Leaching Study of Guinean Bauxite Tailings in aqueous HCl Solution for the Extraction of Aluminum
Abstract
:1. Introduction
2. Materials and Methods
2.1. Equipment and Materials Used
2.1.1. Equipment and Chemical Reagents
2.1.2. Chemical Analysis of Raw Material
2.1.3. Mineralogical Analysis of Raw Material
2.2. Methodology
3. Result
3.1. Kinetics of Metal Dissolution
3.2. Analysis of Leached Residue
3.3. Results of the S/L Ratio Optimization Study
4. Discussion
4.1. Leachability of Major Compounds in Bauxite Tailings
4.2. Optimization of S/L Ratio
5. Conclusions
- A 24 h leaching trial with an aqueous 5.9 M HCl solution and a 5:100 g/mL S/L ratio led to almost total Al dissolution and Fe dissolution and the production of a predominant siliceous residue. PLS calculated impurities were 27.5 ppm Si and 114.9 ppm Ti.
- Two-hour duration was selected as the optimum leaching time combining high Al dissolution rates and low Si dissolution.
- The S/L ratio optimization study was performed with the same leaching conditions as in the 24 h study (stirring rate: 300 rpm, HCl concentration: 5.9 M, temperature: 90 °C), but with a 2 h duration. The range in S/L ratio values tested was 20:100–25:100 g/mL, corresponding from a slight excess of acid to an excess of solids. The 20% S/L ratio proved to be the optimum, leading to the production of a solution with 36.8 g/L Al, 25.2 g/L Fe, 80.4 ppm Ti, and 76.9 ppm Si.
- Further increase in the S/L ratio value led to a decrease in Al %wt. extraction, which is most likely attributed to reaching the solubility limit for this system.
- In all of the S/L ratios tested, filtering of the leached residue was conducted with no difficulties.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aluminium. Global Energy Transitions Stocktake. 2023 11/07/2023. Available online: https://www.iea.org/energy-system/industry/aluminium#tracking (accessed on 2 November 2023).
- Brough, D.; Jouhara, H. The aluminium industry: A review on state-of-the-art technologies, environmental impacts and possibilities for waste heat recovery. Int. J. Thermofluids 2020, 1–2, 100007. [Google Scholar] [CrossRef]
- Sverdrup, H.U.; Ragnarsdottir, K.V.; Koca, D. Aluminium for the future: Modelling the global production, market supply, demand, price and long term development of the global reserves. Resour. Conserv. Recycl. 2015, 103, 139–154. [Google Scholar] [CrossRef]
- Elshkaki, A.; Lei, S.; Chen, W.-Q. Material-energy-water nexus: Modelling the long term implications of aluminium demand and supply on global climate change up to 2050. Environ. Res. 2019, 181, 108964. [Google Scholar] [CrossRef]
- Liu, G.; Bangs, C.E.; Müller, D.B. Stock dynamics and emission pathways of the global aluminium cycle. Nat. Clim. Chang. 2012, 3, 338–342. [Google Scholar] [CrossRef]
- Meyer, F.M. Availability of Bauxite Reserves. Nat. Resour. Res. 2004, 13, 161–172. [Google Scholar] [CrossRef]
- European Commission. Study on the Critical Raw Materials for the EU 2023—Final Report; Publications Office of the European Union; European Commission: Brussels, Belgium, 2023.
- Burton, J. 2022 Final List of Critical Minerals; U.S. Geological Survey: Reston, VA, USA, 2021.
- Government of Canada. The Canadian Critical Minerals Strategy From Exploitation To Recycling: Powering the Green and Digital Economy for Canada and the World. Available online: Canada.ca (accessed on 9 September 2023).
- Habashi, F. Handbook of Extractive Metallurgy; Wiley–VCH: Hoboken, NJ, USA, 1998; Volume 2. [Google Scholar]
- Shen, X.; Ma, D.; Guo, M.; Zhang, M. Efficient removal of K2O and Fe2O3 impurities from bauxite tailings through active calcination combined with acid leaching. Can. Metall. Q. 2017, 56, 294–300. [Google Scholar] [CrossRef]
- Traoré, D.; Traoré, S.; Diakité, S. Bauxite industry in guinea and value opportunities of the resulting red mud as residue for chemical and civil engineering purposes. J. Civ. Eng. Res. 2014, 4, 14–24. [Google Scholar]
- Komlóssy, G.; Van Deursen, C.; Raahauge, B.E. Bauxite: Geology, Mineralogy, Resources, Reserves and Beneficiation; Springer International Publishing: Berlin/Heidelberg, Germany, 2022; pp. 19–132. [Google Scholar]
- Datta, B.; Nandi, A. Bauxite Beneficiation: An Approach to Value Addition in Mining; Springer International Publishing: Berlin/Heidelberg, Germany, 2021; pp. 99–114. [Google Scholar]
- Bagherzadeh, Y.; Golmakani, M.; Karimi, E. Straight synthesis of α and γ alumina from kaolin by HCl acid leaching. J. Min. Metall. Sect. B Metall. 2023, 17. [Google Scholar] [CrossRef]
- Tantawy, M.A.; Alomari, A.A. Extraction of alumina from Nawan kaolin by acid leaching. Orient. J. Chem. 2019, 35, 1013. [Google Scholar] [CrossRef]
- Valeev, D.; Shoppert, A.; Mikhailova, A.; Kondratiev, A. Acid and Acid-Alkali Treatment Methods of Al-Chloride Solution Obtained by the Leaching of Coal Fly Ash to Produce Sandy Grade Alumina. Metals 2020, 10, 585. [Google Scholar] [CrossRef]
- Valeev, D.V.; Mansurova, E.R.; Bychinskii, V.A.; Chudnenko, K.V. Extraction of Alumina from high-silica bauxite by hydrochloric acid leaching using preliminary roasting method. In IOP Conference Series: Materials Science and Engineering; IOP publishing: Bristol, UK, 2016; Volume 110, p. 012049. [Google Scholar]
- Zhao, A.; Zhang, T.; Lv, G. Acid Leaching Performance of Gibbsite-type Bauxite with High Iron Content. Multipurp. Util. Miner. Resour. 2022, 1, 173–178. [Google Scholar]
- Aranda, A.; Mastin, J. Alumina and Carbonate Production Method from Al-rich Materials with Integrated CO2 Utilization. European Patent EP3148935B1, 11 March 2015. [Google Scholar]
- Neron, T.; Cassayre, L.; Zhuo, X.; Manero, M.-H.; Bourgeois, F.; Billet, A.-M.; Julcour, C. Thermo-kinetic modelling of the acidic leaching of anorthosite: Key learnings toward the conception of a sustainable industrial process. Miner. Eng. 2022, 180, 107500. [Google Scholar] [CrossRef]
- Bagani, M.; Balomenos, E.; Panias, D. Exploitation of Kaolin as an Alternative Source in Alumina Production. Mater. Proc. 2021, 5, 24. [Google Scholar]
- Bagani, M.; Balomenos, E.; Panias, D. Nepheline Syenite as an Alternative Source for Aluminum Production. Minerals 2021, 11, 734. [Google Scholar] [CrossRef]
- Wang, Y.; Lan, Y.; Hu, Y. Adsorption mechanisms of Cr(VI) on the modified bauxite tailings. Miner. Eng. 2008, 21, 913–917. [Google Scholar] [CrossRef]
- Dong, Y.; Feng, N.X.; Wang, Y.W.; Wu, X.L. Preparation of primary Al-Si alloy from bauxite tailings by carbothermal reduction process. Trans. Nonferrous Met. Soc. China 2010, 20, 147–152. [Google Scholar]
- Ma, D.; Wang, Z.; Guo, M.; Zhang, M.; Liu, J. Feasible conversion of solid waste bauxite tailings into highly crystalline 4A zeolite with valuable application. Waste Manag. 2014, 34, 2365–2372. [Google Scholar] [CrossRef]
- Lei, P.-C.; Shen, X.-J.; Li, Y.; Guo, M.; Zhang, M. An improved implementable process for the synthesis of zeolite 4A from bauxite tailings and its Cr3+ removal capacity. Int. J. Miner. Met. Mater. 2016, 23, 850–857. [Google Scholar] [CrossRef]
- Qiang, Z.; Shen, X.; Guo, M.; Cheng, F.; Zhang, M. A simple hydrothermal synthesis of zeolite X from bauxite tailings for highly efficient adsorbing CO2 at room temperature. Microporous Mesoporous Mater. 2019, 287, 77–84. [Google Scholar] [CrossRef]
- Yang, N.; Gou, L.; Bai, Z.; Cheng, F.; Guo, M.; Zhang, M. A Simple and Mild Synthesis of Zeolite Y from Bauxite Tailings for Lead Adsorption: Reusable, Efficient and Highly Selective. J. Inorg. Organomet. Polym. Mater. 2022, 32, 3496–3507. [Google Scholar] [CrossRef]
- Peng, Y.; Jiang, J.; Ou, X.; Qin, J. Investigating the Properties of Foamed Mixture Lightweight Soil Mixed with Bauxite Tailings as Filler. Adv. Mater. Sci. Eng. 2019, 2019, 6295348. [Google Scholar] [CrossRef]
- Peng, Y.; Ou, X.; Chen, X.; Lin, X.; Shen, X. Utilization of discarded bauxite tailings into eco-friendly foamed mixture lightweight soil. J. Clean. Prod. 2022, 333, 130167. [Google Scholar] [CrossRef]
- Yang, L.; Ma, X.; Hu, X.; Liu, J.; Wu, Z.; Shi, C. Production of lightweight aggregates from bauxite tailings for the internal curing of high-strength mortars. Constr. Build. Mater. 2022, 341, 127800. [Google Scholar] [CrossRef]
- Ren, Y.; Ren, Q.; Wu, X.; Zheng, J.; Hai, O. Mechanism of low temperature sintered high-strength ferric-rich ceramics using bauxite tailings. Mater. Chem. Phys. 2019, 238, 121929. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, J.; Wu, L.; Tan, L.; Xie, F.; Cheng, J. Extraction of lithium and aluminium from bauxite mine tailings by mixed acid treatment without roasting. J. Hazard. Mater. 2021, 404, 124044. [Google Scholar] [CrossRef] [PubMed]
- AlSiCal. 2023. Available online: https://www.alsical.eu/ (accessed on 9 November 2023).
- Gates-Rector, S.; Blanton, T. The Powder Diffraction File: A quality materials characterization database. Powder Diffr. 2019, 34, 352–360. [Google Scholar] [CrossRef]
- Cheary, R.W.; Coelho, A.A. A fundamental parameters approach to X-ray line-profile fitting. J. Appl. Crystallogr. 1992, 25, 109–121. [Google Scholar] [CrossRef]
- Järvinen, M. Application of symmetrized harmonics expansion to correction of the preferred orientation effect. J. Appl. Crystallogr. 1993, 26, 525–531. [Google Scholar] [CrossRef]
- Schulz, D.G. The Influence of Aluminum on Iron Oxides. VIII. Unit-Cell Dimensions of Al-Substituted Goethites and Estimation of Al from them. Clays Clay Miner. 1984, 32, 36–44. [Google Scholar] [CrossRef]
- Schwertmann, U.; Carlson, L. Aluminum Influence on Iron Oxides: XVII. Unit-Cell Parameters and Aluminum Substitution of Natural Goethites. Soil Sci. Soc. Am. J. 1994, 58, 256–261. [Google Scholar] [CrossRef]
- Wells, M.A.; Gilkes, R.J.; Anand, R.R. The formation of corundum and aluminous hematite by the thermal dehydroxylation of aluminous goethite. Clay Miner. 1989, 24, 513–530. [Google Scholar] [CrossRef]
- Fazey, P.G.; O’Connor, B.H.; Hammond, L.C. X-Ray Powder Diffraction Rietveld Characterization of Synthetic Aluminum-Substituted Goethite. Clays Clay Miner. 1991, 39, 248–253. [Google Scholar] [CrossRef]
- Fontes, M.P.F.; Weed, S.B. Iron Oxides in Selected Brazilian Oxisols: I. Mineralogy. Soil Sci. Soc. Am. J. 1991, 55, 1143–1149. [Google Scholar] [CrossRef]
- Aylmore, M.G.; Walker, G.S. The quantification of lateritic bauxite minerals using X-ray powder diffraction by the Rietveld method. Powder Diffr. 1998, 13, 136–143. [Google Scholar] [CrossRef]
- Gan, B.K.; Taylor, Z.; Xu, B.; van Riessen, A.; Hart, R.D.; Wang, X.; Smith, P. Quantitative phase analysis of bauxites and their dissolution products. Int. J. Miner. Process. 2013, 123, 64–72. [Google Scholar] [CrossRef]
- Negrão, L.B.A.; Pöllmann, H.; Alves, T.K.C. Mineralogical Appraisal of Bauxite Overburdens from Brazil. Minerals 2021, 11, 677. [Google Scholar] [CrossRef]
- Negrão, L.B.A.; da Costa, M.L.; Pöllmann, H.; Horn, A. An application of the Rietveld refinement method to the mineralogy of a bauxite-bearing regolith in the Lower Amazon. Miner. Mag. 2018, 82, 413–431. [Google Scholar] [CrossRef]
- O’Connor, B.H.; Raven, M.D. Application of the Rietveld Refinement Procedure in Assaying Powdered Mixtures. Powder Diffr. 1988, 3, 2–6. [Google Scholar] [CrossRef]
- Zhao, A.-C.; Liu, Y.; Zhang, T.-A.; Lü, G.-Z.; Dou, Z.-H. Thermodynamics study on leaching process of gibbsitic bauxite by hydrochloric acid. Trans. Nonferrous Met. Soc. China 2013, 23, 266–270. [Google Scholar] [CrossRef]
- Schwertmann, U. Solubility and dissolution of iron oxides. Plant Soil 1991, 130, 1–25. [Google Scholar] [CrossRef]
- Lanyon, M.R.; Lwin, T.; Merritt, R.R. The dissolution of iron in the hydrochloric acid leach of an ilmenite concentrate. Hydrometallurgy 1999, 51, 299–323. [Google Scholar] [CrossRef]
- Yang, M.-H.; Chen, P.-C.; Tsai, M.-C.; Chen, T.-T.; Chang, I.-C.; Chiu, H.-T.; Lee, C.-Y. Anatase and brookite TiO2 with various morphologies and their proposed building block. CrystEngComm 2013, 16, 441–447. [Google Scholar] [CrossRef]
- Knauss, K.G.; Wolery, T.J. The dissolution kinetics of quartz as a function of pH and time at 70 °C. Geochim. Cosmochim. Acta 1988, 52, 43–53. [Google Scholar] [CrossRef]
- Peryea, F.J.; Kittrick, J.A. Relative Solubility of Corundum, Gibbsite, Boehmite, and Diaspore at Standard State Conditions. Clays Clay Miner. 1988, 36, 391–396. [Google Scholar] [CrossRef]
- Bénézeth, P.; Palmer, D.A.; Wesolowski, D.J. Dissolution/precipitation kinetics of boehmite and gibbsite: Application of a pH-relaxation technique to study near-equilibrium rates. Geochim. Cosmochim. Acta 2008, 72, 2429–2453. [Google Scholar] [CrossRef]
- Terry, B. The acid decomposition of silicate minerals part I. Reactivities and modes of dissolution of silicates. Hydrometallurgy 1983, 10, 135–150. [Google Scholar] [CrossRef]
- Cornell, R.M.; Giovanoli, R. Acid Dissolution of Hematites of Different Morphologies. Clay Miner. 1993, 28, 223–232. [Google Scholar] [CrossRef]
- Voelz, J.L.; Johnson, N.W.; Chun, C.L.; Arnold, W.A.; Penn, R.L. Quantitative Dissolution of Environmentally Accessible Iron Residing in Iron-Rich Minerals: A Review. ACS Earth Space Chem. 2019, 3, 1371–1392. [Google Scholar] [CrossRef]
- Valeton, I. Bauxites; Elsevier: Amsterdam, The Netherlands, 2010. [Google Scholar]
- Hartman, J.A. The titanium mineralogy of certain bauxites and their parent materials. Econ. Geol. 1959, 54, 1380–1405. [Google Scholar] [CrossRef]
- Vind, J.; Malfliet, A.; Bonomi, C.; Paiste, P.; Sajó, I.E.; Blanpain, B.; Tkaczyk, A.H.; Vassiliadou, V.; Panias, D. Modes of occurrences of scandium in Greek bauxite and bauxite residue. Miner. Eng. 2018, 123, 35–48. [Google Scholar] [CrossRef]
- Trolard, F.; Bourrie, G.; Jeanroy, E.; Herbillon, A.J.; Martin, H. Trace metals in natural iron oxides from laterites: A study using selective kinetic extraction. Geochim. Cosmochim. Acta 1995, 59, 1285–1297. [Google Scholar] [CrossRef]
- Schwertmann, U. Iron Substitution in Soil and Synthetic Anatase. Clays Clay Miner. 1995, 43, 599–606. [Google Scholar] [CrossRef]
- Gutberlet, T.; Hilbig, H.; Beddoe, R. Acid attack on hydrated cement—Effect of mineral acids on the degradation process. Cem. Concr. Res. 2015, 74, 35–43. [Google Scholar] [CrossRef]
- Dietzel, M. Dissolution of silicates and the stability of polysilicic acid. Geochim. Cosmochim. Acta 2000, 64, 3275–3281. [Google Scholar] [CrossRef]
- Alexander, G.B.; Heston, W.M.; Iler, R.K. The Solubility of Amorphous Silica in Water. J. Phys. Chem. 1954, 58, 453–455. [Google Scholar] [CrossRef]
- Ridley, M.K.; Wesolowski, D.J.; Palmer, D.A.; Bénézeth, P.; Kettler, R.M. Effect of Sulfate on the Release Rate of Al3+ from Gibbsite in Low-Temperature Acidic Waters. Environ. Sci. Technol. 1997, 31, 1922–1925. [Google Scholar] [CrossRef]
- Brown, R. Solubility and Activity of Aluminium Chloride in Aqueous Hydrochloric Acid Solutions; US Bureau of Mines: Pittsburg, PA, USA, 1979.
- Cheng, H.; Wu, L.; Cao, L.; Zhao, J.; Xue, F.; Cheng, F. Phase Diagram of AlCl3–FeCl3–H2O (− HCl) Salt Water System at 298.15 K and Its Application in the Crystallization of AlCl3· 6H2O. J. Chem. Eng. Data 2019, 64, 5089–5094. [Google Scholar] [CrossRef]
- Noble, E.G.; Shanks, D.E.; Bauer, D.J. Solubilities of Chloride Salts of Alkali and Alkaline-Earth Metals when Sparged with Hydrogen Chloride; US Department of the Interior, Bureau of Mines: Pittsburg, PA, USA, 1985; Volume 8991.
- Maysilles, J.H.; Traut, D.E.; Sawyer, D.L. Aluminum Chloride Hexahydrate Crystallization by HC1 Gas Sparging; US Department of the Interior, Bureau of Mines: Pittsburg, PA, USA, 1982; Volume 8590.
- Pérez-Ramírez, J.; Mondelli, C.; Schmidt, T.; Schlüter, O.F.-K.; Wolf, A.; Mleczko, L.; Dreier, T. Sustainable chlorine recycling via catalysed HCl oxidation: From fundamentals to implementation. Energy Environ. Sci. 2011, 4, 4786–4799. [Google Scholar] [CrossRef]
Component | Al2O3 | Fe2O3 | SiO2 | TiO2 | LOI | Others |
---|---|---|---|---|---|---|
%wt. | 38.9 ± 0.3 | 20.4 ± 0. 3 | 18.8 ± 0.8 | 1.5 ± 0.3 | 19.9 ± 0.5 | 0.4 |
Phases—wt. (%) | Rwp (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|
Gibbsite | Al-goethite | Quartz | Hematite | Anatase | Rutile | Kaolinite | Boehmite | Amorphous | 5.4 |
56.9 | 15.2 | 8.8 | 7.5 | 1.0 | 0.8 | 0.9 | 0.2 | 8.8 |
Stage | Temperature (°C) | Pressure (atm) | HCl Concentration (M) | Rotation Speed (rpm) | Duration (h) | S/L Ratio (x:100 g/mL) |
---|---|---|---|---|---|---|
| 90 | 1 | 5.9 | 300 | 24 (intermediate sampling at 0.5, 1, 2, 4, and 8 h) | 5 |
| 2 | 20, 22.5, 25 |
Duration (h) | Average Metal Concentration in PLS | Average %wt. Metal Dissolution in PLS | ||||||
---|---|---|---|---|---|---|---|---|
Al (g/L) | Fe (g/L) | Ti (mg/L) | Si (mg/L) | Al | Fe | Ti | Si | |
0.5 | 8.2 | 6.2 | 47.2 | 79.0 | 79.6 | 80.3 | 9.2 | 2.4 |
1 | 9.1 | 6.6 | 51.0 | 55.0 | 88.7 | 86.0 | 10.0 | 1.7 |
2 | 9.3 | 6.7 | 59.4 | 44.0 | 90.0 | 87.5 | 11.6 | 1.4 |
4 | 9.2 | 6.6 | 73.2 | 39.5 | 89.7 | 86.4 | 14.4 | 1.2 |
8 | 9.2 | 6.6 | 75.0 | 29.5 | 89.9 | 85.4 | 14.7 | 0.9 |
24 | 10.2 | 7.3 | 114.9 | 27.5 | 99.7 | 95.3 | 22.5 | 0.8 |
S/L (x:100 g/mL) | Average Concentration in PLS | Average %wt. Dissolution in PLS | ||||||
---|---|---|---|---|---|---|---|---|
Al (g/L) | Fe (g/L) | Ti (mg/L) | Si (mg/L) | Al | Fe | Ti | Si | |
20 | 36.8 | 25.2 | 80.4 | 76.9 | 89.5 | 88.2 | 4.4 | 0.4 |
22.5 | 36.6 | 26.8 | 105.8 | 91.0 | 79.0 | 83.5 | 5.1 | 0.5 |
25 | 36.5 | 27.8 | 101.3 | 102.7 | 71.0 | 77.9 | 4.4 | 0.5 |
Component | SiO2 | Al2O3 | Fe2O3 | TiO2 | LOI | Others |
---|---|---|---|---|---|---|
%wt. | 35.5 ± 1.1 | 5.49 ± 0.8 | 15.5 ± 0.2 | 4.6 ± 0.1 | 23.6 ± 0.2 | 0.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bagani, M.; Kotsanis, D.; Vafeias, M.; Pilichou, A.; Balomenos, E.; Panias, D. Leaching Study of Guinean Bauxite Tailings in aqueous HCl Solution for the Extraction of Aluminum. Sustainability 2023, 15, 16232. https://doi.org/10.3390/su152316232
Bagani M, Kotsanis D, Vafeias M, Pilichou A, Balomenos E, Panias D. Leaching Study of Guinean Bauxite Tailings in aqueous HCl Solution for the Extraction of Aluminum. Sustainability. 2023; 15(23):16232. https://doi.org/10.3390/su152316232
Chicago/Turabian StyleBagani, Maria, Dimitrios Kotsanis, Michalis Vafeias, Anastasia Pilichou, Efthymios Balomenos, and Dimitrios Panias. 2023. "Leaching Study of Guinean Bauxite Tailings in aqueous HCl Solution for the Extraction of Aluminum" Sustainability 15, no. 23: 16232. https://doi.org/10.3390/su152316232
APA StyleBagani, M., Kotsanis, D., Vafeias, M., Pilichou, A., Balomenos, E., & Panias, D. (2023). Leaching Study of Guinean Bauxite Tailings in aqueous HCl Solution for the Extraction of Aluminum. Sustainability, 15(23), 16232. https://doi.org/10.3390/su152316232