Integrating Ecosystem Services into Impact Assessments: A Process-Based Approach Applied to the Belgian Coastal Zone
Abstract
:1. Introduction
2. Methodology
2.1. The Belgian Coastal Zone
2.2. Stepwise Approach
2.2.1. Step 1: Identification of Habitats and Ecosystem Services
2.2.2. Step 2: Description of Ecosystem Processes
2.2.3. Step 3: Identification of Pressure Parameters and Relationships to Processes
2.2.4. Step 4: Cumulated Impact on Ecosystem Processes
2.2.5. Step 5: Impact on Habitats and Ecosystem Services
2.2.6. Step 6: Application in an Impact Assessment
- The type of the existing, affected habitat;
- The expected changes in the pressure parameters, as identified in Step 4 (black column in Figure 4), resulting from a modification in the existing habitat;
- The type of a potentially new habitat;
- The expected changes in the pressure parameters, as identified in Step 4 (black column in Figure 4), resulting from the potential creation of new habitat.
3. Results
- (a)
- Construction of an island—off-site effects
- -
- Inflow of pollutants +1 (bilge water, wastewater, oil spills);
- -
- Noise disturbance +1;
- -
- Soil disturbance +1 (anchoring);
- -
- Turbidity +1 (resuspension of fine bottom sediments);
- -
- Disturbance from access +1 (new tidal flats and marshes will be open for public);
- -
- Habitat fragmentation of tidal flats and marshes −2 (improved connectivity due to development of tidal flats nearby existing tidal flat area, see Figure 6);
- -
- Tidal amplitude −1 (buffering of tidal and wave energy by the island);
- -
- Hydrodynamics −2 (buffering of tidal and wave energy by the island);
- -
- Sea level +1 (external stressor related to climate change).
- (b)
- Construction of a marina—on-site effects
- -
- Increase in the surface area of artificial reefs (jetties, floating platforms, …) (+2);
- -
- Decrease in the surface area of foreshore and submerged sandbanks (−2);
- -
- High inflow of pollutants +2 in a confined area (bilge water, wastewater, oil spills);
- -
- Soil disturbance +1 (anchoring);
- -
- Turbidity +1 (resuspension of fine bottom sediments);
- -
- Moderate reduction in hydrodynamic energy (−1) because of the already calmer conditions in the lee of the harbor jetty and the island;
- -
- Sea level +1 (external stressor related to climate change).
4. Discussion
4.1. Improved Coverage of Cross-Sectoral Effects in Impact Assessment
4.2. Outcomes of this Case Study
4.3. Facilitating the Inclusion of Ecosystem Services in Impact Assessment
4.4. Unbiased Selection of Impacts
4.5. Constraints and Improvements
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Genelleti, D. Reasons and options for integrating ecosystem services in strategic environmental assessment of spatial planning. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 2011, 7, 143–149. [Google Scholar] [CrossRef]
- Honrado, J.P.; Vieira, C.; Soares, C.; Monteiro, M.B.; Marcos, B.; Pereira, H.M.; Partidário, M.R. Can we infer about ecosystem services from EIA and SEA practice? A framework for analysis and examples from Portugal. Environ. Impact Assess. Rev. 2013, 40, 14–24. [Google Scholar] [CrossRef]
- Rosa, J.C.S.; Sánchez, L.E. Is the ecosystem service concept improving impact assessment? Evidence from recent international practice. Environ. Impact Assess. Rev. 2015, 50, 134–142. [Google Scholar] [CrossRef]
- Rosa, J.C.S.; Sánchez, L.E. Advances and challenges of incorporating ecosystem services into impact assessment. J. Environ. Manag. 2016, 180, 485–492. [Google Scholar] [CrossRef]
- Soulé, E.; Charbonnier, R.; Schlosser, L.; Michonneau, P.; Michel, N.; Bockstaller, C. A new method to assess sustainability of agricultural systems by integrating ecosystem services and environmental impacts. J. Clean. Prod. 2023, 415, 137784. [Google Scholar] [CrossRef]
- Bowd, R.; Quinn, N.W.; Kotze, D.C. Toward an analytical framework for understanding complex social-ecological systems when conducting environmental impact assessments in South Africa. Ecol. Soc. 2015, 20, 41. [Google Scholar] [CrossRef]
- Mandle, L.; Douglass, J.; Sebstian-Lozano, J.S.; Sharp, R.P.; Vogl, A.L.; Denu, D.; Walschburger, T.; Tallis, H. OPAL: An open-source software tool for integrating biodiversity and ecosystem services into impact assessment and mitigation decisions. Ecol. Model. Softw. 2016, 84, 121–133. [Google Scholar] [CrossRef]
- Hattam, C.; Hooper, T.; Papathanasopoulou, E. A well-being framework for impact evaluation: The case of the UK offshore wind industry. Mar. Policy 2017, 78, 122–131. [Google Scholar] [CrossRef]
- Gallardo, A.L.C.F.; Rosa, J.C.S.; Sánchez, L.E. Addressing ecosystem services from plan to project to further tiering in impact assessment: Lessons from highway planning in São Paulo, Brazil. Environ. Impact Assess. Rev. 2021, 92, 106694. [Google Scholar] [CrossRef]
- Baker, J.; Sheate, W.R.; Phillips, P.; Eales, R. Ecosystem services in environmental assessment—Help or hindrance? Environ. Impact Assess. Rev. 2013, 40, 3–13. [Google Scholar] [CrossRef]
- Sousa, P.; Gomes, D.; Formigo, N. Ecosystem services in environmental impact assessment. Energy Rep. 2020, 6, 466–471. [Google Scholar] [CrossRef]
- Van der Biest, K.; Meire, P.; Schellekens, T.; D’Hondt, B.; Bonte, D.; Vanagt, T.; Ysebaert, T. Aligning biodiversity conservation and ecosystem services in spatial planning: Focus on ecosystem processes. Sci. Total. Environ. 2020, 712, 136350. [Google Scholar] [CrossRef] [PubMed]
- Nicholson, E.; Mace, G.M.; Armsworth, P.R.; Atkinson, G.; Buckle, S.; Clements, T.; Ewers, R.M.; Fa, J.E.; Gardner, T.A.; Gibbons, J.; et al. Priority research areas for ecosystem services in a changing world. J. Appl. Ecol. 2009, 46, 1139–1144. [Google Scholar] [CrossRef]
- Schneiderss, A.; Müller, F. Chapter 2.2 A natural base for ecosystem services. In Mapping Ecosystem Services; Burkhard, B., Maes, J., Eds.; Advanced Books: Brussels, Belgium, 2017. [Google Scholar] [CrossRef]
- Zalewsky, M. Ecohydrology: Process-oriented thinking towards sustainable river basins. Ecohydrol. Hydrobiol. 2013, 13, 97–103. [Google Scholar] [CrossRef]
- Klein, C.; Wilson, K.; Watts, M.; Stein, J.; Berry, S.; Carwardine, J.; Smith, M.S.; Mackey, B.; Possingham, H. Incorporating ecological and evolutionary processes into continental-scale conservation planning. Ecol. Appl. 2009, 19, 206–217. [Google Scholar] [CrossRef] [PubMed]
- Watson, J.E.M.; Darling, E.S.; Venter, O.; Maron, M.; Walston, J.; Possingham, H.P.; Dudley, N.; Hockings, M.; Barnes, M.; Brooks, T.M. Bolder science needed now for protected areas. Conserv. Biol. 2016, 30, 243–248. [Google Scholar] [CrossRef]
- García-Onetti, J.; Scherer, M.E.; Asmus, M.L.; Sanabria, J.G.; Barragán, J.M. Integrating ecosystem services for the socio-ecological management of ports. Ocean Coast. Manag. 2021, 206, 105583. [Google Scholar] [CrossRef]
- Tallis, H.; Kennedy, C.M.; Ruckelshaus, M.; Goldstein, J.; Kiesecker, J.M. Mitigation for one & all: An integrated framework for mitigation of development impacts on biodiversity and ecosystem services. Environ. Impact Assess. Rev. 2015, 55, 21–34. [Google Scholar]
- van Bodegom, P.; van Oudenhoven, A.; Van der Biest, K.; Pijpers, B.; van’t Zelfde, M.; Besteman, B. Key Factor Context. Giving insight in ecosystem services provided by water systems. Landschap 2018, 35, 43–49. [Google Scholar]
- Hooper, T.; Cooper, O.; Hunt, A.; Austen, M. A methodology for the assessment of local-scale changes in marine environmental benefits and its application. Ecosyst. Serv. 2014, 8, 65–74. [Google Scholar] [CrossRef]
- Staes, J.; Broekx, S.; Van Der Biest, K.; Vrebos, D.; Olivier, B.; De Nocker, L.; Liekens, I.; Poelmans, L.; Verheyen, K.; Jeroen, P.; et al. Quantification of the potential impact of nature conservation on ecosystem services supply in the Flemish Region: A cascade modelling approach. Ecosyst. Serv. 2017, 24, 124–137. [Google Scholar] [CrossRef]
- Turra, A.; Amaral, A.C.Z.; Ciotti, A.M.; Wongtschowski, C.L.R.; Schaeffer-Novelli, Y.; Marques, A.C.; Siegle, E.; Sinisgalli, P.A.D.A.; Dos Santos, C.R.; Carmo, A.B.D. Environmental impact assessment under an ecosystem approach: The São Sebastião harbor expansion project. Ambient. Soc. 2017, 20, 155–176. [Google Scholar] [CrossRef]
- Sharp, R.; Tallis, H.T.; Ricketts, T.; Guerry, A.D.; Wood, S.; Chaplin-Kramer, R.; Nelson, E.; Ennaanay, D.; Wolny, S.; Olwero, N.; et al. InVEST Version 3.4.4 User’s Guide. The Natural Capital Project, Stanford University, University of Minnesota, The Nature Conservancy, and World Wildlife Fund. 2018. Available online: https://www.researchgate.net/publication/323832082_InVEST_User's_Guide (accessed on 17 October 2023).
- Bagstad, K.J.; Johnson, G.W.; Voigt, B.; Villa, F. Spatial dynamics of ecosystem service flows: A comprehensive approach to quantifying actual services. Ecosyst. Serv. 2013, 4, 117–125. [Google Scholar] [CrossRef]
- Vrebos, D.; Staes, J.; Broekx, S.; de Nocker, L.; Gabriels, K.; Hermy, M.; Liekens, I.; Marsboom, C.; Ottoy, S.; Van Der Biest, K.; et al. Facilitating spatially-explicit assessments of ecosystem service delivery to support land use planning. One Ecosyst. 2020, 5, e50540. [Google Scholar] [CrossRef]
- Broekx, S.; Liekens, I.; Peelaerts, W.; De Nocker, L.; Landuyt, D.; Staes, J.; Meire, P.; Schaafsma, M.; Van Reeth, W.; Kerckhove, O.V.D.; et al. A web application to support the quantification and valuation of ecosystem services. Environ. Impact Assess. Rev. 2013, 40, 65–74. [Google Scholar] [CrossRef]
- Partidario, M.R.; Gomes, R.C. Ecosystem services inclusive strategic environmental assessment. Environ. Impact Assess. Rev. 2013, 40, 36–46. [Google Scholar] [CrossRef]
- Van der Biest, K.; Vrebos, D.; Staes, J.; Boerema, A.; Bodí, M.; Fransen, E.; Meire, P. Evaluation of the accuracy of land-use based ecosystem service assessments for different thematic resolutions. J. Environ. Manag. 2015, 156, 41–51. [Google Scholar] [CrossRef]
- Maes, J.; Crossman, N.D.; Burkhard, B. Mapping ecosystem services. In Routledge Handbook of Ecosystem Services; Potschin, P., Haines-Young, R., Fish, R., Turner, R.K., Eds.; Routlegde: London, UK, 2016; pp. 188–204. [Google Scholar]
- Strong, A.L.; Ardoin, N.M. Barriers to incorporating ecosystem services in coastal conservation practice: The case of blue carbon. Ecol. Soc. 2021, 26, 40. [Google Scholar] [CrossRef]
- Cook, B.R.; Spray, C.J. Ecosystem services and integrated water resource management: Different paths to the same end? J. Environ. Manag. 2012, 109, 93–100. [Google Scholar] [CrossRef]
- Landsberg, F.; Treweek, J.; Stickler, M.; Henninger, N.; Venn, O. Weaving Ecosystem Services Into Impact Assessment. Technical Appendix (Version 1.0); World Resources Institute: Washington, DC, USA, 2013. [Google Scholar]
- Zheng, H.; Wang, L.; Wu, T. Coordinating ecosystem service trade-offs to achieve win–win outcomes: A review of the approaches. J. Environ. Sci. 2019, 82, 103–112. [Google Scholar] [CrossRef]
- Peter, S.; Le Provost, G.; Mehring, M.; Müller, T.; Manning, P. Cultural worldviews consistently explain bundles of ecosystem service prioritisation across rural Germany. People Nat. 2022, 4, 218–230. [Google Scholar] [CrossRef]
- Seppelt, R.; Fath, B.; Burkhard, B.; Fisher, J.L.; Grêt-Regamey, A.; Lautenbach, S.; Pert, P.; Hotes, S.; Spangenberg, J.; Verburg, P.H.; et al. Form follows function? Proposing a blueprint for ecosystem service assessments based on reviews and case studies. Ecol. Indic. 2012, 21, 145–154. [Google Scholar] [CrossRef]
- Grêt-Regamey, A.; Sirén, E.; Brunner, S.H.; Weibel, B. Review of decision support tools to operationalize the ecosystem services concept. Ecosyst. Serv. 2017, 26, 306–315. [Google Scholar] [CrossRef]
- Chen, H. Complementing conventional environmental impact assessments of tourism with ecosystem service valuation: A case study of the Wulingyuan Scenic Area, China. Ecosyst. Serv. 2020, 43, 101100. [Google Scholar] [CrossRef]
- CBD. Website Convention on Biological Diversity. 2017. Available online: www.cbd.int (accessed on 10 September 2017).
- Degraer, S.; Verfaillie, E.; Willems, W.; Adriaens, E.; Vincx, M.; Van Lancker, V. Habitat suitability modelling as a mapping tool for macrobenthic communities: An example from the Belgian part of the North Sea. Cont. Shelf Res. 2008, 28, 369–379. [Google Scholar] [CrossRef]
- Eede, S.V.; Laporta, L.; Deneudt, K.; Stienen, E.; Derous, S.; Degraer, S.; Vincx, M. Marine biological valuation of the shallow Belgian coastal zone: A space-use conflict example within the context of marine spatial planning. Ocean Coast. Manag. 2014, 96, 61–72. [Google Scholar] [CrossRef]
- Verfaillie, E.; Degraer, S.; Schelfaut, K.; Willems, W.; Van Lancker, V. A protocol for classifying ecologically relevant marine zones, a statistical approach. Estuar. Coast. Shelf Sci. 2010, 83, 175–185. [Google Scholar] [CrossRef]
- Kumar, P. Chapter 1 Integrating the ecological and economic dimensions in biodiversity and ecosystem service valuation. In The Economics of Ecosystems and Biodiversity: Ecological and Economic Foundations; Routledge: London, UK, 2012; 24p. [Google Scholar] [CrossRef]
- Ricketts, T.H.; Watson, K.B.; Koh, I.; Ellis, A.M.; Nicholson, C.C.; Posner, S.; Richardson, L.L.; Sonter, L.J. Disaggregating the evidence linking biodiversity and ecosystem services. Nat. Commun. 2016, 7, 13106. [Google Scholar] [CrossRef]
- Hooper, D.U.; Chapin, F.S., III; Ewel, J.J.; Hector, A.; Inchausti, P.; Lavorel, S.; Lawton, J.H.; Lodge, D.M.; Loreau, M.; Naeem, S.; et al. Effects of biodiversity on ecosystem functioning: A consensus of current knowledge. Ecol. Monogr. 2005, 75, 3–35. [Google Scholar] [CrossRef]
- Harrison, P.; Berry, P.; Simpson, G.; Haslett, J.; Blicharska, M.; Bucur, M.; Dunford, R.; Egoh, B.; Garcia-Llorente, M.; Geamănă, N.; et al. Linkages between biodiversity attributes and ecosystem services: A systematic review. Ecosyst. Serv. 2014, 9, 191–203. [Google Scholar] [CrossRef]
- Bennett, E.M.; Cramer, W.; Begossi, A.; Cundill, G.; Díaz, S.; Egoh, B.N.; Geijzendorffer, I.R.; Krug, C.B.; Lavorel, S.; Lazos, E.; et al. Woodward Linking biodiversity, ecosystem services, and human well-being: Three challenges for designing research for sustainability. Curr. Opin. Environ. Sustain. 2015, 14, 76–85. [Google Scholar] [CrossRef]
- FAO. The State of World Fisheries and Aquaculture 2020. In Sustainability in Action; FAO: Rome, Italy, 2020; Volume 32, p. 244. [Google Scholar] [CrossRef]
- Perkol-Finkel, S.; Ferrario, F.; Nicotera, V.; Airoldi, L. Conservation challenges in urban seascapes: Promoting the growth of threatened species on coastal infrastructures. J. Appl. Ecol. 2012, 49, 1457–1466. [Google Scholar] [CrossRef]
- Wetzel, M.A.; Scholle, J.; Teschke, K. Artificial structures in sediment-dominated estuaries and their possible influences on the ecosystem. Mar. Environ. Res. 2014, 99, 125–135. [Google Scholar] [CrossRef] [PubMed]
- EEA. CICES V4.3 Common International Classification of Ecosystem Services. 2016. Available online: www.cices.eu (accessed on 22 August 2017).
- Böhnke-Henrichs, A.; Baulcomb, C.; Koss, R.; Hussain, S.S.; de Groot, R.S. Typology and indicators of ecosystem services for marine spatial planning and management. J. Environ. Manag. 2013, 130, 135–145. [Google Scholar] [CrossRef] [PubMed]
- Burkhard, B.; Kroll, F.; Müller, F.; Windhorst, W. Landscapes’ capacities to provide ecosystem services e a concept for land-cover based assessments. Landsc. Online 2009, 15, 1e22. [Google Scholar] [CrossRef]
- Maris, T.; Bruens, A.; Van Duren, L.; Vroom, J.; Holzhauer, H.; De Jonge, M.; van Damme, S.; Nolte, A.; Kuijper, K.; Taal, M.; et al. Evaluation methodology Scheldt-estuary (in Dutch). Update 2014, 2014, 33. [Google Scholar]
- EC. Environmental Impact Assessment of Projects. In Guidance on Scoping; European Commission: Brussels, Belgium, 2017; 81p. [Google Scholar]
- Kusteilanden.be. 2017. Available online: www.kusteilanden.be (accessed on 22 October 2017).
- Zimmermann, N.; Wang, L.; Delecluyse, K.; Trouw, K.; De Maerschalck, B.; Vanlede, J.; Verwaest, T.; Mostaert, F. Energy Atolls along the Belgian Coast: Effects on Currents, Coastal Morphology and Coastal Protection; Version 5.0. WL Rapporten, 13_105; Flanders Hydraulics Research & IMDC: Antwerp, Belgium, 2013. [Google Scholar]
- Lefcheck, J.S.; Hughes, B.B.; Johnson, A.J.; Pfirrmann, B.W.; Rasher, D.B.; Smyth, A.R.; Williams, B.L.; Beck, M.W.; Orth, R.J. Are coastal habitats important nurseries? A meta-analysis. Conserv. Lett. 2019, 12, e12645. [Google Scholar] [CrossRef]
- Seitz, R.D.; Wennhage, H.; Bergström, U.; Lipcius, R.N.; Ysebaert, T. Ecological value of coastal habitats for commercially and ecologically important species. ICES J. Mar. Sci. 2014, 71, 648–665. [Google Scholar] [CrossRef]
- Didham, R.K.; Tylianakis, J.M.; Gemmell, N.J.; Rand, T.A.; Ewers, R.M. Interactive effects of habitat modification and species invasion on native species decline. Trends Ecol. Evol. 2007, 22, 489–496. [Google Scholar] [CrossRef]
- Van Lancker, V.; Bonne, W.; Velegrakis, A.F.; Collins, M.B. Aggregate extraction from tidal sandbanks: Is dredging with nature an option? Introduction. J. Coast. Res. SI 2010, 51, 53–62. [Google Scholar]
- Piehler, M.F.; Smyth, A.R. Habitat-specific distinctions in estuarine denitrification affect both ecosystem function and services. Ecosphere 2011, 2, 1–16. [Google Scholar] [CrossRef]
- Van Damme, S.; Struyf, E.; Maris, T.; Ysebaert, T.; Dehairs, F.; Tackx, M.; Heip, C.; Meire, P. Spatial and temporal patterns of water quality along the estuarine salinity gradient of the Scheldt estuary (Belgium and The Netherlands): Results of an integrated monitoring approach. Hydrobiologia 2005, 540, 29–45. [Google Scholar] [CrossRef]
- Alldred, M.; Baines, S.B. Effects of wetland plants on denitrification rates: A meta-analysis. Ecol. Appl. 2016, 26, 676–685. [Google Scholar] [CrossRef] [PubMed]
- McLeod, E.; Chmura, G.L.; Bouillon, S.; Salm, R.; Björk, M.; Duarte, C.M.; Lovelock, C.E.; Schlesinger, W.H.; Silliman, B.R. A blueprint for blue carbon: Toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Front. Ecol. Environ. 2011, 9, 552–560. [Google Scholar] [CrossRef]
- Adams, C.; Andrews, J.; Jickells, T. Nitrous oxide and methane fluxes vs. carbon, nitrogen and phosphorous burial in new intertidal and saltmarsh sediments. Sci. Total. Environ. 2012, 434, 240–251. [Google Scholar] [CrossRef]
- Duarte, C.M.; Losada, I.J.; Hendriks, I.E.; Mazarrasa, I.; Marbà, N. The role of coastal plant communities for climate change mitigation and adaptation. Nat. Clim. Chang. 2013, 3, 961–968. [Google Scholar] [CrossRef]
- Houziaux, J.-S.; Fettweis, M.; Francken, F.; Van Lancker, V. Historic (1900) seafloor composition in the Belgian–Dutch part of the North Sea: A reconstruction based on calibrated visual sediment descriptions. Cont. Shelf Res. 2010, 31, 1043–1056. [Google Scholar] [CrossRef]
- Atwood, T.B.; Connolly, R.M.; Ritchie, E.G.; Lovelock, C.E.; Heithaus, M.R.; Hays, G.C.; Fourqurean, J.W.; Macreadie, P.I. Predators help protect carbon stocks in blue carbon ecosystems. Nat. Clim. Chang. 2015, 5, 1038–1045. [Google Scholar] [CrossRef]
- Petersen, J.K.; Holmer, M.; Termansen, M.; Hasler, B. Nutrient Extraction Through Bivalves; Smaal, A.C., Ferreira, J.G., Grant, J., Petersen, J.K., Strand, Ø., Eds.; Springer: Berlin/Heidelberg, Germany, 2019; Chapter 10; pp. 179–208. [Google Scholar]
- van der Reijden, K.J.; Hintzen, N.T.; Govers, L.L.; Rijnsdorp, A.D.; Olff, H. North Sea demersal fisheries prefer specific benthic habitats. PLoS ONE 2018, 13, e0208338. [Google Scholar] [CrossRef]
- Albert, C.; Fürst, C.; Ring, I.; Sandström, C. Research note: Spatial planning in Europe and Central Asia—Enhancing the consideration of biodiversity and ecosystem services. Landsc. Urban Plan. 2020, 196, 103741. [Google Scholar] [CrossRef]
- Moray Offshore Windfarm (West) Limited. Offshore Environmental Impact Assessment Report; Moray Offshore Windfarm (West) Limited: Moray Firth, UK, 2018; 1283p. [Google Scholar]
- Bigard, C.; Pioch, S.; Thompson, J.D. The inclusion of biodiversity in environmental impact assessment: Policy-related progress limited by gaps and semantic confusion. J. Environ. Manag. 2017, 200, 35–45. [Google Scholar] [CrossRef] [PubMed]
- Karlson, M.; Mörtberg, U.; Balfors, B. Road ecology in environmental impact assessment. Environ. Impact Assess. Rev. 2014, 48, 10–19. [Google Scholar] [CrossRef]
- Scherer-Lorenzen, M.; Gessner, M.O.; Beisner, B.E.; Messier, C.; Paquette, A.; Petermann, J.S.; Soininen, J.; Nock, C.A. Pathways for cross-boundary effects of biodiversity on ecosystem functioning. Trends Ecol. Evol. 2022, 37, 454–467. [Google Scholar] [CrossRef] [PubMed]
- Wawrzyczek, J.; Lindsay, R.; Metzger, M.J.; Quétier, F. The ecosystem approach in ecological impact assessment: Lessons learned from windfarm developments on peatlands in Scotland. Environ. Impact Assess. Rev. 2018, 72, 157–165. [Google Scholar] [CrossRef]
- Haines-Young, R.; Potschin, M.B. The links between biodiversity, ecosystem services and human well-being. In Ecosystem Ecology: A New Synthesis; Raffaelli, D.G., Frid, C.L.J., Eds.; Cambridge University Press: Cambridge, UK, 2010; pp. 110–139. [Google Scholar]
- Pavlickova, K.; Vyskupova, M. A method proposal for cumulative environmental impact assessment based on the landscape vulnerability evaluation. Environ. Impact Assess. Rev. 2015, 50, 74–84. [Google Scholar] [CrossRef]
- Ma, Z.; Becker, D.R.; Kilgore, M.A. Barriers to and opportunities for effective cumulative impact assessment within state-level environmental review frameworks in the United States. J. Environ. Plan. Manag. 2012, 55, 961–978. [Google Scholar] [CrossRef]
- Foley, M.M.; Mease, L.A.; Martone, R.G.; Prahler, E.E.; Morrison, T.H.; Murray, C.C.; Wojcik, D. The challenges and opportunities in cumulative effects assessment. Environ. Impact Assess. Rev. 2012, 62, 122–134. [Google Scholar] [CrossRef]
- Oost, A.; Hoekstra, P.; Wiersma, A.; Flemming, B.; Lammerts, E.; Pejrup, M.; Hofstede, J.; van der Valk, B.; Kiden, P.; Bartholdy, J.; et al. Barrier island management: Lessons from the past and directions for the future. Ocean Coast. Manag. 2012, 68, 18–38. [Google Scholar] [CrossRef]
- Kombiadou, K.; Matias, A.; Ferreira, Ó.; Carrasco, A.R.; Costas, S.; Plomaritis, T. Impacts of human interventions on the evolution of the Ria Formosa barrier island system (S. Portugal). Geomorphology 2019, 343, 129–144. [Google Scholar] [CrossRef]
- Bakker, J.; Berg, M.; Grootjans, A.; Olff, H.; Schrama, M.; Reijers, V.; Van der Heide, T. Biogeomorphological aspects of a model barrier island and its surroundings—Interactions between abiotic conditions and biota shaping the tidal and terrestrial landscape: A synthesis. Ocean Coast. Manag. 2023, 239, 106624. [Google Scholar] [CrossRef]
- Newton, A.; Icely, J.; Cristina, S.; Brito, A.; Cardoso, A.C.; Colijn, F.; Riva, S.D.; Gertz, F.; Hansen, J.W.; Holmer, M.; et al. An overview of ecological status, vulnerability and future perspectives of European large shallow, semi-enclosed coastal systems, lagoons and transitional waters. Estuar. Coast. Shelf Sci. 2014, 140, 95–122. [Google Scholar] [CrossRef]
- Wilson, A.M.W.; Mugerauer, R.; Klinger, T. Rethinking marine infrastructure policy and practice: Insights from three large-scale marina developments in Seattle. Mar. Policy 2015, 53, 67–82. [Google Scholar] [CrossRef]
- Riera, R.; Monterroso, O.; Rodríguez, M.; Ramos, E. Biotic indexes reveal the impact of harbour enlargement on benthic fauna. Chem. Ecol. 2011, 27, 311–326. [Google Scholar] [CrossRef]
- Sousa, S.H.; Jesus, M.S.d.S.d.; Yamashita, C.; Mendes, R.N.; Frontalini, F.; Siegle, E.; Kim, B.; Ferreira, P.A.; Renó, R.; Martins, M.V.A.; et al. Benthic foraminifera as proxies for assessing the effects of a pier marina construction: A case study in the naturally stressed environment of the Saco da Ribeira (Flamengo Bay, SE Brazil). Mar. Pollut. Bull. 2023, 194, 115225. [Google Scholar] [CrossRef] [PubMed]
- Currin, C.A. Living shorelines for coastal resilience. In Coastal Wetlands; Elsevier: Amsterdam, The Netherlands, 2019; pp. 1023–1053. [Google Scholar]
- Bulleri, F.; Chapman, M.G. The introduction of coastal infrastructure as a driver of change in marine environments. J. Appl. Ecol. 2010, 47, 26–35. [Google Scholar] [CrossRef]
- Van Colen, C.; Verbelen, D.; Devos, K.; Agten, L.; Van Tomme, J.; Vincx, M.; Degraer, S. Sediment-benthos relationships as a tool to assist in conservation practices in a coastal lagoon subjected to sediment change. Biodivers. Conserv. 2014, 23, 877–889. [Google Scholar] [CrossRef]
- Green, B.B.; Smith, D.J.; Underwood, G.J.C. Habitat connectivity and spatial complexity differentially affect mangrove and salt marsh fish assemblages. Mar. Ecol. Prog. Ser. 2012, 466, 177–192. [Google Scholar] [CrossRef]
- Bergès, L.; Avon, C.; Bezombes, L.; Clauzel, C.; Duflot, R.; Foltête, J.-C.; Gaucherand, S.; Girardet, X.; Spiegelberger, T. Environmental mitigation hierarchy and biodiversity offsets revisited through habitat connectivity modelling. J. Environ. Manag. 2020, 256, 109950. [Google Scholar] [CrossRef]
- Tarabon, S.; Bergès, L.; Dutoit, T.; Isselin-Nondedeu, F. Environmental impact assessment of development projects improved by merging species distribution and habitat connectivity modelling. J. Environ. Manag. 2019, 241, 439–449. [Google Scholar] [CrossRef]
- Longato, D.; Cortinovis, C.; Albert, C.; Geneletti, D. Practical applications of ecosystem services in spatial planning: Lessons learned from a systematic literature review. Environ. Sci. Policy 2021, 119, 72–84. [Google Scholar] [CrossRef]
- Primmer, E.; Furman, E. Operationalising ecosystem service approaches for governance: Do measuring, mapping and valuing integrate sector-specific knowledge systems? Ecosyst. Serv. 2012, 1, 85–92. [Google Scholar] [CrossRef]
- Malinga, R.; Gordon, L.J.; Jewitt, G.; Lindborg, R. Mapping ecosystem services across scales and continents—A review. Ecosyst. Serv. 2015, 13, 57–63. [Google Scholar] [CrossRef]
- Hinson, C.; O’keeffe, J.; Mijic, A.; Bryden, J.; Van Grootveld, J.; Collins, A.M. Using natural capital and ecosystem services to facilitate participatory environmental decision making: Results from a systematic map. People Nat. 2022, 4, 652–668. [Google Scholar] [CrossRef]
- Jax, K.; Furman, E.; Saarikoski, H.; Barton, D.N.; Delbaere, B.; Dick, J.; Duke, G.; Görg, C.; Gómez-Baggethun, E.; Harrison, P.A.; et al. Handling a messy world: Lessons learned when trying to make the ecosystem services concept operational. Ecosyst. Serv. 2018, 29, 415–427. [Google Scholar] [CrossRef]
- Tractebel. Ecosystem services MFiLAND project. Study on ecosystems, ecosystem services and proposal for ecological engineering. In Final Report; Tractebel: Brussel, Belgium, 2019; 48p. [Google Scholar]
- COASTBUSTERS. Coastbusters, ecosystem based coastal defense. In Summary Report; Dredging International DEME: Zwijndrecht, Belgium, 2020; 19p. [Google Scholar]
Habitat Type | Code EUNIS/NATURA2000 | Description |
---|---|---|
Pelagic | EUNIS A7 | The water column of the Belgian part of the North Sea |
Gravel beds | EUNIS A5.13, A5.14, A5.15 | Accumulation of loose grind and pebbles at the edge of a sandbank |
Submerged sandbanks and foreshore | NATURA2000 1110 | Permanently submerged sandbanks at variable depths |
Tidal flats and marshes | NATURA2000 1140, 1310, 1320, 1330 | Habitats of fine sediment in the tidal zone above low tide and below spring tide, ranging from bare flats to densely vegetated on the least frequently flooded parts |
(Artificial) reefs | NATURA2000 1170 | Biogenic reefs formed by dense concentrations of the sand mason worm Lanice concilega, or fouling communities on permanently submerged artificial hard substrata |
Estuary | NATURA2000 1130 | Downstream part of a river that discharges in the sea and is subject to tidal forces and characterized by a salt gradient, including tidal flats and marshes and sandbanks with varying salt gradient |
Lower beach and emerged sandbanks | NATURA2000 1140 | Sandbanks above low tide and below high tide, including beaches |
Upper beach and dune foot | NATURA2000 2110 | Part of the beach above high tide where vegetation starts to develop + embryonic dunes |
White dunes | NATURA2000 2120 | Young, dynamic dunes dominated by dune building species such as marram grass |
Grey dunes—herbaceous | NATURA2000 2130, 2150 | Dunes fixed by moss or grass, with reduced sand dynamics and increasing soil development |
Grey dunes—shrub | NATURA2000 2160, 2170, 2180 | Older dunes fixed by shrub and woodland, with important soil development |
Dune slacks | NATURA2000 2190 | Depressions in the dune landscape which are temporarily or permanently flooded by fresh water |
Habitats | Ecosystem Services | ||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pelagic | Gravel Beds | Tidal Flats and Marshes | (Artificial) Reefs | Submerged Sandbanks and Foreshore | Estuary | Lower Beach and Emerged Sand Banks | Upper Beach and Dune Foot | White Dunes | Grey Dunes—Herbaceous | Grey Dunes—Shrub | Dune Slacks | Agricultural Production | Fisheries Production | Aquaculture Production | Sediment Extraction | Drinking Water Provisioning | Flood Protection | Climate Regulation | Water Quality Regulation | Wind Energy | Recreation and Tourism | ||
Ecological Processes | Hydrodynamics | ++ | + | + | + | + | ++ | + | - | - | 0 | 0 | 0 | 0 | ++ | ++ | 0 | 0 | -- | 0 | + | ++ | 0 |
Morphodynamics | 0 | - | ++ | + | ++ | −/+ | ++ | 0 | 0 | 0 | 0 | 0 | 0 | −/+ | −/0 | + | 0 | + | 0 | 0 | 0 | 0 | |
Ecological engineering | + | ++ | 0 | ++ | ++ | + | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ++ | + | −/0 | 0 | + | + | ++ | 0 | 0 | |
Benthic production | + | ++ | ++ | ++ | ++ | ++ | ++ | 0 | 0 | 0 | 0 | 0 | 0 | ++ | 0 | 0 | 0 | 0 | + | + | 0 | + | |
Pelagic production | ++ | ++ | + | + | + | ++ | + | 0 | 0 | 0 | 0 | 0 | 0 | ++ | ++ | 0 | 0 | 0 | + | + | 0 | −/+ | |
Transfer | ++ | ++ | ++ | ++ | ++ | ++ | ++ | 0 | 0 | 0 | 0 | 0 | 0 | ++ | ++ | 0 | 0 | 0 | ++ | ++ | 0 | + | |
Primary dune formation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ++ | 0/+ | 0 | 0 | + | 0 | 0 | 0 | 0 | + | ++ | 0 | 0 | 0 | ++ | |
Large-scale wind dynamics | 0 | 0 | −/0 | 0 | 0 | 0 | 0 | 0 | ++ | + | - | + | - | 0 | 0 | 0 | - | ++ | 0 | + | 0 | + | |
Small-scale wind dynamics | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | + | ++ | 0 | + | 0 | 0 | 0 | 0 | 0 | + | 0 | + | 0 | 0 | |
Infiltration | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ++ | ++ | ++ | 0 | 0 | 0 | ++ | 0 | 0 | + | 0 | 0 | |
Evapotranspiration | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0/+ | 0 | 0 | -- | - | 0 | 0 | 0 | -- | 0 | - | 0 | 0 | 0 | |
Soil development | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | - | + | ++ | + | + | 0 | 0 | 0 | −/+ | - | 0/+ | + | 0 | 0 | |
Vegetation development | 0 | 0 | ++ | 0 | 0 | 0 | 0 | ++ | ++ | ++ | ++ | ++ | 0 | 0 | 0 | 0 | 0 | 0 | + | 0 | 0 | + | |
Primary production (land) | 0 | 0 | + | 0 | 0 | 0 | 0 | + | + | + | ++ | ++ | 0 | 0 | 0 | 0 | 0 | ++ | ++ | ++ | 0 | 0 | |
Gas emissions | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -- | + | 0 | 0 | |
Denitrification | + | 0 | + | 0 | + | + | + | + | 0 | + | + | + | -- | 0 | 0 | 0 | 0 | 0 | - | ++ | 0 | 0 | |
Population dynamics | ++ | ++ | ++ | ++ | ++ | ++ | ++ | ++ | + | ++ | + | ++ | −/+ | ++ | −/0 | 0 | 0 | 0 | 0 | 0 | 0 | + | |
Anthropogenic Processes | Sediment extraction | - | -- | 0 | -- | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | - | 0 | ++ | 0 | 0 | 0 | 0 | - | 0 |
Sediment dumping | - | -- | - | -- | −/0 | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | - | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
Bottom disturbing fishing | 0 | - | 0 | -- | -- | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | + | 0 | 0 | 0 | 0 | 0 | - | 0 | + | |
Pelagic fishing | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | + | 0 | 0 | 0 | 0 | 0 | 0 | 0 | + | |
Artificial reef formation | −/+ | 0 | 0 | ++ | - | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | + | ++ | - | 0 | + | 0 | ++ | 0 | + | |
Artificial infiltration | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | + | + | 0 | 0 | 0 | ++ | 0 | 0 | + | 0 | 0/+ | |
Drainage | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −/0 | −/0 | -- | ++ | 0 | 0 | 0 | - | 0 | -- | -- | 0 | 0/+ | |
Water extraction | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | - | - | -- | - | 0 | 0 | 0 | + | 0/+ | -- | -- | 0 | 0 | |
Manuring | - | 0 | - | 0 | 0 | -- | - | + | -- | -- | - | -- | ++ | 0 | 0 | 0 | 0 | - | - | -- | 0 | 0 | |
Grazing | 0 | 0 | - | 0 | 0 | 0 | 0 | 0 | 0 | + | - | + | ++ | 0 | 0 | 0 | -- | 0 | -- | - | 0 | 0 | |
Cropping | 0 | 0 | + | 0 | 0 | 0 | 0 | 0 | 0 | -- | -- | -- | ++ | 0 | 0 | 0 | -- | 0 | - | 0 | 0 | 0 | |
Disturbance by access | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -- | + | 0 | - | - | 0 | 0 | 0 | 0 | 0 | - | 0 | 0 | 0 | ++ | |
Surface hardening | 0 | 0 | 0 | 0 | 0 | 0 | -- | -- | -- | -- | -- | -- | -- | 0 | 0 | 0 | -- | -- | -- | -- | 0 | −/+ | |
Sand nourishing | - | -- | 0 | -- | + | - | - | + | + | 0 | 0 | 0 | 0 | - | 0 | + | + | ++ | 0 | 0 | 0 | ++ | |
Nature management | + | ++ | ++ | + | + | + | + | ++ | + | ++ | + | ++ | 0 | ++ | 0 | 0 | + | + | - | + | 0 | ++ | |
Biological invasions | -- | -- | -- | -- | -- | -- | 0 | 0 | 0 | - | -- | - | -- | -- | -- | 0 | - | - | 0/+ | 0/+ | 0 | −/+ | |
Noise and visual disturbance | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −/+ |
Ecological Processes | Anthropogenic Processes | ||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pressure parameters—expected change | Hydrodynamics | Morphodynamics | Ecological engineering | Benthic production | Pelagic production | Transfer | Primary dune formation | Large-scale wind dynamics | Small-scale wind dynamics | Infiltration | Evapotranspiration | Soil development | GHG | Denitrification | Vegetation development | Primary production (land) | Population dynamics | Sediment extraction | Dumping | Bottom disturbing fishing | Pelagic fishing | Artificial reef formation | Sand nourishing | Artifical infiltration | Drainage | Water extraction | Manuring | Nature management | Intensive grazing | Cropping | Biological invasions | Disturbance by access | Noise and visual disturbance | Surface hardening | |
Hydrodynamics | −2 | −2 | −2 | +1 | +1 | +1 | −1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Morphodynamics | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Organic mirco pollution | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Residence time | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Exposition time | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Upwelling | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Flood freq. (existing flats & marshes) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Tidal amplitude | −1 | −1 | −1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Inflow pollutants | +1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Inflow nutrients | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
pH sea water | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Turbidity | +1 | 0 | 0 | −1 | −2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Fisheries | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Sediment extraction | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Sand suppletion—new habitat | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Climate—Storm surge and frequency | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Climate—Sea level | +1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Habitat area—Gravel beds | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Habitat area—Tidal flats and marshes | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Habitat area—(Artificial) reefs | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Habitat area—S. sandb. & foresh. | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Habitat area—Estuary | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Habitat area—L. beach & e. sandb. | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Habitat area—U. beach & dune foot | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Habitat fragmentation—exist. hab. | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Habitat fragmentation—new hab. | −2 | 0 | 0 | +1 | +1 | 0 | +1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | +2 | 0 | 0 | +1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | +1 | 0 | 0 | −1 | 0 | 0 | 0 |
Nature management—exist. hab. | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Nature management—new hab. | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Noise and visual disturbance | +1 | 0 | 0 | o | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | +1 | 0 |
Soil disturbance (no hab. loss) | +1 | 0 | +1 | −1 | −1 | o | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | +1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −1 | 0 |
Atmospheric nitrogen deposition | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Groundwater extraction | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Drainage | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Artifical infiltration | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Climate—Evapotranspiration | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Soil acidification | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Manuring | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Disturbance by access (no hab. loss) | +1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | +1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | +1 | +1 | 0 |
Accesibility urban areas | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Surface hardening | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Habitat area—White dunes | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Habitat area—Grey dunes—herb. | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Habitat area—Grey dunes—shrub | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Habitat area—Dune valleys | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
EXISTING HABITATSum processes | −3 | −2 | 0 | −1 | 1 | −1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | |
Trend (standardized sum) | −2 | −1 | 0 | −1 | 1 | −1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | |
NEW HABITAT Sum processes | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | −1 | 0 | 0 | 0 | |
Trend (standardized sum) | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | −1 | 0 | 0 | 0 |
Ecological Processes | Anthropogenic Processes | ||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pressure parameters—expected change | Hydrodynamics | Morphodynamics | Ecological engineering | Benthic production | Pelagic production | Transfer | Primary dune formation | Large-scale wind dynamics | Small-scale wind dynamics | Infiltration | Evapotranspiration | Soil development | GHG | Denitrification | Vegetation development | Primary production (land) | Population dynamics | Sediment extraction | Dumping | Bottom disturbing fishing | Pelagic fishing | Artificial reef formation | Sand nourishing | Artifical infiltration | Drainage | Water extraction | Manuring | Nature management | Intensive grazing | Cropping | Biological invasions | Disturbance by access | Noise and visual disturbance | Surface hardening | |
Hydrodynamics | −1 | −1 | −1 | 0 | 0 | 0 | +1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Morphodynamics | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Organic mirco pollution | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Residence time | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Exposition time | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Upwelling | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Flood freq. (existing flats & marshes) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Tidal amplitude | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Inflow pollutants | +2 | 0 | 0 | 0 | −1 | −1 | −1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Inflow nutrients | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
pH sea water | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Turbidity | +1 | 0 | 0 | −1 | −2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Fisheries | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Sediment extraction | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Sand suppletion—new habitat | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Climate—Storm surge and frequency | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Climate—Sea level | +1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Habitat area—Gravel beds | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Habitat area—Tidal flats and marshes | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Habitat area—(Artificial) reefs | +2 | −1 | +1 | 0 | +2 | +1 | +2 | 0 | 0 | 0 | 0 | 0 | 0 | −1 | +2 | 0 | 0 | +2 | 0 | 0 | 0 | 0 | +2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | +1 | 0 | 0 | 0 |
Habitat area—S. sandb. & foresh. | −2 | 0 | 0 | 0 | −2 | −1 | −2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Habitat area—Estuary | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Habitat area—L. beach & e. sandb. | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Habitat area—U. beach & dune foot | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Habitat fragmentation—exist. hab. | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Habitat fragmentation—new hab. | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Nature management—exist. hab. | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Nature management—new hab. | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Noise and visual disturbance | 0 | 0 | 0 | o | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Soil disturbance (no hab. loss) | +1 | 0 | +1 | −1 | −1 | o | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | +1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −1 | 0 |
Atmospheric nitrogen deposition | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Groundwater extraction | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Drainage | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Artifical infiltration | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Climate—Evapotranspiration | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Soil acidification | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Manuring | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Disturbance by access (no hab. loss) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Accesibility urban areas | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Surface hardening | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Habitat area—White dunes | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Habitat area—Grey dunes—herb. | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Habitat area—Grey dunes—shrub | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Habitat area—Dune valleys | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
EXISTING HABITATSum processes | −1 | 0 | −2 | −6 | −2 | −2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −1 | 0 | |
Trend (standardized sum) | 0 | 0 | −1 | −2 | −1 | −1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
NEW HABITAT Sum processes | −1 | 1 | 0 | 2 | 1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | −1 | 2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | −1 | 0 | 0 | 0 | |
Trend (standardized sum) | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Van der Biest, K.; Staes, J.; Prigge, L.; Schellekens, T.; Bonte, D.; D’hondt, B.; Ysebaert, T.; Vanagt, T.; Meire, P. Integrating Ecosystem Services into Impact Assessments: A Process-Based Approach Applied to the Belgian Coastal Zone. Sustainability 2023, 15, 15506. https://doi.org/10.3390/su152115506
Van der Biest K, Staes J, Prigge L, Schellekens T, Bonte D, D’hondt B, Ysebaert T, Vanagt T, Meire P. Integrating Ecosystem Services into Impact Assessments: A Process-Based Approach Applied to the Belgian Coastal Zone. Sustainability. 2023; 15(21):15506. https://doi.org/10.3390/su152115506
Chicago/Turabian StyleVan der Biest, Katrien, Jan Staes, Laura Prigge, Tim Schellekens, Dries Bonte, Bram D’hondt, Tom Ysebaert, Thomas Vanagt, and Patrick Meire. 2023. "Integrating Ecosystem Services into Impact Assessments: A Process-Based Approach Applied to the Belgian Coastal Zone" Sustainability 15, no. 21: 15506. https://doi.org/10.3390/su152115506
APA StyleVan der Biest, K., Staes, J., Prigge, L., Schellekens, T., Bonte, D., D’hondt, B., Ysebaert, T., Vanagt, T., & Meire, P. (2023). Integrating Ecosystem Services into Impact Assessments: A Process-Based Approach Applied to the Belgian Coastal Zone. Sustainability, 15(21), 15506. https://doi.org/10.3390/su152115506