Agriculture and the Bioeconomy: A Socioeconomic Analysis of Central and Eastern European Countries
Abstract
:1. Introduction
- (1)
- What CEEC has the best socioeconomic performance in terms of agriculture?
- (2)
- Where does Romania stand among the CEECs?
- (3)
- What countries present bioeconomic similarities?
2. Materials and Methods
2.1. Cluster Analysis
2.2. The Socioeconomic Indicator of the Bioeconomy
3. Results and Discussions
3.1. The Hierarchical Cluster Analysis of CEECs
- -
- First group of countries: Bulgaria, Czech Rep., Hungary, Poland, Slovakia, and Slovenia.
- -
- Second group of countries: Croatia and Romania.
- -
- Third group of countries: Estonia, Lithuania, and Latvia.
3.2. The Socioeconomic Indicator of Bioeconomy
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Country | Variables | Range | Mean | Std. Deviation | Variance |
---|---|---|---|---|---|
Bulgaria | V_1: WKRS | 0.1311 | −0.0185 | 0.0379 | 0.0014 |
V_2: TO | 0.3244 | −0.0130 | 0.0767 | 0.0059 | |
V_3:VA | 0.6224 | −0.0051 | 0.1528 | 0.0233 | |
Croatia | V_1: WKRS | 0.2423 | −0.0654 | 0.0846 | 0.0071 |
V_2: TO | 0.2166 | −0.0205 | 0.0595 | 0.0035 | |
V_3:VA | 0.3217 | −0.0211 | 0.0984 | 0.0097 | |
Czech Rep. | V_1: WKRS | 0.1482 | −0.0011 | 0.0375 | 0.0014 |
V_2: TO | 0.4379 | 0.0287 | 0.0988 | 0.0098 | |
V_3:VA | 0.5002 | 0.0338 | 0.1322 | 0.0175 | |
Estonia | V_1: WKRS | 0.1748 | −0.0308 | 0.0556 | 0.0031 |
V_2: TO | 0.4121 | 0.0333 | 0.1304 | 0.0170 | |
V_3:VA | 1.1935 | 0.0140 | 0.3262 | 0.1064 | |
Hungary | V_1: WKRS | 0.2652 | 0.0026 | 0.0747 | 0.0056 |
V_2: TO | 0.4265 | 0.0085 | 0.0929 | 0.0086 | |
V_3:VA | 0.5733 | 0.0187 | 0.1271 | 0.0162 | |
Latvia | V_1: WKRS | 0.2715 | −0.0276 | 0.0670 | 0.0045 |
V_2: TO | 0.3449 | 0.0365 | 0.0950 | 0.0090 | |
V_3:VA | 0.6004 | 0.0604 | 0.1855 | 0.0344 | |
Lithuania | V_1: WKRS | 0.2245 | −0.0286 | 0.0706 | 0.0050 |
V_2: TO | 0.5174 | 0.0286 | 0.1311 | 0.0172 | |
V_3:VA | 0.7523 | 0.0414 | 0.2302 | 0.0530 | |
Poland | V_1: WKRS | 0.1263 | −0.0306 | 0.0347 | 0.0012 |
V_2: TO | 0.4169 | 0.0212 | 0.1114 | 0.0124 | |
V_3:VA | 0.4220 | 0.0274 | 0.1371 | 0.0188 | |
Romania | V_1: WKRS | 0.1450 | −0.0394 | 0.0475 | 0.0023 |
V_2: TO | 0.4919 | −0.0246 | 0.1511 | 0.0228 | |
V_3:VA | 0.5515 | −0.0184 | 0.1801 | 0.0324 | |
Slovakia | V_1: WKRS | 0.1273 | −0.0165 | 0.0317 | 0.0010 |
V_2: TO | 0.3835 | 0.0052 | 0.1236 | 0.0153 | |
V_3:VA | 0.7414 | −0.0148 | 0.2432 | 0.0591 | |
Slovenia | V_1: WKRS | 0.0227 | −0.0151 | 0.0077 | 0.0001 |
V_2: TO | 0.2666 | 0.0117 | 0.0759 | 0.0058 | |
V_3:VA | 0.5079 | 0.0325 | 0.1485 | 0.0220 |
Appendix B
References
- Gould, H.; Kelleher, L.; O’Neill, E. Trends and policy in bioeconomy literature: A bibliometric review. EFB Bioeconomy J. 2023, 3, 100047. [Google Scholar] [CrossRef]
- Cifuentes-Faura, J. European Union policies and their role in combating climate change over the years. Air Qual. Atmos. Health 2022, 15, 1333–1340. [Google Scholar] [CrossRef] [PubMed]
- Ronzon, T.; Piotrowski, S.; Tamosiunas, S.; Dammer, L.; Carus, M.; M’barek, R. Developments of economic growth and employment in bioeconomy sectors across the EU. Sustainability 2020, 12, 4507. [Google Scholar] [CrossRef]
- Morone, P.; D’Adamo, I.; Cianfroni, M. Inter-connected challenges: An overview of bioeconomy in Europe. Environ. Res. Lett. 2022, 17, 114031. [Google Scholar] [CrossRef]
- Hanganu, I.; Fleseriu, C. Good practices for improving promotion and sales for Romanian ecological agricultural products. TJEB 2019, 12, 71–86. [Google Scholar] [CrossRef]
- Capasso, M.; Klitkou, A. Socioeconomic Indicators to Monitor Norway’s Bioeconomy in Transition; Nordic Institute for Studies in Innovation, Research and Education: Oslo, Norway, 2020; Available online: http://hdl.handle.net/11250/2640627 (accessed on 10 October 2023).
- Berca, M.; Robescu, V.O.; Horoiaş, R.; Păscuţ, G. Wheat nutrition bioeconomic approach, using substituting models of synthetic with natural nitrogen. Agric. Agric. Sci. Proc. 2016, 10, 519–524. [Google Scholar] [CrossRef]
- Dinulescu, G.L.; Robescu, V.O.; Radu, F.; Croitoru, G.; Radu, V. A Bioeconomic Solution for Replacing Chemical Fertilizers by Organic Processes for Atmospheric Nitrogen Fixation in Soil. Amfiteatru Econ. 2018, 20, 510–520. [Google Scholar] [CrossRef]
- Anca, D.; Strantan, A.; Lucasenco, E.; Gavrilescu, C.; Jonel, S.; Roljević Nikolić, S.; Simonovic, Z.; Harizanova-Metodieva, T.; Metodiev, N.; Tirigan, S.; et al. Agrarian Economy and Rural Development-Realities and Perspectives for Romania, 2019. In Proceedings of the 10th International Symposium Agricultural Economics and Rural Development—Realities and Perspectives for Romania, Bucharest, Romania, 14 November 2019. [Google Scholar]
- Vlad, I.M.; Toma, E. The assessment of the bioeconomy and biomass sectors in central and Eastern European Countries. Agronomy 2022, 12, 880. [Google Scholar] [CrossRef]
- Rodino, S.; Butu, A.; Dragomir, V.; Butu, M. An analysis regarding the biomass production sector in Romania—A bioeconomy point of view. Sci. Pap. Ser. Manag. Econ. Eng. Agric. Rural. Dev. 2019, 19, 497–502. [Google Scholar]
- Avrămescu, T.C. The Current State of Bioeconomy in Romania. Ovid. Univ. Ann. Econom. Sci. Ser. 2020, 20, 113–120. [Google Scholar]
- Czyżewski, A.; Grzyb, A.; Matuszczak, A.; Michałowska, M. Factors for Bioeconomy Development in EU Countries with Different Overall Levels of Economic Development. Energies 2021, 14, 3182. [Google Scholar] [CrossRef]
- Rozakis, S.; Juvančič, L.; Kovacs, B. Bioeconomy for Resilient Post-COVID Economies. Energies 2022, 15, 2958. [Google Scholar] [CrossRef]
- BIOEAST Vision Paper. Available online: https://bioeast.eu/download/bioeast_vision_paper_23022018/ (accessed on 15 May 2023).
- Vásáry, V. Knowledge-based agriculture in Central and Eastern European Countries’ bioeconomy. Econ. Environ. Stud. 2019, 19, 137–154. [Google Scholar]
- Lasarte-López, J.; M’barek, R.; Ronzon, T.; Tamosiunas, S.J. EU Bioeconomy Monitoring System Indicators Update: Jobs and Value Added in the EU Bioeconomy 2020; Publications Office of the European Union; European Commission, Ed.; European Commission: Brussels, Belgium, 2023. [Google Scholar] [CrossRef]
- Ronzon, T.; M’Barek, R. Socioeconomic Indicators to Monitor the EU’s Bioeconomy in Transition. Sustainability 2018, 10, 1745. [Google Scholar] [CrossRef]
- Lasarte López, J.; Ronzon, T.; Piotrowski, S.; M’barek, R.; Carus, M.; Tamošiūnas, S. Jobs and Wealth in the EU Bioeconomy/JRC—Bioeconomics; European Commission JRC, Ed.; European Commission JRC: Brussels, Belgium, 2022; Available online: http://rb.gy/ovdzm (accessed on 10 June 2023).
- O’Brien, M.; Wechsler, D.; Bringezu, S.; Schaldach, R. Toward a systemic monitoring of the European bioeconomy: Gaps, needs and the integration of sustainability indicators and targets for global land use. Land Use Policy 2017, 66, 162–171. [Google Scholar] [CrossRef]
- M’Barek, R.; Parisi, C.; Ronzon, T. Getting (some) numbers right: Derived economic indicators for the bioeconomy. In JRC Conference and Workshop Reports, Proceedings of the Side-Event at the EUBCE, Copenhagen, Denmark, 15 May 2018; European Commission—Joint Research Centre; Publications Office of the European Union: Luxembourg, 2018; Available online: https://core.ac.uk/download/pdf/162257032.pdf (accessed on 20 May 2023).
- Bracco, S.; Tani, A.; Çalıcıoğlu, Ö.; Gomez San Juan, M.; Bogdanski, A. Indicators to Monitor and Evaluate the Sustainability of Bioeconomy. Overview and A Proposed Way Forward; FAO Environment and Natural Resource Management Working Paper; FAO: Rome, Italy, 2019; Available online: https://www.fao.org/3/ca6048en/ca6048en.pdf; (accessed on 20 June 2023).
- Kardung, M.; Cingiz, K.; Costenoble, O.; Delahaye, R.; Heijman, W.; Lovrić, M.; van Leeuwen, M.; M’Barek, R.; van Meijl, H.; Piotrowski, S.; et al. Development of the Circular Bioeconomy: Drivers and Indicators. Sustainability 2021, 13, 413. [Google Scholar] [CrossRef]
- Muizniece, I.; Timma, L.; Blumberga, A.; Blumberga, D. The methodology for assessment of bioeconomy efficiency. Energy Procedia 2016, 95, 482–486. [Google Scholar] [CrossRef]
- D’Adamo, I.; Falcone, P.M.; Morone, P. A New Socio-economic Indicator to Measure the Performance of Bioeconomy Sectors in Europe. Ecol. Econ. 2020, 176, 106724. [Google Scholar] [CrossRef]
- Nowak, A.; Kobiałka, A.; Krukowski, A. Significance of Agriculture for Bioeconomy in the Member States of the European Union. Sustainability 2021, 13, 8709. [Google Scholar] [CrossRef]
- Lori, M.; Symnaczik, S.; Mäder, P.; De Deyn, G.; Gattinger, A. Organic farming enhances soil microbial abundance and activity—A meta-analysis and meta-regression. PLoS ONE 2017, 12, e0180442. [Google Scholar] [CrossRef]
- Balkin, R.S.; Lenz, A.S. Contemporary Issues in Reporting Statistical, Practical, and Clinical Significance in Counseling Research. J. Couns Dev. 2021, 99, 227–237. [Google Scholar] [CrossRef]
- Gajda, W.; Svazas, M.; Navickas, V. Bioeconomics development in the regions: Lithuanian clustering analysis. AD Alta: Interdiscip. J. Contemp. Res. 2019, 9, 346–353. [Google Scholar]
- Sharma, K.K.; Seal, A. Outlier-robust multi-view clustering for uncertain data. Knowl. Based Syst. 2021, 211, 106567. [Google Scholar] [CrossRef]
- Anusha, M.; Sathiaseelan, J. Feature selection using k-means genetic algorithm for multi-objective optimization. Procedia Comput. Sci. 2015, 57, 1074–1080. [Google Scholar] [CrossRef]
- List, J.A.; Shaikh, A.M.; Xu, Y. Multiple hypothesis testing in experimental economics. Exp. Econ. 2019, 22, 773–793. [Google Scholar] [CrossRef]
- Murtagh, F.; Legendre, P. Ward’s hierarchical agglomerative clustering method: Which algorithms implement Ward’s criterion? J. Classif. 2014, 31, 274–295. [Google Scholar] [CrossRef]
- Bu, J.; Liu, W.; Pan, Z.; Ling, K. Comparative Study of Hydrochemical Classification Based on Different Hierarchical Cluster Analysis Methods. Int. J. Environ. Res. Public Health 2020, 17, 9515. [Google Scholar] [CrossRef]
- M’barek, R.; Philippidis, G.; Suta, C.; Vinyes, C.; Caivano, A.; Ferrari, E.; Ronzon, T.; Sanjuan-Lopez, A.; Santini, F. Observing and analysing the Bioeconomy in the EU: Adapting data and tools to new questions and challenges. Bio-Based Appl. Econ. 2014, 3, 83–91. [Google Scholar]
- Babucea, A.G.; Răbonțu, C.I. The State of Adopting CRM Software-Solutions as Part of The Enterprises’ Internal Processes Integration—A Cluster Analysis at the Level of the EU-Member States just Prior to the COVID-19 Pandemic. Constantin Brancusi Univ. Ann. Econom. Ser. 2020, 5, 115–125. [Google Scholar]
- D’Adamo, I.; Falcone, P.M.; Imbert, E.; Morone, P. Exploring regional transitions to the bioeconomy using a socio-economic indicator: The case of Italy. Econ. Polit. 2022, 39, 989–1021. [Google Scholar] [CrossRef]
- Saaty, T.L. The Analytic Hierarchy Process: Planning, Priority Setting, Resource Allocation; McGraw-Hill International Book Co.: New York, NY, USA; London, UK, 1980; ISBN 978-0070543713. [Google Scholar]
- Bălan, E.M. Where is Romania in the European Union’s Bioeconomic Context? The Cluster Analyses Approach. Constantin Brancusi Univ. Ann. Econom. Ser. 2022, 1, 172–184. [Google Scholar]
- Spirkova, D.; Stehlikova, B.; Zubkova, M.; Sevela, M.; Stiglic, D. Evaluation of Agriculture’s Economic Role in EU Countries. Ekonomicky Casopis 2017, 65, 763–779. [Google Scholar]
- Popescu, A.; Dinu, T.A.; Stoian, E.; Şerban, V. Population occupied in agriculture and agricultural production value in Romania, 2008–2020. Sci. Pap. Ser. Manag. Econ. Eng. Agric. Rural Dev. 2022, 22, 503–514. [Google Scholar]
- Csaki, C.; Jambor, A. Convergence or divergence—Transition in agriculture of Central and Eastern Europe and Commonwealth of Independent States revisited. Agric. Econ. Czech 2019, 65, 160–174. [Google Scholar] [CrossRef]
- Cismaș, L.M.; Bălan, E.M. Agriculture’s Contribution to the Growth of Romanian Bioeconomy: A Regional Approach. East. Europ. Econ. 2022, 61, 403–419. [Google Scholar] [CrossRef]
- von Braun, J.; Mirzabaev, A. The Development of Bioeconomy of the Baltic Region in the Context of Regional and Global Climate Change. Balt. Reg. 2019, 11, 20–35. [Google Scholar] [CrossRef]
- Ali, S.M.; Appolloni, A.; Cavallaro, F.; D’Adamo, I.; Di Vaio, A.; Ferella, F.; Gastaldi, M.; Ikram, M.; Kumar, N.M.; Martin, M.A.; et al. Development Goals towards Sustainability. Sustainability 2023, 15, 9443. [Google Scholar] [CrossRef]
- Lazorcakova, E.; Dries, L.; Peerlings, J.; Pokrivcak, J. Potential of the Bioeconomy in Visegrad Countries: An Input-Output Approach. Biomass Bioenergy 2022, 158, 106366. [Google Scholar] [CrossRef]
- Cismaș, L.M.; Dumitru, C. Investigating Public-Private Partnership’s Potential for Innovation in the Romanian Agriculture. Fostering Recovery through Metaverse Business Modelling. In Proceedings of the 5th International Conference on Economics and Social Sciences, Bucharest University of Economic Studies, Bucharest, Romania, 16–17 June 2022; pp. 19–29. [Google Scholar]
Country | V_1: WKRS 1 | V_2: TO 2 | V_3: VA 3 |
---|---|---|---|
Bulgaria | 639,956 | 4302.5 | 1706.8 |
Croatia | 134,002 | 2679.7 | 1232.4 |
Czech Republic | 139,498 | 7392.9 | 2693.5 |
Estonia | 16,448 | 840.4 | 265.9 |
Hungary | 159,975 | 9054.6 | 3894.2 |
Latvia | 50,678 | 1371.5 | 438.9 |
Lithuania | 93,765 | 2801.6 | 1029.7 |
Poland | 1,745,831 | 27,187.0 | 9821.7 |
Romania | 2,325,077 | 14,746.0 | 6976.4 |
Slovakia | 48,221 | 2671.9 | 1076.0 |
Slovenia | 69,658 | 1293.3 | 510.9 |
Cluster Number | Variable | V_1: WKRS | V_2: TO | V_3:VA |
---|---|---|---|---|
1 | N * | 72 | 72 | 72 |
Mean | −0.0132 | 0.0104 | 0.0154 | |
Std. deviation | 0.0422 | 0.0955 | 0.1571 | |
Variance | 0.0018 | 0.0091 | 0.0247 | |
2 | N | 24 | 24 | 24 |
Mean | −0.0524 | −0.1226 | −0.0198 | |
Std. deviation | 0.0684 | 0.1123 | 0.1420 | |
Variance | 0.0047 | 0.0126 | 0.0202 | |
3 | N | 36 | 36 | 36 |
Mean | −0.0290 | 0.0328 | 0.0386 | |
Std. deviation | 0.0629 | 0.1166 | 0.2764 | |
Variance | 0.0040 | 0.0136 | 0.0613 |
Cluster Number | Variable | SS | df | MS | F | p-Value | F Crit |
---|---|---|---|---|---|---|---|
1 | V_1: WKRS | 0.0089 | 5 | 0.0018 | 1.0032 | 0.4229 | 2.3538 |
V_2: TO | 0.0124 | 5 | 0.0025 | 0.2578 | 0.9344 | 2.3538 | |
V_3:VA | 0.0254 | 5 | 0.0051 | 0.1943 | 0.9637 | 2.3538 | |
2 | V_1: WKRS | 0.0040 | 1 | 0.0040 | 0.8595 | 0.3639 | 4.3009 |
V_2: TO | 0.0001 | 1 | 0.0001 | 0.0076 | 0.9311 | 4.3009 | |
V_3:VA | 0.0000 | 1 | 0.0000 | 0.0020 | 0.9645 | 4.3009 | |
3 | V_1: WKRS | 0.0001 | 2 | 0.0000 | 0.0076 | 0.9924 | 3.2849 |
V_2: TO | 0.0004 | 2 | 0.0002 | 0.0130 | 0.9870 | 3.2849 | |
V_3:VA | 0.0131 | 2 | 0.0065 | 0.1014 | 0.9039 | 3.2849 |
No. | Research Question | Answer |
---|---|---|
1 | Which CEEC has the best socioeconomic performance in terms of agriculture? | Romania is the best-performing country in CEE, with the highest SEIB values for V_1, V_2, and V_3. |
2 | Where does Romania stand among the CEECs? | During the time frame under consideration, the Romanian SEIB average was double that of the region’s. This puts Romania in a distinct position compared to the rest of the countries in the region. This position may be based on economic and social underpinnings that deserve to be studied in detail. |
3 | What countries present similarities regarding specific selected indicators? | The Romanian unprocessed variables (V_1, V_2, and V_3) are quite comparable with those of Poland. Due to the relatively high volatility of the variables during the investigated period (2008–2012), Romania’s socioeconomic performance generated by the SEIB coefficient is closer to that of Croatia’s. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cismaș, L.M.; Bălan, E.M.; Zeldea, C.G.; Iordan, M.; Cismaș, C.M. Agriculture and the Bioeconomy: A Socioeconomic Analysis of Central and Eastern European Countries. Sustainability 2023, 15, 16082. https://doi.org/10.3390/su152216082
Cismaș LM, Bălan EM, Zeldea CG, Iordan M, Cismaș CM. Agriculture and the Bioeconomy: A Socioeconomic Analysis of Central and Eastern European Countries. Sustainability. 2023; 15(22):16082. https://doi.org/10.3390/su152216082
Chicago/Turabian StyleCismaș, Laura Mariana, Emilia Mary Bălan, Cristina Georgiana Zeldea, Marioara Iordan, and Cristian Mihai Cismaș. 2023. "Agriculture and the Bioeconomy: A Socioeconomic Analysis of Central and Eastern European Countries" Sustainability 15, no. 22: 16082. https://doi.org/10.3390/su152216082
APA StyleCismaș, L. M., Bălan, E. M., Zeldea, C. G., Iordan, M., & Cismaș, C. M. (2023). Agriculture and the Bioeconomy: A Socioeconomic Analysis of Central and Eastern European Countries. Sustainability, 15(22), 16082. https://doi.org/10.3390/su152216082