Innovative Thermal Renders Incorporating Oyster Shells for Sustainable Insulation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Tests in the Fresh State
2.1.1. Slump Flow
2.1.2. Density
2.2. Tests in the Hardened State
2.2.1. Thermal Conductivity
2.2.2. Apparent Density
2.2.3. Open Porosity
2.2.4. Water Absorption
2.2.5. Dynamic Modulus of Elasticity
2.2.6. Flexural and Compressive Strength
2.2.7. Ultra-Sounds
2.3. Visual Characterization
2.3.1. Stereomicroscopy
2.3.2. Scanning Electron Microscopy (SEM)
2.3.3. X-ray Microtomography
3. Results and Discussions
3.1. Fresh State
3.2. Hardened State
3.2.1. Thermal Conductivity
3.2.2. Apparent Density and Open Porosity
3.2.3. Water Absorption
3.2.4. Mechanical Properties
3.2.5. Visual Analysis in the Fresh State
3.2.6. Visual Analysis in the Hardened State
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Scrucca, F.; Palladino, D. Integration of Energy Simulations and Life Cycle Assessment in Building Refurbishment: An Affordability Comparison of Thermal Insulation Materials through a New Sustainability Index. Sustainability 2023, 15, 1412. [Google Scholar]
- GlobalABC/IEA/UNEP. GlobalABC Roadmap for Buildings and Construction: Towards a Zero-Emission; IEA: Paris, France, 2020.
- COM. Impulsionar uma Vaga de Renovação na Europa para Tornar os Edifícios Mais Ecológicos, Criar Emprego e Melhorar as Condições de Vida; Comissão Européia: Bruxelas, Belgium, 2020.
- Worrell, E.; Price, L.; Martin, N.; Hendriks, C.; Meida, L.O. Carbon Dioxide Emissions from the Global Cement Industry. Annu. Rev. Energy Environ. 2001, 26, 303–329. [Google Scholar]
- Liu, S.; Wang, Y.; Liu, B.; Zou, Z.; Teng, Y.; Ji, Y.; Zhou, Y.; Zhang, L.V.; Zhang, Y. Sustainable Utilization of Waste Oyster Shell Powders with Different Fineness Levels in a Ternary Supplementary Cementitious Material System. Sustainability 2022, 14, 5981. [Google Scholar] [CrossRef]
- Cabeza, L.; Castell, A.; Medrano, M.; Martorell, I.; Pérez, G.; Fernández, I. Experimental study on the performance of insulation materials in Mediterranean construction. Energy Build. 2010, 42, 630–636. [Google Scholar] [CrossRef]
- Villasmil, W.; Fischer, L.J.; Worlitschek, J. A review and evaluation of thermal insulation materials and methods for thermal energy storage systems. Renew. Sustain. Energy Rev. 2019, 103, 71–84. [Google Scholar] [CrossRef]
- Liu, L.; Li, H.; Lazzaretto, A.; Manente, G.; Tong, C.; Liu, Q.; Li, N. The development history and prospects of biomass-based insulation materials for buildings. Renew. Sustain. Energy Rev. 2017, 69, 912–932. [Google Scholar] [CrossRef]
- Füchsl, S.; Rheude, F.; Röder, H. Life cycle assessment (LCA) of thermal insulation materials: A critical review. Clean. Mater. 2022, 5, 100119. [Google Scholar] [CrossRef]
- Morgado, A.; Soares, A.; Flores-Colen, I.; Veiga, M.d.R.; Gomes, M.G. Durability of Thermal Renders with Lightweight and Thermal Insulating Aggregates: Regranulated Expanded Cork, Silica Aerogel and Expanded Polystyrene. Gels 2021, 7, 35. [Google Scholar] [CrossRef] [PubMed]
- Švajlenka, J.; Kozlovská, M.; Kozlovská, M. MgO-Based Board Materials for Dry Construction Are a Tool for More Sustainable Constructions—Literature Study and Thermal Analysis of Different Wall Compositions. Sustainability 2021, 13, 12193. [Google Scholar] [CrossRef]
- Bellei, P.; Torres, I.; Solstad, R.; Flores-Colen, I. Potential Use of Oyster Shell Waste in the Composition of Construction Composites: A Review. Buildings 2023, 13, 1546. [Google Scholar] [CrossRef]
- Teixeira, L.; Fernandes, V.; Maia, B.; Arcaro, S.; Oliveira, A.N.d. Vitrocrystalline foams produced from glass and oyster shell wastes. Ceram. Int. 2017, 43, 6730–6737. [Google Scholar] [CrossRef]
- Martínez-García, C.; González-Fonteboa, B.; Carro-López, D.; Pérez-Ordóñez, J.L. Mussel shells: A canning industry by-product converted into a bio-based insulation material. J. Clean. Prod. 2020, 269, 122343. [Google Scholar] [CrossRef]
- Félix, F.; Gonçalves, J.F.; Hinzmann, M.; Vaz-Pires, P. Manual de Boas Práticas na Ostreicultura em Portugal; Ficha Técnica: Porto, Lisbon, Portugal, 2018; ISBN 978-989-54077-1-2. [Google Scholar]
- FAO. The State of World Fisheries and Aquaculture 2022; FAO: Rome, Italy, 2022; ISBN 9789251363645. [Google Scholar]
- Fraga-Curralum, M.; Ronza, P.; Garcia-Oliveira, P.; Pereiraum, A.; Losada, A.; Prietoum, M.; Quiroga, M.; Simal-Gandarau, J. Aquaculture as a circular bio-economy model with Galicia as a study case: How to transform waste into revalorized by-products. Trends Food Sci. Technol. 2022, 119, 23–35. [Google Scholar] [CrossRef]
- Laefer, D.F. Emergence, Development, and Prevalence of Brick Nogging in American Vernacular Architecture; SAHC: Padova, Italy, 2004. [Google Scholar]
- Hodges, B.K. Some Things are not held together by Glue: Chunambo and other ‘Sticky Matter’ in Subtropical Macao, China. eTropic 2022, 21, 198–216. [Google Scholar] [CrossRef]
- Razali, N.; Aris, R.N.F.R.; Razali, N.; Pa’ee, K.F. Revalorization of Aquaculture Waste: The Performance of Calcined Mussel Shells as Partial Cement Replacement. ICERT 2017, 2017, 375–381. [Google Scholar]
- Chandra, S. History of Architecture and Ancient Building Materials in India—Single Volume. Tbi—India. 2003. Available online: https://archive.org/details/Aravindctmt_AncientBuildingMaterialsInIndia/page/109/mode/2up (accessed on 15 October 2023).
- Guedes, P. Learning from the ‘other’: Early modern emulation and trans-imperial exchanges of ‘native’ building technologies. In Proceedings of the 6th International Congress on Construction History (6ICCH), Brussels, Belgium, 9–13 July 2018; Volume 1, pp. 299–306. [Google Scholar]
- Manucy, A.C. Tapia or Tabby. J. Soc. Archit. Hist. 1952, 11, 32–33. [Google Scholar] [CrossRef]
- Morris, S.D. Tabby. New Georgia Encyclopedia; University of Georgia; retrieved 10 September 2019; 2005. Available online: https://www.georgiaencyclopedia.org/articles/history-archaeology/tabby/ (accessed on 15 October 2023).
- Kimball, F. Metropolitan Museum of Art. Committee on Education. In Domestic Architecture of American Colonies and of the Ealy Republic; C. Scribner’s Sons: New York, NY, USA, 1922. [Google Scholar]
- Loureiro, A.M.S.; Paz, S.P.A.d.; Veiga, M.d.R.; Angélica, R.S. Investigation of historical mortars from Belém do Pará, Northern Brazil. Const. Build. Mat. 2020, 233, 117284. [Google Scholar] [CrossRef]
- COM. Comunicação Da Comissão Ao ParlamentoUm Novo Plano De Ação Para A Economia Circular Para Uma Europa Mais Limpa E Competitiva; Comissão Europeia: Bruxelas, Belgium, 2020.
- MAR2030; European Maritime, Fisheries and Aquaculture Fund–Programme for Portugal—MAR2030. FEAMPA: Bruxelas, Belgium, 2021.
- CCDR Algarve. Algarve 2030—Estratégia de Desenvolvimento Regional. Comissão de Coordenação e Desenvolvimento Regional do Algarve; CCDR Algarve: Faro, Portugal, 2020. [Google Scholar]
- EN 459-1:2015; Building Lime—Part 1: Definitions, Specifications and Conformity Criteria. CEN: Brussels, Belgium, 2015.
- NP EN 933-1:2014; Ensaios das Propriedades Geométricas dos Agregados, Parte 1: Análise Granulométrica—Método de Peneiração. IPQ: Lisboa, Portugal, 2013.
- NP EN 1097-3; Determinação da Baridade e do Volume de Vazios. IPQ: Lisboa, Portugal, 2002.
- EN 196-1:2016; Methods of Testing Cement—Part 1: Determination of Strength. CEN: Brussels, Belgium, 2016.
- EN 1015-3:1999; Methods of Test for Mortar for Masonry—Part 3: Determination of Consistence of Fresh Mortar (by Flow Table). CEN: Brussels, Belgium, 1999.
- EN 998-1:2013; Rendering and Plastering Mortar. CEN: Brussels, Belgium, 2013.
- EN 1015-6:1998; Methods of Test for Mortar for Mansory—Part 6: Determination of Bulk Density of Fresh Mortar. CEN: Brussels, Belgium, 1998.
- AP:2011; ISOMET 2114 Thermal properties analyzer: User’s Guide, Version 120712. Applied Precision: Racha, Slovakia, 2011.
- ASTM D5930-9:2009; Thermal Conductivity of Plastics by Means of a Transient Line-Source Technique. American Society for Testing Materials: Philadelphia, PA, USA, 2009.
- EN 1015-10:1999; Methods of Test for Mortar for Masonry—Part 10: Determination of Dry Bulk Density of Hardened Mortar. CEN: Brussels, Belgium, 1999.
- NP EN 1936:2008; Métodos de Ensaio Para Pedra Natural. Determinação das Massas Volúmicas Real e Aparente e Das Porosidades Total e Aberta. IPQ: Caparica, Portugal, 2008.
- EN 1015-18:2002; Methods of Test for Mortar for Masonry—Part 18: Determination of Water Absorption Coefficient Due to Capillary Action of Hardened Mortar. CEN: Brussels, Belgium, 2002.
- ASTM E1876:2015; Standard Test Method for Dynamic Young’s Modulus, Shear Modulus, and Poisson’s Ratio by Impulse Excitation of Vibration. ASTM International: West Conshohocken, PA, USA, 2015; 17p.
- EN 1015-11:2019; Methods of Test for Mortar for Masonry—Part 11: Determination of Flexural and Compressive Strength of Hardened Mortar. CEN: Brussels, Belgium, 2019.
- EN 12504-4:2004; Testing Concrete—Part 4: Determination of Ultrasonic Pulse Velocity. CEN: Brussels, Belgium, 2004.
- Gomes, M.G.; Flores-Colen, I.; Melo, H.; Soares, A. Physical performance of industrial and EPS and cork experimental thermal insulation renders. Const. Build. Mat. 2019, 198, 786–795. [Google Scholar] [CrossRef]
- Borges, A.; Flores-Colen, I.; Brito, J. Physical and mechanical performance of cement-based renders with different contents of fly ash, expanded cork granules and expanded clay. Const. Build. Mat. 2018, 191, 535–543. [Google Scholar] [CrossRef]
- Travincas, R.; Pereira, M.F.C.; Torres, I.; Maurício, A.; Silveira, D. X-ray microtomography applied to mortars: Review of microstructural visualization and parameterization. Micron 2023, 164, 103375. [Google Scholar] [CrossRef] [PubMed]
CaO | SiO2 | Al2O3 | MgO | Na2O | Fe2O3 | SO3 | K2O | P2O5 | TiO2 |
---|---|---|---|---|---|---|---|---|---|
68.72% | 5.39% | 1.85% | 1.63% | 1.5% | 1.23% | 1.21% | 0.76% | 0.37% | 0.15% |
Mortar | NHL (Binder) | Expanded Cork (Aggregate) | Oyster Shell (Aggregate) | Binder/Aggregate Ratio | Water/Binder Ratio | Water/Dry Materials Ratio |
---|---|---|---|---|---|---|
EC80/OS20 | 100% | 80% | 20% | 1.08 | 1.40 | 0.73 |
EC70/OS30 | 100% | 70% | 30% | 0.78 | 1.40 | 0.61 |
EC60/OS40 | 100% | 60% | 40% | 0.61 | 1.36 | 0.51 |
EC50/OS50 | 100% | 50% | 50% | 0.50 | 1.37 | 0.46 |
Mortar | Slump Flow (mm) | Density (kg/m3) |
---|---|---|
EC80/OS20 | 162 | 923 |
EC70/OS30 | 157 | 979 |
EC60/OS40 | 155 | 1096 |
EC50/OS50 | 159 | 1267 |
Mortar | 28 Days | 240 Days | ||
---|---|---|---|---|
A 1 (W/(m·K)) | CV 2 | A (W/(m·K)) | CV | |
EC80/OS20 | 0.08 | 0.28 | 0.08 | 0.36 |
EC70/OS30 | 0.08 | 0.39 | 0.08 | 0.42 |
EC60/OS40 | 0.12 | 0.13 | 0.12 | 0.18 |
EC50/OS50 | 0.15 | 0.19 | 0.16 | 0.23 |
Mortar | Emod 1 (MPa) 28 Days | Sf 2 (MPa) 28 Days | Sc 3 (MPa) 28 Days | Sc (MPa) 240 Days | US 4 (m/s) 28 Days | US (m/s) 240 Days | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
A 5(MPa) | CV 6 | A (MPa) | CV | A (MPa) | CV | A (MPa) | CV | A (m/s) | CV | A (m/s) | CV | |
EC80/OS20 | 273 | 4.6 | 0.16 | 3.9 | 0.30 | 1.2 | 0.30 | 7 | 1147 | 4 | 1414 | 8 |
EC70/OS30 | 321 | 4.1 | 0.16 | 2.5 | 0.30 | 8.7 | 0.30 | 1.4 | 1031 | 7 | 1159 | 3 |
EC60/OS40 | 530 | 8.1 | 0.21 | 4.6 | 0.40 | 6.9 | 0.40 | 2.6 | 921 | 5 | 964 | 3 |
EC50/OS50 | 936 | 4 | 0.36 | 5.6 | 0.60 | 4 | 0.60 | 4.7 | 860 | 5 | 860 | 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bellei, P.; Magalhães, F.; Pereira, M.; Torres, I.; Solstad, R.; Flores-Colen, I. Innovative Thermal Renders Incorporating Oyster Shells for Sustainable Insulation. Sustainability 2023, 15, 15952. https://doi.org/10.3390/su152215952
Bellei P, Magalhães F, Pereira M, Torres I, Solstad R, Flores-Colen I. Innovative Thermal Renders Incorporating Oyster Shells for Sustainable Insulation. Sustainability. 2023; 15(22):15952. https://doi.org/10.3390/su152215952
Chicago/Turabian StyleBellei, Poliana, Fernanda Magalhães, Manuel Pereira, Isabel Torres, Runar Solstad, and Inês Flores-Colen. 2023. "Innovative Thermal Renders Incorporating Oyster Shells for Sustainable Insulation" Sustainability 15, no. 22: 15952. https://doi.org/10.3390/su152215952