Real-Time Monitoring of Animals and Environment in Broiler Precision Farming—How Robust Is the Data Quality?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animal Housing
2.2. Farmer Assistant System
2.3. Dataset Structure and Analysis
2.4. Maintenance on the FAS
2.5. Descriptive Statistics
3. Results
3.1. Round Number Assignment and Data Merging
3.2. Erroneous Coordinates and Repeated Measurements
3.3. Analysis of Standard Deviation
3.4. Time Window and Field Usage
3.5. Final Route
3.6. Overall Amount of Removed Data
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Castro, F.; Chai, L.; Arango, J.; Owens, C.; Smith, P.; Reichelt, S.; DuBois, C.; Menconi, A. Poultry industry paradigms: Connecting the dots. J. Appl. Poult. Res. 2023, 32, 100310. [Google Scholar] [CrossRef]
- Torrey, S.; Mohammadigheisar, M.; Dos Santos, M.N.; Rothschild, D.; Dawson, L.C.; Liu, Z.; Kiarie, E.G.; Edwards, A.M.; Mandell, I.; Karrow, N.; et al. In pursuit of a better broiler: Growth, efficiency, and mortality of 16 strains of broiler chickens. Poult. Sci. 2021, 100, 100955. [Google Scholar] [CrossRef]
- McFadden, J.; Casalini, F.; Griffin, T.; Antón, J. The Digitalisation of Agriculture: A Literature Review and Emerging Policy Issues; OECD Publishing: Paris, France, 2022. [Google Scholar] [CrossRef]
- Abbasi, R.; Martinez, P.; Ahmad, R. The digitization of agricultural industry—A systematic literature review on agriculture 4.0. Smart Agric. Technol. 2022, 2, 100042. [Google Scholar] [CrossRef]
- Lioutas, E.D.; Charatsari, C.; De Rosa, M. Digitalization of agriculture: A way to solve the food problem or a trolley dilemma? Technol. Soc. 2021, 67, 101744. [Google Scholar] [CrossRef]
- Rubambiza, G.; Sengers, P.; Weatherspoon, H. Seamless Visions, Seamful Realities: Anticipating Rural Infrastructural Fragility in Early Design of Digital Agriculture. In Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems, New Orleans, LA, USA, 29 April–5 May 2022. [Google Scholar] [CrossRef]
- Kamilaris, A.; Kartakoullis, A.; Prenafeta-Boldú, F.X. A review on the practice of big data analysis in agriculture. Comput. Electron. Agric. 2017, 143, 23–37. [Google Scholar] [CrossRef]
- Chi, M.; Plaza, A.; Benediktsson, J.A.; Sun, Z.; Shen, J.; Zhu, Y. Big data for remote sensing: Challenges and opportunities. Proc. IEEE 2016, 104, 2207–2219. [Google Scholar] [CrossRef]
- Coble, K.H.; Mishra, A.K.; Ferrell, S.; Griffin, T. Big data in agriculture: A challenge for the future. Appl. Econ. Perspect. Policy 2018, 40, 79–96. [Google Scholar] [CrossRef]
- Dawkins, M.S.; Rowe, E. Poultry Welfare Monitoring: Group-Level Technologies, in Understanding the Behaviour and Improving the Welfare of Chickens; Burleigh Dodds Science Publishing: Cambridge, UK, 2020; pp. 177–196. [Google Scholar] [CrossRef]
- Fernandez, A.P.; Norton, T.; Tullo, E.; van Hertem, T.; Youssef, A.; Exadaktylos, V.; Vranken, E.; Guarino, M.; Berckmans, D. Real-time monitoring of broiler flock’s welfare status using camera-based technology. Biosyst. Eng. 2018, 173, 103–114. [Google Scholar] [CrossRef]
- Yang, X.; Huo, X.; Li, G.; Purswell, J.L.; Tabler, G.T.; Chesser, G.D.; Magee, C.L.; Zhao, Y. Effects of elevated platform and robotic vehicle on broiler production, welfare, and housing environment. Trans. ASABE 2020, 63, 1981–1990. [Google Scholar] [CrossRef]
- MacFeely, S. The big (data) bang: Opportunities and challenges for compiling SDG indicators. Glob. Policy 2019, 10, 121–133. [Google Scholar] [CrossRef]
- Tabesh, P.; Mousavidin, E.; Hasani, S. Implementing big data strategies: A managerial perspective. Bus. Horiz. 2019, 62, 347–358. [Google Scholar] [CrossRef]
- Spieß, F.; Reckels, B.; Abd-El Wahab, A.; Ahmed, M.F.E.; Sürie, C.; Auerbach, M.; Rautenschlein, S.; Distl, O.; Hartung, J.; Visscher, C. The influence of different types of environmental enrichment on the performance and welfare of broiler chickens and the possibilities of real-time monitoring via a farmer-assistant system. Sustainability 2022, 14, 5727. [Google Scholar] [CrossRef]
- Spieß, F.; Reckels, B.; Sürie, C.; Auerbach, M.; Rautenschlein, S.; Distl, O.; Hartung, J.; Lingens, J.B.; Visscher, C. An Evaluation of the Uses of Different Environmental Enrichments on a Broiler Farm with the Help of Real-Time Monitoring via a Farmer-Assistant System. Sustainability 2022, 14, 13015. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2013. [Google Scholar]
- Dowle, M.; Srinivasan, A.; Short, T. Data.Table: Extension of ‘Data.Frame’. Available online: https://rdrr.io/rforge/data.table/ (accessed on 2 May 2023).
- Villanueva, R.A.M.; Chen, Z.J. ggplot2: Elegant graphics for data analysis (2nd ed.). Meas. Interdiscip. Res. Perspect. 2019, 17, 160–167. [Google Scholar] [CrossRef]
- Rosa, G.J. Grand Challenge in Precision Livestock Farming. Front. Anim. Sci. 2021, 2, 650324. [Google Scholar] [CrossRef]
- Teh, H.Y.; Kempa-Liehr, A.W.; Wang, K.I.-K. Sensor data quality: A systematic review. J. Big Data 2020, 7, 1–49. [Google Scholar] [CrossRef]
- Shepherd, M.; Turner, J.A.; Small, B.; Wheeler, D. Priorities for science to overcome hurdles thwarting the full promise of the ‘digital agriculture’ revolution. J. Sci. Food Agric. 2020, 100, 5083–5092. [Google Scholar] [CrossRef]
- Buller, H.; Blokhuis, H.; Lokhorst, K.; Silberberg, M.; Veissier, I. Animal welfare management in a digital world. Animals 2020, 10, 1779. [Google Scholar] [CrossRef]
- Van Limbergen, T.; Sarrazin, S.; Chantziaras, I.; Dewulf, J.; Ducatelle, R.; Kyriazakis, I.; McMullin, P.; Méndez, J.; Niemi, J.K.; Papasolomontos, S.; et al. Risk factors for poor health and performance in European broiler production systems. BMC Vet. Res. 2020, 16, 287. [Google Scholar] [CrossRef]
- Li, N.; Ren, Z.; Li, D.; Zeng, L. Automated techniques for monitoring the behaviour and welfare of broilers and laying hens: Towards the goal of precision livestock farming. Animal 2020, 14, 617–625. [Google Scholar] [CrossRef]
- Ncho, C.M.; Gupta, V.; Choi, Y.-H. Effects of Dietary Glutamine Supplementation on Heat-Induced Oxidative Stress in Broiler Chickens: A Systematic Review and Meta-Analysis. Antioxidants 2023, 12, 570. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Lai, X.; Li, Z.; Zhang, X.; Luo, Q. Effect of chronic heat stress on some physiological and immunological parameters in different breed of broilers. Poult. Sci. 2018, 97, 4073–4082. [Google Scholar] [CrossRef] [PubMed]
- Morota, G.; Ventura, R.V.; Silva, F.F.; Koyama, M.; Fernando, S.C. Big data analytics and precision animal agriculture symposium: Machine learning and data mining advance predictive big data analysis in precision animal agriculture. J. Anim. Sci. 2018, 96, 1540–1550. [Google Scholar] [CrossRef] [PubMed]
- Parajuli, P.; Zhao, Y.; Tabler, T.; Chesser, G.D. Evaluating avoidance distance of broilers exposed to aerial automated systems. In Proceedings of the 2019 ASABE Annual International Meeting, Boston, MA, USA, 7–10 July 2019. [Google Scholar] [CrossRef]
- Werkheiser, I. Precision livestock farming and farmers’ duties to livestock. J. Agric. Environ. Ethics 2018, 31, 181–195. [Google Scholar] [CrossRef]
- Cornou, C. Automation systems for farm animals: Potential impacts on the human—Animal relationship and on animal welfare. Anthrozoös 2009, 22, 213–220. [Google Scholar] [CrossRef]
- Berckmans, D. General introduction to precision livestock farming. Anim. Front. 2017, 7, 6–11. [Google Scholar] [CrossRef]
- Gaddam, A.; Wilkin, T.; Angelova, M.; Gaddam, J. Detecting sensor faults, anomalies and outliers in the internet of things: A survey on the challenges and solutions. Electronics 2020, 9, 511. [Google Scholar] [CrossRef]
Dataset | Time Window (Fattening Period) | Total Number of Unique Timestamps |
---|---|---|
DS1 | 5 June 2020–8 July 2020 | 58,793 |
DS2 | 16 July 2020–18 August 2020 | 113,326 |
DS3 | 27 August 2020–29 September 2020 | 124,731 |
DS4 | 8 October 2020–10 November 2020 | 121,965 |
DS5 | 19 November 2020–23 December 2021 | 116,434 |
DS6 | 22 January 2021–24 February 2021 | 113,171 |
DS7 | 11 March 2021–13 April 2021 | 48,617 |
DS8 | 22 April 2021–25 May 2021 | 69,069 |
DS9 | 3 June 2021–7 July 2021 | 85,608 |
DS10 | 22 July 2021–24 August 2021 | 75,453 |
DS11 | 2 September 2021–6 October 2021 | 87,770 |
DS12 | 21 October 2021–24 November 2021 | 101,936 |
DS13 | 13 January 2022–15 February 2022 | 108,164 |
DS14 | 3 March 2022–13 April 2022 | 123,985 |
DS15 | 29 April 2022–8 June 2022 | 120,247 |
DS16 | 20 June 2022–1 August 2022 | 107,932 |
DS17 | 15 August 2022–26 September 2022 | 131,527 |
DS18 | 31 October 2022–13 December 2022 | 123,181 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Selle, M.; Spieß, F.; Visscher, C.; Rautenschlein, S.; Jung, A.; Auerbach, M.; Hartung, J.; Sürie, C.; Distl, O. Real-Time Monitoring of Animals and Environment in Broiler Precision Farming—How Robust Is the Data Quality? Sustainability 2023, 15, 15527. https://doi.org/10.3390/su152115527
Selle M, Spieß F, Visscher C, Rautenschlein S, Jung A, Auerbach M, Hartung J, Sürie C, Distl O. Real-Time Monitoring of Animals and Environment in Broiler Precision Farming—How Robust Is the Data Quality? Sustainability. 2023; 15(21):15527. https://doi.org/10.3390/su152115527
Chicago/Turabian StyleSelle, Michael, Fabian Spieß, Christian Visscher, Silke Rautenschlein, Arne Jung, Monika Auerbach, Jörg Hartung, Christian Sürie, and Ottmar Distl. 2023. "Real-Time Monitoring of Animals and Environment in Broiler Precision Farming—How Robust Is the Data Quality?" Sustainability 15, no. 21: 15527. https://doi.org/10.3390/su152115527
APA StyleSelle, M., Spieß, F., Visscher, C., Rautenschlein, S., Jung, A., Auerbach, M., Hartung, J., Sürie, C., & Distl, O. (2023). Real-Time Monitoring of Animals and Environment in Broiler Precision Farming—How Robust Is the Data Quality? Sustainability, 15(21), 15527. https://doi.org/10.3390/su152115527