Spatiotemporal Characteristics of Agricultural Production Efficiency in Sichuan Province from the Perspective of “Water–Land–Energy–Carbon” Coupling
Abstract
:1. Introduction
2. Overview of the Research Objects, Data and Analysis Methods
2.1. Overview of the Study Sites in Sichuan Province
2.2. Indicator Selection
2.3. Introduction to Analytical Methods
2.3.1. Calculation of Carbon Dioxide Level
2.3.2. Super-Efficient SBM Model
2.3.3. Malmquist Index
2.3.4. Spatial Autocorrelation Analysis
2.3.5. Panel Regression Model
3. Results
3.1. Calculation and Analysis of Agricultural Carbon Emissions
3.2. Temporal and Spatial Analysis of Agricultural Production Efficiency in Sichuan Province
3.2.1. Analysis of Temporal Changes in Agricultural Efficiency in Sichuan Province
3.2.2. Malmquist Index Analysis of Agricultural Production Efficiency in Sichuan Province
3.2.3. The Global Moran Index of Agricultural Production Efficiency in Sichuan Province
3.3. Spatiotemporal Analysis of Agricultural Production Efficiency in 21 Cities and Prefectures in Sichuan
3.3.1. Analysis of Temporal Changes in Agricultural Efficiency in Various Cities and Prefectures
3.3.2. Malmquist Index Analysis of Agricultural Production Efficiency in Various Cities and Prefectures of Sichuan
3.3.3. Local Spatial Autocorrelation of Agricultural Production Efficiency in Various Cities and Prefectures of Sichuan
3.4. Factors Influencing Agricultural Production Efficiency in Sichuan Province
4. Conclusions
5. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mi, Z.; Meng, J.; Guan, D.; Song, M.; Wei, Y.; Liu, Z.; Hubacek, K. Chinese CO2 emission flows have reversed since the global financial crisis. Nat. Commun. 2017, 8, 1712. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Xu, X.; Wang, Q.; Zhang, L.; Gao, X.; Chen, L. Assessment of agricultural carbon emissions and their spatiotemporal changes in China, 1997–2016. Int. J. Environ. Res. Public Health 2019, 16, 3105. [Google Scholar] [CrossRef] [PubMed]
- Paustian, K.; Cole, C.V.; Sauerbeck, D.; Sampson, N. CO2 mitigation by agriculture: An overview. Clim. Chang. 1998, 40, 135–162. [Google Scholar] [CrossRef]
- Johnson, M.F.; Franzluebbers, A.J.; Weyers, S.L.; Reicosky, D.C. Agricultural opportunities to mitigate greenhouse gas emissions. Environ. Pollut. 2007, 150, 107–124. [Google Scholar] [CrossRef] [PubMed]
- Wei, T.; Dan, X. Examination and Analysis of Kuznets Curve of Chinese Agricultural Environment—Based on the Perspective of Carbon Emission. Ecol. Econ. 2017, 33, 37–40. [Google Scholar]
- Vleeshouwers, L.M.; Verhagen, A. Carbon emission and sequestration by agricultural land use: A model study for Europe. Glob. Chang. Biol. 2010, 8, 519–530. [Google Scholar] [CrossRef]
- Michael, M.; Dominic, M.; Vera, E.; Rees, R.M.; Andrew, B.; Cairistiona, F.E.T.; Bruce, B.; Steve, H.; Eileen, W.; Alistair, M.; et al. Developing greenhouse gas marginal abatement cost curves for agricultural emissions from crops and soils in the UK. Agric. Syst. 2010, 103, 198–209. [Google Scholar]
- Ringler, C.; Bhaduri, A.; Lawford, R. The nexus across water, energy, land and food (WELF): Potential for improved resource use efficiency? Curr. Opin. Environ. Sustain. 2013, 5, 617–624. [Google Scholar] [CrossRef]
- Silalertruksa, T.; Gheewala, S.H. Land-water-energy nexus of sugarcane production in Thailand. J. Clean. Prod. 2018, 182, 521–528. [Google Scholar] [CrossRef]
- Bukhary, S.; Batista, J.; Ahmad, S. Water-energy-carbon nexus approach for sustainable large-scale drinking water treatment operation. J. Hydrol. 2020, 587, 124953. [Google Scholar] [CrossRef]
- Wu, H.; Yang, T.; Liu, X.; Li, H.; Gao, L.; Yang, J.; Li, X.; Zhang, L.; Jiang, S. Towards an integrated nutrient management in crop species to improve nitrogen and phosphorus use efficiencies of Chaohu Watershed. J. Clean. Prod. 2020, 272, 122765. [Google Scholar] [CrossRef]
- Tian, H.; Lu, C.; Pan, S.; Yang, J.; Miao, R.; Ren, W.; Yu, Q.; Fu, B.; Jin, F.-F.; Lu, Y.; et al. Optimizing resource use efficiencies in the food–energy–water nexus for sustainable agriculture: From conceptual model to decision support system. Curr. Opin. Environ. Sustain. 2018, 33, 104–113. [Google Scholar] [CrossRef]
- Xu, Z.; Chen, X.; Liu, J.; Zhang, Y.; Chau, S.; Bhattarai, N.; Wang, Y.; Li, Y.; Connor, T.; Li, Y. Impacts of irrigated agriculture on food-energy-water-CO2 nexus across metacoupled systems. Nat. Commun. 2020, 11, 5837. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Zhao, Y.; Lin, J. A review of the energy–carbon–water nexus: Concepts, research focuses, mechanisms, and methodologies. Wiley Interdiscip. Rev. Energy Environ. 2019, 9, e358. [Google Scholar] [CrossRef]
- Meng, F.; Liu, G.; Liang, S.; Su, M.; Yang, Z. Critical review of the energy-water-carbon nexus in cities. Energy 2019, 171, 1017–1032. [Google Scholar] [CrossRef]
- Albrecht, T.R.; Crootof, A.; Scott, C.A. The water-energy-food nexus: A systematic review of methods for nexus assessment. Environ. Res. Lett. 2018, 13, 043002. [Google Scholar] [CrossRef]
- El Gafy, I.; Grigg, N.; Reagan, W. Water-food-energy nexus index to maximize the economic water and energy productivity in an optimal cropping pattern. Water Int. 2017, 42, 495–503. [Google Scholar] [CrossRef]
- Smidt, S.J.; Haacker, E.M.; Kendall, A.D.; Deines, J.M.; Pei, L.; Cotterman, K.A.; Li, H.; Liu, X.; Basso, B.; Hyndman, D.W. Complex water management in modern agriculture: Trends in the water-energy-food nexus over the High Plains Aquifer. Sci. Total Environ. 2016, 566–567, 988–1001. [Google Scholar] [CrossRef] [PubMed]
- Zhao, R.; Liu, Y.; Tian, M.; Ding, M.; Cao, L.; Zhang, Z.; Chuai, X.; Xiao, L.; Yao, L. Impacts of water and land resources exploitation on agricultural carbon emissions: The water-land-energy-carbon nexus. Land Use Policy 2018, 72, 480–492. [Google Scholar] [CrossRef]
- Zhou, P.; Yang, S.; Wu, X.; Shen, Y. Calculation of regional agricultural production efficiency and empirical analysis of its influencing factors-based on DEA-CCR model and Tobit model. J. Comput. Methods Sci. Eng. 2022, 22, 109–122. [Google Scholar] [CrossRef]
- Wang, J.; Li, J.; Zhou, C.; Zhou, S. Studies on Agricultural Production Efficiency around Dongting Lake in Hunan Province Based on DEA-Tobit Model. Tianjin Agric. Sci. 2019, 12, 48–55. [Google Scholar]
- Huang, J.; Chen, M.; Liu, C. Has the development of agricultural production cooperation organization improved the efficiency of agricultural production—Analysis of provincial panel data based on Yangtze River Economic Belt. J. Shandong Agric. Univ. (Soc. Sci. Ed.) 2019, 2, 52–59+157. [Google Scholar]
- Lu, Y.; Tian, Y.; Zhou, L. Spatial-Temporal Evolution and Influencing Factors of Agricultural Carbon Emissions in Sichuan Province. Agric. Resour. Reg. China 2021. Available online: https://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CAPJ&filename=ZGNZ2023011600D&dbname=CAPJLAST (accessed on 25 September 2023).
- Manogna, R.L.; Mishra, A.K. Agricultural production efficiency of Indian states: Evidence from data envelopment analysis. Int. J. Financ. Econ. 2020, 27, 4244–4255. [Google Scholar]
- Ma, L.; Long, H.; Tang, L.; Tu, S.; Qu, Y. Analysis of the spatial variations of determinants of agricultural production efficiency in China. Comput. Electron. Agric. 2021, 180, 105890. [Google Scholar] [CrossRef]
- Zhu, N.; Streimikis, J.; Yu, Z.; Balezentis, T. Energy-sustainable agriculture in the European Union member states: Overall productivity growth and structural efficiency. Socio-Econ. Plan. Sci. 2023, 87, 101520. [Google Scholar] [CrossRef]
- Chen, T.; Rizwan, M.; Abbas, A. Exploring the Role of Agricultural Services in Production Efficiency in Chinese Agriculture: A Case of the Socialized Agricultural Service System. Land 2022, 11, 347. [Google Scholar] [CrossRef]
- Liu, Z.; Sun, T.; Yu, Y.; Ke, P.; Deng, Z.; Lu, C.; Huo, D.; Ding, X. Near-Real-Time Carbon Emission Accounting Technology Toward Carbon Neutrality. Engineering 2022, 14, 44–51. [Google Scholar] [CrossRef]
- Tian, Y.; Zhang, J.-B.; He, Y.-Y. Research on spatial-temporal characteristics and driving factor of agricultural carbon emissions in China. J. Integr. Agric. 2013, 13, 1393–1403. [Google Scholar] [CrossRef]
- Zhou, C.; Shi, C.; Wang, S.; Zhang, G. Estimation of eco-efficiency and its influencing factors in Guangdong province based on Super-SBM and panel regression models. Ecol. Indic. 2018, 86, 67–80. [Google Scholar] [CrossRef]
- Rolf, F.; Kopf, G.; Zhang, M.N. Productivity growth, technical progress, and efficiency change in industrialized countries. Am. Econ. Rev. 1994, 84, 66–83. [Google Scholar]
- Ping, J.L.; Green, C.J.; Zartman, R.E.; Bronson, K.F. Exploring spatial dependence of cotton yield using global and local autocorrelation statistics. Field Crops Res. 2004, 89, 219–236. [Google Scholar] [CrossRef]
- Kosfeld, R.; Eckey, H.F.; Türck, M. LISA (local indicators of spatial association). J. Learn. Resarch Geogr. 2007, 36, 157–162. [Google Scholar] [CrossRef]
- Lobo, R.R. Advances in spatial econometrics: Methodology, tools and applications. Post-Print 2005, 45, 866–870. [Google Scholar]
- Anselin, L.; Kelejian, H.H. Testing for spatial error autocorrelation in the presence of endogenous regressors. Int. Reg. Sci. Rev. 1997, 20, 153–182. [Google Scholar] [CrossRef]
- Chen, Q. Econometrics and Stata Applications; Higrer Education Press: Beijing, China, 2015. [Google Scholar]
- Wang, Y.Q.; Tan, D.M.; Zhang, J.T.; Meng, N.; Han, B.L.; Ouyang, Z.Y. The impact of urbanization on carbon emissions: Analysis of panel data from 158 cities in China. Acta Ecol. 2020, 40, 7897–7907. [Google Scholar]
- Fan, X.; Zhang, W.; Chen, W.; Chen, B. Land–water–energy nexus in agricultural management for greenhouse gas mitigation. Appl. Energy 2020, 265, 114796. [Google Scholar] [CrossRef]
- Feng, T.; Liu, B.; Ren, H.; Yang, J.; Zhou, Z. Optimized model for coordinated development of regional sustainable agriculture based on water–energy–land–carbon nexus system: A case study of Sichuan Province. Energy Convers. Manag. 2023, 291, 117261. [Google Scholar] [CrossRef]
- Wu, X.R.; Zhang, J.B.; Tian, Y.; Li, P. Provincial Agricultural Carbon Emissions in China: Calculation, Performance Change and Influencing Factors. Resour. Sci. 2014, 36, 129–138. [Google Scholar]
- Zhu, C.; Zhang, X.; Zhou, M.; He, S.; Wang, K. Impacts of urbanization and landscape pattern on habitat quality using OLS and GWR models in hangzhou, China. Ecol. Indic. 2020, 117, 106654. [Google Scholar] [CrossRef]
Categories | Specific Content | Unit | Indicator Code | Indicator Reference Source |
---|---|---|---|---|
Input indicators | Agricultural employment | Ten thousand | [24,25,26,27] | |
Agricultural water | Million cubic meters | |||
Total planted area of crops | Kilograms | |||
Total power of machinery | Million kilowatts | |||
Amount of agricultural diesel | Tons | |||
Expected output indicator | Gross agricultural product | Hundred million yuan | ||
Unexpected output indicator | Agricultural carbon emissions | kgCO2eq |
Time | 2011 | 2014 | 2017 | 2020 |
---|---|---|---|---|
Moran’s I | 0.0035 | −0.0263 | 0.0234 | −0.0527 |
Cities | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | Mean |
---|---|---|---|---|---|---|---|---|---|---|---|
CD | 1.348 | 1.358 | 1.378 | 1.414 | 1.562 | 1.449 | 1.437 | 1.451 | 1.373 | 1.073 | 1.384 |
ZG | 1.144 | 1.146 | 1.079 | 1.046 | 1.052 | 1.131 | 1.085 | 1.075 | 1.085 | 1.138 | 1.098 |
PZH | 1.201 | 1.136 | 1.147 | 1.198 | 1.116 | 1.160 | 1.088 | 1.069 | 1.073 | 1.076 | 1.126 |
LZ | 0.853 | 0.801 | 0.803 | 0.722 | 0.705 | 0.760 | 0.702 | 0.711 | 0.727 | 0.740 | 0.752 |
DY | 0.621 | 0.629 | 0.665 | 0.648 | 0.643 | 0.704 | 0.682 | 0.662 | 0.676 | 0.723 | 0.665 |
MY | 0.642 | 0.628 | 0.642 | 0.634 | 0.674 | 0.716 | 0.687 | 0.679 | 0.728 | 1.013 | 0.704 |
GY | 0.587 | 0.517 | 0.530 | 0.531 | 0.576 | 0.611 | 0.585 | 0.586 | 0.610 | 0.647 | 0.578 |
SN | 0.789 | 0.730 | 0.760 | 0.790 | 0.758 | 1.008 | 0.829 | 0.798 | 0.896 | 0.908 | 0.827 |
NJ | 1.053 | 1.007 | 0.791 | 1.016 | 1.049 | 1.071 | 1.078 | 1.058 | 1.071 | 1.017 | 1.021 |
LES | 0.771 | 0.770 | 0.816 | 0.832 | 0.854 | 0.878 | 0.841 | 0.860 | 0.822 | 0.720 | 0.816 |
NC | 1.149 | 1.247 | 1.258 | 1.244 | 1.199 | 1.193 | 1.190 | 1.173 | 1.145 | 1.046 | 1.184 |
MS | 0.552 | 0.596 | 0.606 | 0.610 | 0.645 | 0.639 | 0.692 | 0.693 | 0.698 | 0.661 | 0.639 |
YB | 0.829 | 0.751 | 0.758 | 0.766 | 1.001 | 1.027 | 0.794 | 0.801 | 0.806 | 0.861 | 0.839 |
GA | 1.168 | 1.157 | 1.198 | 1.097 | 1.076 | 1.047 | 1.057 | 1.097 | 1.055 | 1.052 | 1.100 |
DZ | 1.071 | 0.872 | 0.851 | 0.863 | 0.891 | 0.884 | 0.877 | 0.873 | 1.002 | 0.904 | 0.909 |
YA | 1.783 | 1.792 | 1.769 | 1.784 | 1.851 | 2.137 | 2.169 | 2.305 | 2.456 | 2.605 | 2.065 |
BZ | 0.581 | 0.494 | 0.499 | 0.515 | 0.550 | 0.557 | 0.566 | 0.566 | 0.632 | 0.723 | 0.568 |
ZY | 0.424 | 0.389 | 0.415 | 0.410 | 0.411 | 0.546 | 0.575 | 0.565 | 0.643 | 0.668 | 0.505 |
AB | 1.307 | 1.329 | 1.193 | 1.179 | 1.265 | 1.202 | 1.282 | 1.244 | 1.265 | 1.255 | 1.252 |
GZ | 1.043 | 1.013 | 1.014 | 1.002 | 1.433 | 1.000 | 1.024 | 1.028 | 1.018 | 1.013 | 1.059 |
LS | 0.710 | 0.619 | 0.686 | 0.647 | 0.648 | 0.688 | 0.659 | 0.663 | 0.688 | 0.697 | 0.671 |
Cities | 2011–2012 | 2012–2013 | 2013–2014 | 2014–2015 | 2015–2016 | 2016–2017 | 2017–2018 | 2018–2019 | 2019–2020 | Mean |
---|---|---|---|---|---|---|---|---|---|---|
CD | 1.113 | 1.003 | 1.039 | 1.160 | 1.002 | 1.030 | 1.057 | 1.136 | 0.993 | 1.059 |
ZG | 1.422 | 0.627 | 0.993 | 0.995 | 1.189 | 0.967 | 1.008 | 1.105 | 1.399 | 1.078 |
PZH | 0.942 | 1.092 | 1.088 | 1.063 | 1.093 | 0.984 | 0.990 | 1.168 | 1.189 | 1.068 |
LZ | 0.954 | 1.011 | 0.981 | 0.960 | 1.110 | 0.927 | 1.045 | 1.136 | 1.308 | 1.048 |
DY | 1.085 | 1.041 | 1.030 | 1.080 | 1.111 | 1.013 | 1.031 | 1.093 | 1.139 | 1.069 |
MY | 1.066 | 0.996 | 0.993 | 1.124 | 1.060 | 0.996 | 1.044 | 1.138 | 1.434 | 1.095 |
GY | 1.007 | 1.012 | 1.018 | 1.089 | 1.077 | 0.994 | 1.034 | 1.098 | 1.317 | 1.072 |
SN | 1.038 | 1.020 | 1.071 | 0.977 | 1.154 | 0.968 | 1.016 | 1.172 | 1.197 | 1.068 |
NJ | 0.929 | 0.992 | 1.136 | 1.033 | 1.105 | 1.016 | 0.950 | 1.083 | 1.463 | 1.079 |
LES | 1.065 | 1.033 | 1.067 | 1.064 | 1.030 | 0.998 | 1.050 | 1.048 | 1.159 | 1.057 |
NC | 1.127 | 0.968 | 1.014 | 1.014 | 1.028 | 1.008 | 1.026 | 1.065 | 1.205 | 1.051 |
MS | 1.126 | 1.008 | 1.087 | 1.070 | 1.085 | 1.079 | 1.039 | 1.086 | 1.178 | 1.084 |
YB | 0.956 | 0.998 | 1.017 | 1.098 | 1.074 | 0.950 | 1.049 | 1.105 | 1.339 | 1.065 |
GA | 0.986 | 1.143 | 0.874 | 1.060 | 1.012 | 1.027 | 1.303 | 1.037 | 1.387 | 1.092 |
DZ | 0.984 | 0.954 | 1.019 | 1.042 | 1.037 | 1.001 | 1.016 | 1.117 | 1.189 | 1.040 |
YA | 1.081 | 1.051 | 1.051 | 1.088 | 1.014 | 1.088 | 1.071 | 1.152 | 2.731 | 1.259 |
BZ | 0.960 | 0.983 | 1.027 | 1.054 | 1.022 | 1.035 | 1.034 | 1.186 | 1.430 | 1.081 |
ZY | 1.008 | 1.050 | 0.993 | 1.011 | 1.276 | 1.114 | 1.007 | 1.255 | 1.281 | 1.111 |
AB | 0.966 | 0.926 | 1.041 | 1.143 | 0.933 | 1.130 | 1.005 | 1.127 | 1.599 | 1.097 |
GZ | 0.966 | 1.099 | 0.974 | 1.082 | 0.987 | 1.086 | 1.036 | 1.159 | 1.731 | 1.124 |
LS | 0.949 | 1.070 | 0.978 | 1.062 | 1.067 | 0.988 | 1.057 | 1.135 | 1.236 | 1.060 |
Explanatory Variables | Regression Coefficient | Standard Error | t | p |
---|---|---|---|---|
C | 1.164 *** | 0.192 | 6.06 | 0.000 |
UR | −0.988 ** | 0.473 | −2.09 | 0.038 |
PIA | −0.279 | 0.252 | −1.11 | 0.269 |
AEDL | 0.261 *** | 0.062 | 4.18 | 0.000 |
AIS | −0.330 | 0.447 | −0.74 | 0.461 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, L.; Xiang, Y.; Fan, X.; Wang, Q.; Wei, Y. Spatiotemporal Characteristics of Agricultural Production Efficiency in Sichuan Province from the Perspective of “Water–Land–Energy–Carbon” Coupling. Sustainability 2023, 15, 15264. https://doi.org/10.3390/su152115264
Li L, Xiang Y, Fan X, Wang Q, Wei Y. Spatiotemporal Characteristics of Agricultural Production Efficiency in Sichuan Province from the Perspective of “Water–Land–Energy–Carbon” Coupling. Sustainability. 2023; 15(21):15264. https://doi.org/10.3390/su152115264
Chicago/Turabian StyleLi, Liang, Ying Xiang, Xinyue Fan, Qinxiang Wang, and Yang Wei. 2023. "Spatiotemporal Characteristics of Agricultural Production Efficiency in Sichuan Province from the Perspective of “Water–Land–Energy–Carbon” Coupling" Sustainability 15, no. 21: 15264. https://doi.org/10.3390/su152115264
APA StyleLi, L., Xiang, Y., Fan, X., Wang, Q., & Wei, Y. (2023). Spatiotemporal Characteristics of Agricultural Production Efficiency in Sichuan Province from the Perspective of “Water–Land–Energy–Carbon” Coupling. Sustainability, 15(21), 15264. https://doi.org/10.3390/su152115264