Does the Seat Matter? The Influence of Seating Factors and Motivational Factors on Situational Engagement and Satisfaction in the Smart Classroom
Abstract
:1. Introduction
2. Literature Review
2.1. Situational Engagement and Satisfaction in the Smart Classroom
2.1.1. Activity Level: Situational Engagement
2.1.2. Course Level: Situational Engagement
2.2. Influencing Factors of Situational Engagement and Student Satisfaction
2.2.1. Seating Factors
2.2.2. Motivational Factors
2.2.3. Situational Engagement and Student Satisfaction
3. The Present Study
- RQ1: How do seating factors (preferred seat and actual seat) and motivational factors (autonomous motivation, controlled motivation, and psychological needs) predict situational engagement in a smart classroom?
- RQ2: How do seating factors, motivational factors, and situational engagement predict subsequent course satisfaction in smart classrooms?
4. Materials and Methods
4.1. Participants
4.2. Procedures
4.2.1. Pre-Survey and Post-Survey
4.2.2. Experience Sampling Method
4.3. Measures
4.3.1. Self-Efficacy
4.3.2. Academic Motivation
4.3.3. Seating Factors
4.3.4. Situational Engagement
4.3.5. Psychological Needs
4.3.6. Student Satisfaction
4.4. Data Analytical Procedure
4.4.1. Preprocessing and Preliminary Analyses
4.4.2. Hierarchical Linear Modeling Procedure
4.4.3. Hierarchical Linear Regression Procedure
5. Results
5.1. Preliminary Analyses
5.2. Hierarchical Linear Modeling Results
5.3. Hierarchical Linear Regression Results
6. Discussion
6.1. Influence of Seating Factors on Situational Engagement
6.2. Influence of Motivation Factors on Situational Engagement
6.3. Influence of Situational Engagement on Student Satisfaction
6.4. Implications for Practice
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, Y.; Yang, H.H.; MacLeod, J. Preferences toward the constructivist smart classroom learning environment: Examining pre-service teachers’ connectedness. Interact. Learn. Environ. 2019, 27, 349–362. [Google Scholar] [CrossRef]
- Cebrián, G.; Palau, R.; Mogas, J. The smart classroom as a means to the development of ESD methodologies. Sustainability 2020, 12, 3010. [Google Scholar] [CrossRef]
- MacLeod, J.; Yang, H.H.; Zhu, S.; Li, Y. Understanding students’ preferences toward the smart classroom learning environment: Development and validation of an instrument. Comput. Educ. 2018, 122, 80–91. [Google Scholar] [CrossRef]
- Saini, M.K.; Goel, N. How smart are smart classrooms? A review of smart classroom technologies. ACM Comput. Surv. (CSUR) 2019, 52, 1–28. [Google Scholar] [CrossRef]
- Park, E.L.; Choi, B.K. Transformation of classroom spaces: Traditional versus active learning classroom in colleges. High. Educ. 2014, 68, 749–771. [Google Scholar] [CrossRef]
- Shernoff, D.J.; Sannella, A.J.; Schorr, R.Y.; Sanchez-Wall, L.; Ruzek, E.A.; Sinha, S.; Bressler, D.M. Separate worlds: The influence of seating location on student engagement, classroom experience, and performance in the large university lecture hall. J. Environ. Psychol. 2017, 49, 55–64. [Google Scholar] [CrossRef]
- Fredricks, J.A.; Blumenfeld, P.C.; Paris, A.H. School engagement: Potential of the concept, state of the evidence. Rev. Educ. Res. 2004, 74, 59–109. [Google Scholar] [CrossRef]
- Xie, K.; Vongkulluksn, V.W.; Lu, L.; Cheng, S.-L. A person-centered approach to examining high-school students’ motivation, engagement and academic performance. Contemp. Educ. Psychol. 2020, 62, 101877. [Google Scholar] [CrossRef]
- Pöysä, S.; Poikkeus, A.M.; Muotka, J.; Vasalampi, K.; Lerkkanen, M.K. Adolescents’ engagement profiles and their association with academic performance and situational engagement. Learn. Individ. Differ. 2020, 82, 101922. [Google Scholar] [CrossRef]
- Pettersen, E.; Ertesvåg, S.; Pöysä, S.; Vaalanda, G.S.; Virtanena, T.E. Students’ situational engagement and its association with overall engagement: The application of the InSitu instrument in the context of a Norwegian lower secondary school. Scand. J. Educ. Res. 2023. [CrossRef]
- Henrie, C.R.; Halverson, L.R.; Graham, C.R. Measuring student engagement in technology-mediated learning: A review. Comput. Educ. 2015, 90, 36–53. [Google Scholar] [CrossRef]
- Lu, G.; Xie, K.; Liu, Q. What influences student situational engagement in smart classrooms: Perception of the learning environment and students’ motivation. Br. J. Educ. Technol. 2022, 53, 1665–1687. [Google Scholar] [CrossRef]
- Deci, E.L.; Ryan, R.M. Self-determination theory: A macrotheory of human motivation, development, and health. Can. Psychol./Psychol. Can. 2008, 49, 182. [Google Scholar] [CrossRef]
- Sinatra, G.M.; Heddy, B.C.; Lombardi, D. The challenges of defining and measuring student engagement in science. Educ. Psychol. 2015, 50, 1–13. [Google Scholar] [CrossRef]
- Xie, K.; Vongkulluksn, V.W.; Heddy, B.C.; Jiang, Z. Experience sampling methodology and technology: An approach for examining situational, longitudinal, and multi-dimensional characteristics of engagement. Educ. Technol. Res. Dev. 2023. [Google Scholar] [CrossRef]
- Lu, G.; Xie, K.; Zhang, W.; Liu, Q.; Zhang, N.; Mei, L. Toward real-time data collection: The application, value, and prospect of experience sampling method. E-Educ. Res. 2019, 6, 19–26. [Google Scholar]
- Zirkel, S.; Garcia, J.A.; Murphy, M.C. Experience-sampling research methods and their potential for education research. Educ. Res. 2015, 44, 7–16. [Google Scholar] [CrossRef]
- Bond, M. Facilitating student engagement through the flipped learning approach in K-12: A systematic review. Comput. Educ. 2020, 151, 103819. [Google Scholar] [CrossRef]
- Lee, V.R.; Fischback, L.; Cain, R. A wearables-based approach to detect and identify momentary engagement in afterschool Makerspace programs. Contemp. Educ. Psychol. 2019, 59, 101789. [Google Scholar] [CrossRef]
- Janna, I.; Christopher, K.; Barbara, S.; Kalle, J.; Joseph, K.; Jari, L.; Katariina, S.A. Science classroom activities and student situational engagement. Int. J. Sci. Educ. 2019, 41, 316–329. [Google Scholar] [CrossRef]
- Pöysä, S.; Vasalampi, K.; Muotka, J.; Lerkkanen, M.K.; Poikkeus, A.M.; Nurmi, J.E. Variation in situation-specific engagement among lower secondary school students. Learn. Instr. 2018, 53, 64–73. [Google Scholar] [CrossRef]
- Pöysä, S.; Vasalampi, K.; Muotka, J.; Lerkkanen, M.K.; Poikkeus, A.M.; Nurmi, J.E. Teacher–student interaction and lower secondary school students’ situational engagement. Br. J. Educ. Psychol. 2019, 89, 374–392. [Google Scholar] [CrossRef] [PubMed]
- Loukomies, A.; Petersen, N.; Ramsaroop, S.; Henning, E.; Lavonen, J. Student teachers’ situational engagement during teaching practice in Finland and South Africa. Teach. Educ. 2022, 57, 255–279. [Google Scholar] [CrossRef]
- Maestrales, S.; Marias Dezendorf, R.; Tang, X.; Salmela-Aro, K.; Bartz, K.; Juuti, K.; Lavonen, J.; Krajcik, J.; Schneider, B. US and Finnish high school science engagement during the COVID-19 pandemic. Int. J. Psychol. 2022, 57, 73–86. [Google Scholar] [CrossRef] [PubMed]
- Shernoff, D.J.; Csikszentmihalyi, M.; Shneider, B.; Shernoff, E.S. Student engagement in high school classrooms from the perspective of flow theory. Sch. Psychol. Q. 2003, 18, 158–176. [Google Scholar] [CrossRef]
- Shernoff, D.J.; Kelly, S.; Tonks, S.M.; Anderson, B.; Cavanagh, R.F.; Sinha, S.; Abdi, B. Student engagement as a function of environmental complexity in high school classrooms. Learn. Instr. 2016, 43, 52–60. [Google Scholar] [CrossRef]
- Wu, C.; Jing, B.; Gong, X.; Mou, Y.; Li, J. Student’ s Learning Strategies and Academic Emotions: Their Influence on Learning Satisfaction During the COVID-19 Pandemic. Front. Psychol. 2021, 12, 717683. [Google Scholar] [CrossRef]
- Chao, C.M. Factors determining the behavioral intention to use mobile learning: An application and extension of the UTAUT model. Front. Psychol. 2019, 10, 1652. [Google Scholar] [CrossRef]
- Ke, F.; Kwak, D. Constructs of student-centered online learning on learning satisfaction of a diverse online student body: A structural equation modeling approach. J. Educ. Comput. Res. 2013, 48, 97–122. [Google Scholar] [CrossRef]
- Richardson, J.C.; Maeda, Y.; Lv, J.; Caskurlu, S. Social presence in relation to students’ satisfaction and learning in the online environment: A meta-analysis. Comput. Hum. Behav. 2017, 71, 402–417. [Google Scholar] [CrossRef]
- Benedict, M.E.; Hoag, J. Seating location in large lectures: Are seating preferences or location related to course performance? J. Econ. Educ. 2004, 35, 215–231. [Google Scholar] [CrossRef]
- Gao, N.; Rahaman, M.S.; Shao, W.; Ji, K.; Salim, F.D. Individual and group-wise classroom seating experience: Effects on student engagement in different courses. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2022, 6, 115. [Google Scholar] [CrossRef]
- Shernof, D.J.; Ruzek, E.A.; Sannella, A.J.; Schorr, R.Y.; Sanchez-Wall, L.; Bressler, D.M. Student engagement as a general factor of classroom experience: Associations with student practices and educational outcomes in a university gateway course. Front. Psychol. 2017, 8, 994. [Google Scholar] [CrossRef] [PubMed]
- Chan, K.L.; Chin, D.C.; Wong, M.S.; Kam, R.; Chan, B.S.B.; Liu, C.H.; Wong, F.K.K.; Suen, L.K.; Yang, L.; Lam, S.C.; et al. Academic discipline as a moderating variable between seating location and academic performance: Implications for teaching. High. Educ. Res. Dev. 2022, 41, 1436–1450. [Google Scholar] [CrossRef]
- Joshi, G.P.; Jha, S.; Cho, S.; Seo, C.; Son, L.H.; Thong, P.H. Influence of multimedia and seating location in academic engagement and grade performance of students. Comput. Appl. Eng. Educ. 2020, 28, 268–281. [Google Scholar] [CrossRef]
- Chen, S.; Luo, Y.; Zhang, H.; Liu, X. A study on the correlation between seat selection and interaction preference in virtual-reality fusion simulation experiment. Front. Psychol. 2022, 13, 1027959. [Google Scholar] [CrossRef] [PubMed]
- McCorskey, J.C.; McVetta, R.W. Classroom seating arrangements: Instructional communication theory versus student preferences. Commun. Educ. 1978, 27, 99–111. [Google Scholar] [CrossRef]
- Zomorodian, K.; Parva, M.; Ahrari, I.; Tavana, S.; Hemyari, C.; Pakshir, K.; Jafari, P.; Sahraian, A. The effect of seating preferences of the medical students on educational achievement. Med. Educ. Online 2012, 17, 10448. [Google Scholar] [CrossRef]
- Ryan, R.M.; Deci, E.L. Self-Determination Theory: Basic Psychological Needs in Motivation Development and Wellness; Guilford Press: New York, NY, USA, 2017; pp. 351–381. [Google Scholar]
- Ryan, R.M.; Deci, E.L. Intrinsic and extrinsic motivation from a self-determination theory perspective: Definitions, theory, practices, and future directions. Contemp. Educ. Psychol. 2020, 61, 101860. [Google Scholar] [CrossRef]
- Ikahihifo, T.B.K. Self-Determination Theory and Student Emotional Engagement in Higher Education. Ph.D. Thesis, Brigham Young University, Provo, UT, USA, 1 April 2019. [Google Scholar]
- Xia, Q.; Chiu, T.K.; Lee, M.; Sanusi, I.T.; Dai, Y.; Chai, C.S. A self-determination theory (SDT) design approach for inclusive and diverse artificial intelligence (AI) education. Comput. Educ. 2022, 189, 104582. [Google Scholar] [CrossRef]
- Deci, E.L.; Ryan, R.M. The ‘‘what” and ‘‘why” of goal pursuits: Human needs and the self-determination of behaviour. Psychol Inq. 2000, 11, 227–268. [Google Scholar] [CrossRef]
- Vansteenkiste, M.; Simons, J.; Lens, W.; Sheldon, K.M.; Deci, E.L. Motivating learning, performance, and persistence: The synergistic effects of intrinsic goal contents and autonomy-supportive contexts. J. Personal. Soc. Psychol. 2004, 87, 246–260. [Google Scholar] [CrossRef] [PubMed]
- Chiu, T.K. Digital support for student engagement in blended learning based on self-determination theory. Comput. Hum. Behav. 2021, 124, 106909. [Google Scholar] [CrossRef]
- Chiu, T.K. Applying the self-determination theory (SDT) to explain student engagement in online learning during the COVID-19 pandemic. J. Res. Technol. Educ. 2022, 54, S14–S30. [Google Scholar] [CrossRef]
- Benlahcene, A.; Kaur, A.; Awang-Hashim, R. Basic psychological needs satisfaction and student engagement: The importance of novelty satisfaction. J. Appl. Res. High. Educ. 2021, 13, 1290–1304. [Google Scholar] [CrossRef]
- Koch, F.D.; Dirsch-Weigand, A.; Awolin, M.; Pinkelman, R.J.; Hampe, M.J. Motivating first-year university students by interdisciplinary study projects. Eur. J. Eng. Educ. 2017, 42, 17–31. [Google Scholar] [CrossRef]
- Mason, M.M. Motivation, satisfaction, and innate psychological needs. Int. J. Dr. Stud. 2012, 7, 259–277. [Google Scholar] [CrossRef]
- Leyton Roman, M.; Lobato Muñoz, S.; Jiménez Castuera, R. The importance of assigning responsibility during evaluation in order to increase student satisfaction from physical education classes: A structural equation model. PLoS ONE 2019, 14, e0209398. [Google Scholar] [CrossRef]
- Shi, Y.; Tong, M.; Long, T. Investigating relationships among blended synchronous learning environments, students’ motivation, and cognitive engagement: A mixed methods study. Comput. Educ. 2021, 168, 104193. [Google Scholar] [CrossRef]
- Roque-Hernández, R.V.; Díaz-Roldán, J.L.; López-Mendoza, A.; Salazar-Hernández, R. Instructor presence, interactive tools, student engagement, and satisfaction in online education during the COVID-19 Mexican lockdown. Interact. Learn. Environ. 2023, 31, 2841–2854. [Google Scholar] [CrossRef]
- Murillo-Zamorano, L.R.; Sánchez, J.Á.L.; Godoy-Caballero, A.L. How the flipped classroom affects knowledge, skills, and engagement in higher education: Effects on students’ satisfaction. Comput. Educ. 2019, 141, 103608. [Google Scholar] [CrossRef]
- El-Sayad, G.; Md Saad, N.H.; Thurasamy, R. How higher education students in Egypt perceived online learning engagement and satisfaction during the COVID-19 pandemic. J. Comput. Educ. 2021, 8, 527–550. [Google Scholar] [CrossRef]
- Pandita, A.; Kiran, R. The Technology Interface and Student Engagement Are Significant Stimuli in Sustainable Student Satisfaction. Sustainability 2023, 15, 7923. [Google Scholar] [CrossRef]
- Ministry of Education of the People’s Republic of China. Available online: http://www.moe.gov.cn/jyb_xwfb/moe_2082/zl_2019n/2019_zl26/201905/t20190506_380712.html (accessed on 27 September 2023).
- Center for Teaching and Learning Development of Central China Normal University. Available online: http://ctld.ccnu.edu.cn/info/1062/2232.htm (accessed on 27 September 2023).
- Greene, B.A.; Miller, R.B.; Crowson, H.M.; Duke, B.L.; Akey, K.L. Predicting high school students’ cognitive engagement and achievement: Contributions of classroom perceptions and motivation. Contemp. Educ. Psychol. 2004, 29, 462–482. [Google Scholar] [CrossRef]
- Ryan, R.M.; Connell, J.P. Perceived locus of causality and internalization: Examining reasons for acting in two domains. J. Personal. Soc. Psychol. 1989, 57, 749–761. [Google Scholar] [CrossRef] [PubMed]
- Kaya, N.; Burgess, B. Territoriality Seat: Preferences in Different Types of Classroom Arrangements. Environ. Behav. 2007, 39, 859–876. [Google Scholar] [CrossRef]
- Lu, G.; Zhang, C.; Liu, Q.; Shi, Y. Investigating the Influence of Seating Factors on Perception of the Learning Environment in Smart Classroom. In Proceedings of the 16th International Conference on Blended Learning, ICBL 2023, Hong Kong, China, 17–20 July 2023. [Google Scholar]
- Beymer, P.N.; Rosenberg, J.M.; Schmidt, J.A.; Naftzger, N.J. Examining relationships among choice, affect, and engagement in summer STEM programs. J. Youth Adolesc. 2018, 47, 1178–1191. [Google Scholar] [CrossRef] [PubMed]
- Gogol, K.; Brunner, M.; Goetz, T.; Martin, R.; Ugen, S.; Keller, U.; Fischbach, A.; Preckel, F. “My questionnaire is too long!” The assessments of motivational-affective constructs with three-item and single-item measures. Contemp. Educ. Psychol. 2014, 39, 188–205. [Google Scholar] [CrossRef]
- Shernoff, D.J.; Vandell, D.L. Engagement in after-school program activities: Quality of experience from the perspective of participants. J. Youth Adolesc. 2007, 36, 891–903. [Google Scholar] [CrossRef]
- Shernoff, D.J.; Ruzek, E.A.; Sinha, S. The influence of the high school classroom environment on learning as mediated by student engagement. Sch. Psychol. Int. 2017, 38, 201–218. [Google Scholar] [CrossRef]
- Park, S.; Holloway, S.D.; Arendtsz, A.; Bempechat, J.; Li, J. What makes students engaged in learning? A time-use study of within-and between-individual predictors of emotional engagement in low-performing high schools. J. Youth Adolesc. 2012, 41, 390–401. [Google Scholar] [CrossRef] [PubMed]
- Sun, P.C.; Tsai, R.J.; Finger, G.; Chen, Y.Y.; Yeh, D. What drives a successful e-Learning? An empirical investigation of the critical factors influencing learner satisfaction. Comput. Educ. 2008, 50, 1183–1202. [Google Scholar] [CrossRef]
- Lin, H.M.; Wu, J.Y.; Liang, J.C.; Lee, Y.H.; Huang, P.C.; Kwok, O.M.; Tsai, C.C. A review of using multilevel modeling in e-learning research. Comput. Educ. 2023, 198, 104762. [Google Scholar] [CrossRef]
- Raudenbush, S.W.; Bryk, A.S. Hierarchical Linear Models: Applications and Data Analysis Methods; Sage U.S.: Thousand Oaks, CA, USA, 2002; pp. 23–28. [Google Scholar]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Lawrence Erlbaum Associates: Mahwah, NJ, USA, 1988. [Google Scholar]
- Raftery, A.E. Bayesian model selection in structural equation models. In Testing Structural Equation Models; Bollen, K.A., Long, J.S., Eds.; Sage: Newbury Park, CA, USA, 1993; pp. 163–180. [Google Scholar]
- Lu, G.; Xie, K.; Liu, Q. An experience-sampling study of between-and within-individual predictors of emotional engagement in blended learning. Learn. Individ. Differ. 2023, 107, 102348. [Google Scholar] [CrossRef]
Variables | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Between-individual level (pre-survey) | |||||||||||||||||
1. Gender | 1.00 | ||||||||||||||||
2. Self-efficacy | −0.156 ** | 1.00 | |||||||||||||||
3. Autonomous motivation | 0.123 ** | 0.406 ** | 1.00 | ||||||||||||||
4. Controlled motivation | 0.03 | 0.097 * | 0.115 ** | 1.00 | |||||||||||||
5. Pseat X | −0.08 | 0.147 ** | 0.094 * | 0.06 | 1.00 | ||||||||||||
6. Pseat Y | −0.01 | −0.239 ** | −0.315 ** | 0.00 | −0.389 ** | 1.00 | |||||||||||
7. Pseat C | −0.04 | −0.239 ** | −0.268 ** | −0.105 * | −0.304 ** | 0.611 ** | 1.00 | ||||||||||
8. Pseat SCR | 0.05 | −0.100 * | −0.105 * | 0.08 | 0.098 * | 0.271 ** | −0.232 ** | 1.00 | |||||||||
Within-individual level (experience sampling method) | |||||||||||||||||
9. Seat X | 0.03 | 0.04 | 0.124 ** | −0.02 | 0.207 ** | −0.165 ** | −0.05 | −0.02 | 1.00 | ||||||||
10. Seat Y | −0.098 * | 0.03 | 0.01 | −0.08 | −0.095 * | 0.07 | 0.04 | −0.135 ** | −0.03 | 1.00 | |||||||
11. Seat C | −0.173 ** | 0.01 | −0.02 | −0.01 | −0.06 | 0.03 | 0.06 | −0.112 ** | −0.03 | 0.554 ** | 1.00 | ||||||
12. Seat SCR | 0.05 | 0.05 | 0.01 | −0.092 * | −0.02 | 0.02 | −0.01 | −0.01 | 0.06 | 0.340 ** | −0.284 ** | 1.00 | |||||
13. Autonomy | −0.08 | 0.374 ** | 0.241 ** | 0.03 | 0.06 | −0.166 ** | −0.103 * | −0.01 | −0.05 | −0.03 | −0.01 | −0.01 | 1.00 | ||||
14. Competence | −0.101 * | 0.429 ** | 0.310 ** | 0.098 * | 0.131 ** | −0.235 ** | −0.206 ** | −0.03 | −0.06 | −0.03 | −0.06 | 0.05 | 0.543 ** | 1.00 | |||
15. Relatedness | −0.06 | 0.345 ** | 0.271 ** | 0.104 * | 0.05 | −0.151 ** | −0.218 ** | 0.07 | −0.121 ** | −0.07 | −0.06 | −0.03 | 0.450 ** | 0.536 ** | 1.00 | ||
16. Situational engagement | −0.01 | 0.261 ** | 0.427 ** | 0.119 ** | 0.06 | −0.168 ** | −0.213 ** | 0.04 | −0.120 ** | −0.07 | −0.106 * | −0.02 | 0.420 ** | 0.512 ** | 0.511 ** | 1.00 | |
Between-individual level (post-survey) | |||||||||||||||||
17. Satisfaction | 0.01 | 0.327 ** | 0.369 ** | 0.00 | 0.113 ** | −0.123 ** | −0.196 ** | 0.108 * | −0.03 | 0.03 | −0.06 | 0.04 | 0.243 ** | 0.367 ** | 0.325 ** | 0.442 ** | 1.00 |
N | 113 | 113 | 113 | 113 | 113 | 113 | 113 | 113 | 531 | 531 | 531 | 531 | 531 | 531 | 531 | 531 | 113 |
Mean | 1.71 | 4.02 | 4.61 | 3.66 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 4.45 | 4.56 | 4.40 | 4.47 | 4.89 |
SD | 0.46 | 0.76 | 0.65 | 0.88 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.89 | 1.05 | 0.87 | 0.68 |
Minimum | 1.00 | 2.00 | 2.75 | 1.00 | −1.84 | −1.62 | −1.68 | −1.73 | −1.64 | −1.76 | −2.39 | −1.42 | 1.00 | 1.00 | 1.00 | 1.00 | 2.00 |
Maximum | 2.00 | 6.00 | 6.00 | 5.50 | 2.40 | 2.08 | 2.05 | 3.07 | 1.68 | 1.47 | 1.79 | 2.42 | 6.00 | 6.00 | 6.00 | 6.00 | 6.00 |
Skewness | −0.91 | −0.17 | −0.43 | −0.53 | 0.33 | 0.65 | 0.04 | 0.97 | 0.03 | −0.11 | −0.19 | 0.78 | −0.66 | −0.72 | −0.47 | −0.69 | −1.03 |
Kurtosis | −1.18 | 0.30 | 0.47 | 0.30 | −0.18 | −0.59 | −0.62 | 1.42 | −1.23 | −1.35 | −0.54 | −0.22 | 0.35 | 0.80 | −0.11 | 0.82 | 2.48 |
Model 1 | Model 2 | Model 3 | ||||
---|---|---|---|---|---|---|
Fixed Effect | B | SE | B | SE | B | SE |
Intercept | 2.043 *** | 0.248 | 1.751 ** | 0.832 | 0.555 | |
Within-individual level | ||||||
Seat X | −0.042 | 0.034 | −0.054 | 0.036 | ||
Seat Y | −0.009 | 0.043 | −0.011 | 0.041 | ||
Seat C | −0.082 * | 0.042 | −0.081 * | 0.040 | ||
Seat SCR | −0.027 | 0.037 | −0.022 | 0.039 | ||
Autonomy | 0.106 ** | 0.037 | 0.105 | 0.062 | ||
Competence | 0.227 *** | 0.038 | 0.210 *** | 0.037 | ||
Relatedness | 0.207 *** | 0.042 | 0.190 *** | 0.056 | ||
Between-individual level | ||||||
Gender | −0.103 | 0.124 | −0.145 | 0.124 | ||
Self-efficacy | 0.083 | 0.097 | −0.110 | 0.09 | ||
Autonomous motivation | 0.516 *** | 0.093 | 0.394 *** | 0.155 | ||
Controlled motivation | 0.049 | 0.063 | 0.066 | 0.053 | ||
Pseat X | −0.018 | 0.061 | −0.027 | 0.051 | ||
Pseat Y | −0.005 | 0.090 | 0.004 | 0.093 | ||
Pseat C | −0.055 | 0.069 | −0.032 | 0.092 | ||
Pseat SCR | 0.052 | 0.069 | 0.042 | 0.070 | ||
Random effect (residual variance) | ||||||
Intercept (τoo) | 1.055 | 0.547 | 0.235 *** | 0.041 | 0.789 | 1.014 |
Residual (σ2) | 0.215 *** | 0.030 | 0.371 *** | 0.042 | 0.212 *** | 0.029 |
Akaike information criterion | 1023.226 | 5618.918 | 1009.872 | |||
Bayes information criterion | 1125.820 | 5712.963 | 1146.664 |
Model 4 | Model 5 | |||||
---|---|---|---|---|---|---|
Predictor | B | SE | VIF | B | SE | VIF |
Intercept | 2.970 *** | 0.462 | – | 2.159 *** | 0.482 | – |
Gender | −0.029 | 0.113 | 1.085 | 0.017 | 0.110 | 1.186 |
Self-efficacy | 0.173 * | 0.080 | 1.36 | 0.086 | 0.085 | 1.831 |
Autonomous motivation | 0.296 ** | 0.092 | 1.402 | 0.105 | 0.101 | 1.974 |
Controlled motivation | −0.021 | 0.058 | 1.051 | −0.021 | 0.056 | 1.114 |
Pseat X | 0.007 | 0.058 | 1.285 | 0.017 | 0.056 | 1.401 |
Pseat Y | −0.008 | 0.084 | 2.767 | −0.026 | 0.081 | 3.058 |
Pseat C | −0.016 | 0.078 | 2.429 | 0.029 | 0.075 | 2.626 |
Pseat SCR | 0.085 | 0.063 | 1.658 | 0.082 | 0.060 | 1.787 |
Seat X | – | – | 0.007 | 0.088 | 1.559 | |
Seat Y | 0.187 | 0.169 | 5.079 | |||
Seat C | – | – | −0.115 | 0.162 | 3.878 | |
Seat SCR | – | – | −0.040 | 0.117 | 2.921 | |
Autonomy | – | – | −0.011 | 0.085 | 1.973 | |
Competence | – | – | 0.099 | 0.127 | 3.175 | |
Relatedness | – | – | 0.088 | 0.103 | 2.877 | |
Situational engagement | 0.262 ** | 0.106 | 2.549 | |||
R2 (Adjusted R2) | 0.236 (0.177) | 0.398 (0.297) | ||||
ΔR2 | – | 0.162 (M5 vs. M4) | ||||
AIC | −130.904 | −144.791 | ||||
BIC | −106.358 | −593.355 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, G.; Liu, Q.; Xie, K.; Zhang, C.; He, X.; Shi, Y. Does the Seat Matter? The Influence of Seating Factors and Motivational Factors on Situational Engagement and Satisfaction in the Smart Classroom. Sustainability 2023, 15, 16393. https://doi.org/10.3390/su152316393
Lu G, Liu Q, Xie K, Zhang C, He X, Shi Y. Does the Seat Matter? The Influence of Seating Factors and Motivational Factors on Situational Engagement and Satisfaction in the Smart Classroom. Sustainability. 2023; 15(23):16393. https://doi.org/10.3390/su152316393
Chicago/Turabian StyleLu, Guoqing, Qingtang Liu, Kui Xie, Chenwen Zhang, Xiangchun He, and Yafei Shi. 2023. "Does the Seat Matter? The Influence of Seating Factors and Motivational Factors on Situational Engagement and Satisfaction in the Smart Classroom" Sustainability 15, no. 23: 16393. https://doi.org/10.3390/su152316393