R.; Sousa, H.R.; Neri, L.M.L.; Bezerra, L. Copolymerized Natural Fibre from the Mesocarp of Orbignya phalerata (Babassu Fruit) as an Irrigating-Fertilizer for Growing Cactus Pears. Polymers 2020, 12, 1699. [Google Scholar] [CrossRef] [PubMed]
- Silva, I.; Raliuson, J.; Maniçoba, A.; Barroso, J.N.; Leite, M.L.; Imbroisi, T.V. Estresse salino como desafio para produção de plantas forrageiras. Braz. J. Appl. Technol. Agric. Sci. 2020, 11, 3. [Google Scholar] [CrossRef]
- Barros, A.B.; Moura, A.F. Evaluation of Antitumor Potential Of Cashew Gum Extracted From Anacardium Occidentale Linn. Int. J. Biol. Macromol. 2020, 154, 319–328. [Google Scholar] [CrossRef]
- Leberfinger, A.N.; Ravnic, D.J.; Dhawan, A.; Ozbolat, I.T. Concise review: Bioprinting of stem cells for transplantable tissue fabrication. Stem Cells Transl. Med. 2017, 6, 1940–1948. [Google Scholar] [CrossRef]
- Costa-Coutinho, J.M.; Jardim, M.A. Biogeographic connections of Brazilian savannas: Partition of marginal and disjunct diversity and conservation of northern ecotonal tropics in a biodiversity hotspot. Rev. Bras. Geogr. Fís. 2019, 12, 2407–2427. [Google Scholar] [CrossRef]
- Sousa, H.R.; Lima, I.S.; Neris, L.M.L.; Silva, A.S.; Nascimento, A.M.S.S.; de Araújo, F.P.; Ratke, R.F.; Osajima, J.A.; Edvan, R.L.; da Silva Azevedo, C.K.; et al. Innovative hydrogels made from babassu mesocarp for technological application in agriculture. J. Líq. Mol. 2023, 376, 121463. [Google Scholar]
- Rodrigues Sousa, H.; Lima, I.S.; Neris, L.M.L.; Silva, A.S.; Santos Nascimento, A.M.S.; Araújo, F.P.; Ratke, R.F.; Silva, D.A.; Osajima, J.A.; Bezerra, L.R.; et al. Superabsorbent Hydrogels Based to Polyacrylamide/Cashew Tree Gum for the Controlled Release of Water and Plant Nutrients. Molecules 2021, 26, 2680. [Google Scholar] [CrossRef] [PubMed]
- Raij, B.V. Fertilidade do Solo e Adubação; Ceres: Piracicaba, Brasil, 1991; p. 343. [Google Scholar]
- Teixeira, P.C.; Donagemma, G.K. Manual de Métodos de Análises de Solos, 3rd ed.; Embrapa Informação Tecnológica: Brasília, Brazil, 2017; p. 573. [Google Scholar]
- Martha, G.B.J.R.; Vilela, D. Cerrado: Uso Eficiente de Corretivos e Fertilizantes em Pastagens; Embrapa Cerrados: Brasília, Brazil, 2007; p. 224. [Google Scholar]
- Lemaire, G.; Chapman, D. Tissue fluxes in grazing plant communities. In The Ecology and Management of Grazing Systems; Hodgson, J., Illius, A.W., Eds.; CAB International: Wallingford, UK, 1996; pp. 1–33. [Google Scholar]
- Detmann, E.; Souza, M.A. Métodos Para Análise de Alimentos; Suprema: Minas Gerais, Brazil, 2012; p. 350. [Google Scholar]
- Silva, F.C. Manual de Análises Químicas de Solos, Plantas e Fertilizantes, 2nd ed.; Embrapa Informação Tecnológica: Rio de Janeiro, Brazil, 2009; p. 627. [Google Scholar]
- Ferreira, D.F. Sisvar: Um sistema de análise estatística de computador. Ciênc. Agrotec. 2011, 35, 1039–1042. [Google Scholar] [CrossRef]
- Guilherme, M.R.; Aouada, F.A. Superabsorbent hydrogels based on polysaccharides for application in agriculture as soil conditioner and nutrient carrier: A review. Eur. Polym. J. 2015, 72, 365–385. [Google Scholar] [CrossRef]
- Yonezawa, U.G.; Moura, M.R. Estado da arte: Um estudo sobre polímeros biodegradáveis na germinação e desenvolvimento de plantas. Cad. Ciênc. Agra. 2017, 9, 69–78. [Google Scholar]
- Bezerra, J.D.V.; Emereciano Neto, J. Características produtivas, morfogênicas e estruturais de cultivares de Brachiaria brizantha cultivadas em dois tipos de solo. Res. Soc. Dev. 2020, 9, e129972947. [Google Scholar] [CrossRef]
- Cruz, N.T.; Pires, A.J.V. Fatores que afetam as características morfogênicas e estruturais de plantas forrageiras. Res. Soc. Dev. 2021, 10, e5410716180. [Google Scholar] [CrossRef]
- Souza, J.M.T.; Araújo, A.R.; Carvalho, A.M.A.; Amorim, A.G.N.; Daboit, T.C.; Leite, J.R.S.A.; Silva, D.A.; Eaton, P. Sustainably Produced Cashew Gum-Capped Zinc Oxide Nanoparticles Show Antifungal Activity Against Candida Parapsilosis. J. Clean. Prod. 2020, 247, 119085. [Google Scholar] [CrossRef]
- Braz, T.G.S.; Martuscello, J.A.; Jank, L.; Fonseca, D.M.; Resende, M.D.V.; Evaristo, A.B. Genotypic value in hybrid progenies of Panicum maximum Jacq. Cienc. Rural 2017, 47, e20160599. [Google Scholar] [CrossRef]
- Silveira-Junior, O.; Santos, A.C.; Rocha, J.M.L.; Ferreira, C.L.S.; Oliveira, L.B.T.; Rodrigues, M.O.D. Implantação de pastagens sob sistema monocultivo e integrado com lavoura utilizando biofertilizante de cama de aviário como adubação de cobertura. Rev. Bras. Saúde E Produção Anim. 2015, 16, 499–512. [Google Scholar] [CrossRef]
- Erasmo, E.A.L.; Gonçalves, R.C.; Mata, J.F.; Oliveira, V.A.; Benício, L.P.F. Growth of Brachiaria brizantha planted at diferente densities and seasons in Santa Fé system with a culture of soybean. Emir. J. Food Agric. 2017, 29, 658–663. [Google Scholar] [CrossRef]
- Freitas, F.P.; Fonseca, D.M. Forage yield and nutritive value of Tanzania grass under nitrogen supplies and plant densities. R. Bras. Zootec. 2012, 41, 864–872. [Google Scholar] [CrossRef]
- Muller, M.D.S.; Fancelli, A.L.; López Ovejero, R.F. Productivity of Panicum maximum cv. mombaça under rotational grazing and irrigation. Sci. Agric. 2002, 59, 427–433. [Google Scholar] [CrossRef]
- Navroski, M.C.; Araújo, M.M. Influencia do hidrogel no crescimento e no teor de nutrientes das mudas de Eucalyptus dunnii. Floresta 2015, 45, 315–328. [Google Scholar] [CrossRef]
- Silva, R.D.; Silva Junior, G.S. Nutrição com boro na soja em função da disponibilidade de água no solo. Sci. Agrar. 2017, 18, 155–165. [Google Scholar] [CrossRef]
- Fernandes, M.S.; Souza, S.R. Nutrição Mineral de Plantas, 2nd ed.; Sociedade Brasileira de Ciência do Solo: Rio de Janeiro, Brazil, 2018; 670p. [Google Scholar]
- Taiz, L.; Zeiger, E. Fisiologia e Desenvolvimento Vegetal, 6th ed.; Artmed: Porto Alegre, Brazil, 2017; p. 888. [Google Scholar]
- Fageria, N.K. Níveis adequados e tóxicos de zinco na produção de arroz, feijão, milho, soja e trigo em solo de cerrado. Rev. Bras. Eng. Agríc. Ambient. 2000, 4, 390–395. [Google Scholar] [CrossRef]
Variables | Hydrogel (H) | |||||
---|---|---|---|---|---|---|
No | Commercial | Test | Mean | p-Value | SEM | |
LER (mm tiller−1 day−1) | 30.53 b | 35.00 ab | 42.33 a | 35.95 | 0.03 | 2.67 |
SER (mm tiller−1 day−1) | 0.26 a | 0.35 a | 0.60 a | 0.40 | 0.11 | 0.10 |
LSR (mm tiller−1 day−1) | 0.95 a | 1.01 a | 1.36 a | 3.36 | 0.36 | 4.22 |
NLLe (leaves tiller−1) | 8.27 a | 8.53 a | 9.33 a | 8.71 | 0.87 | 1.47 |
LAR (leaves tiller−1 day−1) | 0.257 a | 0.360 a | 0.495 a | 0.371 | 0.53 | 0.144 |
PHY (days leaves−1 tiller−1) | 2.86 a | 4.55 a | 4.97 a | 4.13 | 0.51 | 1.32 |
Hydrogel | Cycles | Mean | SEM | p-Value | |||
---|---|---|---|---|---|---|---|
Cycle 1 | Cycle 2 | H | C | H × C | |||
Plant Height (cm) | |||||||
No | 64.8 | 64.2 | 64.5 | 1.32 | 0.23 | 0.62 | 0.29 |
Commercial | 64.6 | 59.0 | 61.8 | ||||
Test | 62.2 | 63.8 | 63.0 | ||||
Mean | 63.8 | 62.3 | |||||
Leaf Green Mass Yield (kg ha−1) | |||||||
No | 7000.0 | 4936.0 | 5968.0 B | 232.17 | <0.01 | <0.01 | 0.84 |
Commercial | 7448.0 | 5296.0 | 6372.0 B | ||||
Test | 8664.0 | 6161.0 | 7412.0 A | ||||
Mean | 7704.0 a | 5464.0 b | |||||
Leaf Dry Mass Yield (kg ha−1) | |||||||
No | 2617.4 Ca | 1678.8 Ab | 2338.9 | 81.55 | 0.16 | <0.01 | <0.01 |
Commercial | 3694.5 Ba | 1966.5 Ab | 2830.5 | ||||
Test | 4477.0 Aa | 2060.4 Ab | 3077.9 | ||||
Mean | 3596.3 | 1901.9 | |||||
Tiller Population Density (TPD, tiller m−2) | |||||||
No | 177.0 | 188.2 | 182.6 b | 9.76 | <0.01 | 0.09 | 0.44 |
Commercial | 169.6 | 219.4 | 194.5 ab | ||||
Test | 231.0 | 243.4 | 237.3 a | ||||
Mean | 192.6 a | 217.0 a |
Variables | Hydrogel (H) | Mean | SEM | p-Value | ||
---|---|---|---|---|---|---|
No | Commercial | Test | ||||
DM (g kg) | 310.6 a | 307.1 a | 308.1 a | 308.6 | 1.53 | 0.98 |
CP (g kg−1 DM) | 69.5 a | 73.8 a | 72.3 a | 71.8 | 0.35 | 0.68 |
NDF (g kg−1 DM) | 713.6 a | 691.5 a | 717.9 a | 707.6 | 0.83 | 0.11 |
ADF (g kg−1 DM) | 349.3 a | 341.2 a | 353.4 a | 347.9 | 0.57 | 0.36 |
MM (g kg−1 DM) | 42.2 a | 41.9 a | 46.0 a | 43.3 | 0.44 | 0.77 |
Variables | Hydrogel (H) | Mean | SEM | p-Value | ||
---|---|---|---|---|---|---|
No | Commercial | Test | ||||
Ca (mg kg−1) | 42.6 a | 35.7 a | 35.2 a | 37.8 | 0.31 | 0.24 |
Mg (mg kg−1) | 5.0 a | 4.5 a | 4.1 a | 4.5 | 0.07 | 0.72 |
P (mg kg−1) | 3.5 a | 3.8 a | 4.7 a | 4.0 | 0.05 | 0.35 |
K (mg kg−1) | 365.2 a | 334.0 a | 294.0 a | 331.0 | 4.07 | 0.49 |
Cu (mg kg−1) | 1.1 a | 1.4 a | 17.0 a | 8.1 | 0.03 | 0.48 |
Mn (mg kg−1) | 35.9 a | 34.1 a | 304.0 a | 124.6 | 0.59 | 0.80 |
Fe (mg kg−1) | 19.3 a | 23.5 a | 193.0 a | 78.6 | 0.37 | 0.72 |
Zn (mg kg−1) | 4.6 b | 8.3 b | 28.0 a | 13.6 | 0.11 | 0.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barros, D.M.A.; Edvan, R.L.; Pessoa, J.P.M.; do Nascimento, R.R.; Camboim, L.F.R.; Bezerra, L.R.; de Araújo, M.J.; de Sousa, H.R.; Silva-Filho, E.C. Hydrogel Based on Cashew Gum and Polyacrylamide as a Potential Water Supplier in Mombaça Grass Pastures: A Sustainable Alternative for Agriculture. Sustainability 2023, 15, 16423. https://doi.org/10.3390/su152316423
Barros DMA, Edvan RL, Pessoa JPM, do Nascimento RR, Camboim LFR, Bezerra LR, de Araújo MJ, de Sousa HR, Silva-Filho EC. Hydrogel Based on Cashew Gum and Polyacrylamide as a Potential Water Supplier in Mombaça Grass Pastures: A Sustainable Alternative for Agriculture. Sustainability. 2023; 15(23):16423. https://doi.org/10.3390/su152316423
Chicago/Turabian StyleBarros, Dhiéssica Morgana Alves, Ricardo Loiola Edvan, João Paulo Matos Pessoa, Romilda Rodrigues do Nascimento, Luan Felipe Reis Camboim, Leilson Rocha Bezerra, Marcos Jácome de Araújo, Heldeney Rodrigues de Sousa, and Edson C. Silva-Filho. 2023. "Hydrogel Based on Cashew Gum and Polyacrylamide as a Potential Water Supplier in Mombaça Grass Pastures: A Sustainable Alternative for Agriculture" Sustainability 15, no. 23: 16423. https://doi.org/10.3390/su152316423
APA StyleBarros, D. M. A., Edvan, R. L., Pessoa, J. P. M., do Nascimento, R. R., Camboim, L. F. R., Bezerra, L. R., de Araújo, M. J., de Sousa, H. R., & Silva-Filho, E. C. (2023). Hydrogel Based on Cashew Gum and Polyacrylamide as a Potential Water Supplier in Mombaça Grass Pastures: A Sustainable Alternative for Agriculture. Sustainability, 15(23), 16423. https://doi.org/10.3390/su152316423