Exploring the Coupling Coordination and Spatial Correlation of Logistics Industry and Regional Economy in the Context of Sustainable Development: Evidence from the Yangtze River Delta Region
Abstract
:1. Introduction
2. Literature Review
2.1. Study of the Relationship between Logistics Infrastructure and the Economy
2.2. The Interrelationship between Logistics and Economic Development
2.3. Research on the Coordinated Development of Logistics and the Economy
2.4. Research on the Impact of Logistics on Sustainable Economic and Social Development
3. Methodology
3.1. Entropy Value Method to Determine the Index Weights
3.2. Coupling Coordination Degree Model
3.3. Spatial Autocorrelation Analysis Model
- (1)
- Global spatial autocorrelation analysis
- (2)
- Local spatial autocorrelation analysis
4. Results
4.1. Indicator Evaluation Index Construction
4.2. Entropy Value Method to Calculate Weights
- (1)
- Raw data
- (2)
- Results of entropy value method calculation
4.3. Coupling Coordination Degree Measurement and Result Analysis
- (1)
- Coupling coordination degree level classification
- (2)
- Analysis of the coupling coordination level result
- (1)
- Global spatial autocorrelation analysis
- (2)
- Local spatial autocorrelation analysis
4.4. Analysis of the Variation of Coupling Coordination by Region
4.4.1. Analysis of the Calculation Results of Different Percentages of the Two Indicators
4.4.2. Analysis of the Change in Coupling Coordination among Three Provinces and One City after Anhui Province Joined the YRDR
- (1)
- Changes in the coordination of the logistics industry and economic coupling in Jiangsu, Zhejiang cities after Anhui Province joined the YRDR.
- (2)
- Changes in the degree of coordination in its own logistics industry and economic coupling after Anhui Province joined the YRDR.
5. Conclusions and Recommendations
5.1. Conclusions
5.2. Recommendations
5.2.1. Optimization of Industrial Clusters
5.2.2. Coordinate the Organic Combination of New Infrastructure and Traditional Infrastructure to Enhance Freight Capacity
5.2.3. Accelerate the Construction of Logistics “Digital Intelligence” and Improve the Relative Number of Logistics Industry Employees
5.2.4. Optimize the Allocation of Logistics Resources
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shen, Q.W.; Han, Z.; Jian, J. Study on the relationship between port logistics and urban economic growth—Dalian as an example. Geogr. Geogr. Inf. Sci. 2013, 29, 69–73. [Google Scholar]
- YIN, Y.; Kong, Q. An empirical study on the synergy between industrial clusters and logistics system in Beijing, Tianjin and Hebei. Stat. Decis. 2020, 36, 109–112. [Google Scholar]
- Adepetu, A.; Keshav, S. The relative importance of price and driving range on electric vehicle adoption: Los Angeles case study. Transportation 2017, 44, 1–21. [Google Scholar] [CrossRef]
- Huang, Y.M.; Jiang, Z. Financial structure, industry agglomeration and high-quality economic development. Stud. Sci. Sci. 2019, 37, 1775–1785. [Google Scholar]
- Popovp, V.; Mirrtskivi, Y. Influence of Socioeconomic Indicators on the Regional Warehouse Infrastructure Formation. Vestn. MGSU 2017, 12, 222–229. [Google Scholar] [CrossRef]
- Gafurov, I.; Panasyuk, M.; Pudovik, E. Interregional Logistic Center as the Growth Point of Regional Economics. Procedia Econ. Financ. 2014, 15, 474–480. [Google Scholar] [CrossRef] [Green Version]
- Lakshmanan, T.R. The broader economic consequences of transport infrastructure investments. J. Transp. Geogr. 2011, 19, 1–12. [Google Scholar] [CrossRef]
- Wang, J.; Ma, Z. Port Logistics Cluster Effect and Coordinated Development of Port Economy Based on Grey Relational Analysis Model. J. Coast. Res. 2019, 94, 717–721. [Google Scholar] [CrossRef]
- Varnavskii, V.G. The Global Transportation and Logistics Infrastructure. Her. Russ. Acad. Sci. 2021, 91, 65–72. [Google Scholar] [CrossRef]
- Wang, C.; Yang, Q.; Wu, S. Coordinated Development Relationship between Port Cluster and Its Hinterland Economic System Based on Improved CouplingCoordination Degree Model: Empirical Study from China’s PortIntegration. Sustainability 2022, 14, 4963. [Google Scholar] [CrossRef]
- Kim, S.Y.; Park, H.; Koo, H.M.; Ryoo, D.K. The Effects of the Port Logistics Industry on Port City’s Economy. J. Korean Navig. Port Res. 2015, 39, 267–275. [Google Scholar] [CrossRef] [Green Version]
- Artal-Tur, A.; Gómez-Fuster, J.M.; Navarro-Azorín, J.M.; Ramos-Parreño, J.M. Estimating the economic impact of a port through regional input-output tables: Case study of the Port of Cartagena (Spain). Marit. Econ. Logist. 2016, 18, 371–390. [Google Scholar] [CrossRef]
- Liu, G.C.; Qin, J.; Wang, Y. Empirical analysis of logistics industry on regional economic development under the threshold of transportation infrastructure. J. Commer. Econ. 2020, 17, 97–100. [Google Scholar]
- Xin, X.; Li, Y. On the Contribution of Infrastructure Connectivity of China India and Nepal to their Trade Competitiveness. J. Tibet. Univ. (Soc. Sci. Ed.) 2020, 35, 154–160. [Google Scholar]
- Wang, X.D.; Deng, D.; Zhao, Z. The Impact of Transportation Infrastructure on Economic Growth: An Empirical Test Based on Interprovincial Panel Data and Feder Model. J. Manag. World 2014, 4, 173–174. [Google Scholar]
- Kou, C.H.; Leng, Z.; Jia, X.J. Empirical evidence of regional economic development driven by logistics infrastructure and human resources. Stat. Decis. 2019, 35, 107–110. [Google Scholar]
- Wang, J.; Deng, Y. Relationship of Coupling Coordination Between Port Logistics and Direct Hinterland Economy—A Case Study on Nine Seaport-type National Logistics Hubs Like Tianjin Port and Yingkou Port. J. Ind. Technol. Econ. 2020, 39, 62–68. [Google Scholar]
- Yang, Y.; Li, L. Coordinated Evaluation of Logistics Capacity and Socio-Economic Development in International Dry Port Cities—Kunming City as an Example. J. Beijing Jiaotong Univ. (Soc. Sci. Ed.) 2019, 18, 129–137. [Google Scholar]
- Bowersox, D.J.; Closs, D.J.; Stank, T.P. 2lst Century Logistics: Making Supply Chain Integration a Reality, Oak Brook: Council of Logistics Management; Council of Supply Chain Management Professionals: Lombard, IL, USA, 1999; Volume 52, pp. 45–54. [Google Scholar]
- Huang, Y.F.; Ye, W.L.; Wang, Q.Q. Analysis of the relationship between the development of logistics industry and the evolution of global economic regions. J. Ind. Prod. Eng. 2014, 31, 471–476. [Google Scholar]
- Nguyen, C.D.T.; Luong, B.T.; Hoang, H.L.T. The Impact of Logistics and Infrastructure on Economic Growth: Empirical Evidence from Vietnam. J. AsianFinanc. Econ. Bus. 2021, 8, 21–28. [Google Scholar]
- Popkova, E.G.; Sergi, B.S. A Digital Economy to Develop Policy Related to Transport and Logistics. Predictive Lessons from Russia. Land Use Policy 2020, 99, 1–4. [Google Scholar] [CrossRef]
- Wang, D.; Ding, H. Study on the Coupled and Coordinated Development of Regional Logistics and Regional Economy in Shandong Province. Gansu J. Sci. 2020, 32, 145–149. [Google Scholar]
- Chen, H.; Zhang, Y. Regional Logistics Industry High-Quality Development Level Measurement, Dynamic Evolution, and Its Impact Path on Industrial Structure Optimization: Finding from China. Sustainability 2022, 14, 14038. [Google Scholar] [CrossRef]
- Ju, S.D.; Li, Y.S.; Xu, J. Western Logistics and Regional Economic Development. J. Quant. Technol. Econ. 2003, 2, 39–43. [Google Scholar]
- Skjott-Larsen, T.; Paulsson, U.; Wandel, S. Logistics in the Oresund Region After the Bridge. Eur. J. Oper. Res. 2003, 144, 247–256. [Google Scholar] [CrossRef]
- Ma, W.; Cao, X.; Li, J. Impact of Logistics Development Level on International Trade in China: A Provincial Analysis. Sustainability 2021, 13, 2107. [Google Scholar] [CrossRef]
- Jiang, P.; Hu, Y.C.; Yen, G.F.; Jiang, H.; Chiu, Y.J. Using a Novel Grey DANP Model to Identify Interactions between Manufacturing and Logistics Industries in China. Sustainability 2018, 10, 3456. [Google Scholar] [CrossRef] [Green Version]
- Wen-Long, Z.; Jian-Wei, W.; Shi-Qing, Z.; Rehman Khan, S.A.; An-Ding, J.; Xu-Quan, Y.; Xin, Z. Evaluation of linkage efficiency between manufacturing industry and logistics industry considering the output of unexpected pollutants. J. Air Waste Manag. Assoc. 2021, 71, 304–314. [Google Scholar] [CrossRef]
- Coto-Millán, P.; Fernández, X.L.; Pesquera, M.Á.; Agüeros, M. Impact of Logistics on Technical Efficiency of World Production (2007–2012). Netw. Spat. Econ. 2014, 16, 981–995. [Google Scholar] [CrossRef]
- Chu, Z.F. Logistics and economic growth: A panel data approach. Ann. Reg. Sci. 2011, 49, 87–102. [Google Scholar] [CrossRef]
- Lean, H.H.; Huang, W.; Hong, J. Logistics and economic development: Experience from China. Transp. Policy 2014, 32, 96–104. [Google Scholar] [CrossRef]
- Li, J.; Jiang, B. Agglomeration of logistics industry and regional economic growth in China: Spatial econometric analysis on provincial panel data. J. Cent. South Univ. (Soc. Sci.) 2016, 22, 103–110. [Google Scholar] [CrossRef]
- Yue, Y.K.; Jiao, L.; Gao, P. Synthetic GRA on Shanxi Logistics Industry. Econ. Probl. 2017, 7, 121–124. [Google Scholar]
- Yang, H.X.; Duan, W.; Ma, J. Research on the interaction mechanism between regional logistics industry and regional economy based on system dynamics. Stat. Decis. 2019, 35, 71–75. [Google Scholar]
- Li, B.K.; Li, X. Research on the Interaction Between Regional Logistics and Regional Economy in the Yangtze River Delta: Based on the Empirical Study of Jiangsu, Zhejiang, Anhui and Shanghai. East China Econ. Manag. 2020, 34, 26–32. [Google Scholar]
- Peter, J.H.; Catherine, L.R. Agglomeration Economies “Influence on Logistics Clusters” Growth and Competitiveness. Reg. Stud. 2018, 52, 350–361. [Google Scholar]
- Yang, C.; Lan, S.L.; Tseng, M.L. Coordinated development path of metropolitan logistics and economy in Belt and Road using Dematel-Bayesian analysis. Int. J. Logist. Res. Appl. 2019, 22, 1–24. [Google Scholar] [CrossRef]
- Chen, Y.; Shu, L.L.; Li, H.W. Research on coordinated development between metropolitan economy and logistics using big data and Haken model. Int. J. Prod. Res. 2019, 57, 1–14. [Google Scholar]
- Song, A.-H. Evaluation of the coordination between regional logistics industry and economic development. Stat. Decis. 2020, 36, 126–129. [Google Scholar]
- Yan, B.R.; Dong, Q.L.; Li, Q.; Amin, F.U.; Wu, J.N. A Study on the Coupling and Coordination between Logistics Industry and Economy in the Background of High-Quality Development. Sustainability 2021, 13, 10360. [Google Scholar] [CrossRef]
- Zhang, L.; Dong, Q.; Shen, L. A Study on the Coordinated Development of Node Cities Logistics Industry and Regional Economy-Based on the Panel Data of National Logistics Node Cities. East China Econ. Manag. 2015, 29, 67–73. [Google Scholar]
- Huan, L.B.; Xi, Y. Exploring the Coordinated Development of Logistics Industry and Regional Economy in Central Region under the Background of Supply-Side Reform—Jiangxi as an Example. J. Commer. Econ. 2019, 3, 143–145. [Google Scholar]
- He, Y.D.; Ma, Z. Study on CRITIC-DEA for Regional Logistics and Regional Economic Coordinated Development Model and Evaluation A Case Study of Sichuan Province. Soft Sci. 2015, 29, 102–106. [Google Scholar]
- Guo, Y.; Ding, H. Coupled and Coordinated Development of the Data-Driven Logistics Industry and Digital Economy: A Case Study of Anhui Province. Processes 2022, 10, 2036. [Google Scholar] [CrossRef]
- Yang, H.; Zheng, J. The Coupling Coordination between Logistics Industry and Regional Economy in Silk Road Economic Zone Middle Road Province. J. Ind. Technol. Econ. 2017, 7, 56–62. [Google Scholar]
- Gao, K.; Zhang, B.; Wang, M. Coupling Synergy Evolution and Spatial Difference of Pan-Pearl River Delta Regional Economy and Logistics. Prices Mon. 2018, 9, 49–55. [Google Scholar]
- Guo, H.; Qi, Y. Study on Coordinative Development between Regional Logistics and Regional Economy in Yangtze River Delta Based on Coupling Model. J. Ind. Technol. Econ. 2018, 10, 51–58. [Google Scholar]
- Lan, S.L.; Zhong, R. Coordinated Development between Metropolitan Economy and Logistics for Sustainability. Resour. Conserv. Recycl. 2018, 128, 345–354. [Google Scholar] [CrossRef]
- Aćimović, S.; Mijušković, V.M.; Dinić, J. The Role of City Logistics In Achieving Sustainable Urban Systems: The Case Of Brussels (Uloga City Logistike U Postizanju Odrivih Urbanih Sistema: Primer Brisela). Ekon. Ideje I Praksa 2021, 40, 53–62. [Google Scholar]
- Cherenkov, V.I.; Skripnuk, D.F.; Tanichev, A.V.; Safonova, A.S. A conceptual framework of logistics infrastructure for implementing the circular economy model in the Russian Arctic. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Saint-Petersburg, Russia, 18–19 March 2020; Volume 539, p. 012077. [Google Scholar]
- Basarab, G. An analysis of explanatory factors of logistics performance of a country. My Ideas 2008, 10, 143–156. [Google Scholar]
- Rudra, P.P. Effect of transportation infrastructure on economic growth in India: The VECM approach. Res. Transp. Econ. 2013, 38, 139–148. [Google Scholar]
- Khan SA, R.; Jian, C.; Zhang, Y.; Golpîra, H.; Kumar, A.; Sharif, A. Environmental, Social and Economic Growth Indicators Spur Logistics Performance:From the Perspective of South Asian Association for Regional Cooperation Countries. J. Clean. Prod. 2019, 214, 1011–1023. [Google Scholar] [CrossRef]
- Liu, M.; Ke, J. Analysis of the synergy between regional logistics and regional economy. Theory Mon. 2008, 4, 64–66. [Google Scholar]
- Chen, W. Research on the sustainable development of green logistics in China under the circular economy model. Value Eng. 2018, 37, 40–41. [Google Scholar]
- Su, J.; Shen, T.; Jin, S. Ecological Efficiency Evaluation and Spatiotemporal Characteristics Analysis of the Coupling Coordination of the Logistics Industry and Manufacturing Industry; Research Square: Durham, NC, USA, 2021. [Google Scholar] [CrossRef]
- Tian, X.; Chen, P.; Li, J. Spatial Econometric Analysis of the Level and Influencing Factors of Coupling and Coordination between Regional Logistics and the Ecological Environment in China. Int. J. Environ. Res. Public Health 2022, 19, 15082. [Google Scholar] [CrossRef]
- Gong, Y.; Yang, X.Q.; Ran, C.Y.; Shi, V.; Zhou, Y.F. Evaluation of the Sustainable Coupling Coordination of the Logistics Industry and the Manufacturing Industry in the Yangtze River Economic Belt. Sustainability 2021, 13, 5167. [Google Scholar] [CrossRef]
System | Tier 1 Indicators | Secondary Indicators | Unit |
---|---|---|---|
Logistics industry evaluation indicators | Shipping Scale | A1 Road mileage | km |
A2 Road mileage | (billion tons km) | ||
A3 Passenger traffic | 10,000 people | ||
A4 Civilian freight vehicle ownership | Vehicle | ||
Logistics Resources | A5 Transportation financial expenditure | million yuan | |
A6 Transportation, storage, and postal workers | People | ||
A7 Total postal business | Billion | ||
A8 Number of mobile phone users | 10,000 households |
System | Tier 1 Indicators | Secondary Indicators | Unit |
---|---|---|---|
Regional Economic Evaluation Indicators | Economic Scale | B1 GDP | Billion |
B2 Total retail sales of social consumer goods | Billion | ||
B3 GDP per capita | Yuan | ||
B4 Disposable income per capita | Yuan/person | ||
Economic Potential | B5 Value added of tertiary industry | Billion | |
B6 Local revenue | Billion | ||
B7 Import and export volume | Billions of dollars | ||
B8 Total social fixed asset investment | Billion |
A1 | A2 | A3 | A4 | A5 | A6 | A7 | A8 | B1 | B2 | B3 | B4 | B5 | B6 | B7 | B8 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2010 | 0.032 | 0.364 | 0.062 | 0.102 | 0.101 | 0.175 | 0.073 | 0.091 | 0.114 | 0.156 | 0.263 | 0.165 | 0.115 | 0.053 | 0.050 | 0.085 |
2015 | 0.027 | 0.284 | 0.061 | 0.109 | 0.111 | 0.202 | 0.124 | 0.082 | 0.121 | 0.145 | 0.254 | 0.182 | 0.118 | 0.062 | 0.048 | 0.072 |
2020 | 0.027 | 0.299 | 0.064 | 0.098 | 0.135 | 0.155 | 0.113 | 0.108 | 0.121 | 0.144 | 0.178 | 0.171 | 0.118 | 0.158 | 0.048 | 0.061 |
Coupling Coordination | Coupling Coordination Level | Coupling Coordination | Coupling Coordination Level |
---|---|---|---|
0–0.1 | Extreme disorder | 0.5001–0.6 | Barely Coordinated |
0.1001–0.2 | Severe disorders | 0.6001–0.7 | Primary Coordination |
0.2001–0.3 | Moderate disorder | 0.7001–0.8 | Intermediate Coordination |
0.3001–0.4 | Mild disorders | 0.8001–0.9 | Good Coordination |
0.4001–0.5 | On the verge of disorder | 0.9001–1 | High-quality Coordination |
2010 | 2015 | 2020 | |
---|---|---|---|
0–0.1 extreme disorder | None | None | None |
0.1001–0.2 Severe disorders | Maanshan 0.167, Tongling 0.175, Chizhou 0.141, Huainan 0.197, Huangshan 0.138, Bozhou 0.183, Huaibei 0.145, Suzhou 0.195 | Tongling 0.131, Chizhou 0.143, Huangshan 0.151, Huaibei 0.163 | Maanshan 0.183, Tongling 0.125, Chizhou 0.161, Huangshan 0.152, Huaibei 0.136 |
0.2001–0.3 Moderate disorder | Huaian 0.278, Suqian 0.222, Zhoushan 0.296, Quzhou 0.278, Lishui 0.241, Wuhu 0.267, Anqing 0.236, Chuzhou 0.221, Xuancheng 0.207, Fuyang 0.218, Bengbu 0.205, Anqing 0.234 | Suzhou 0.211, Huaian 0.27, Zhenjiang 0.284, Suqian 0.247, Quzhou 0.229, Lishui 0.205, Maanshan 0.229, Anqing 0.228, Chuzhou 0.225, Xuancheng 0.226, Huainan 0.219, Fuyang 0.247, Bozhou 0.201, Bengbu 0.236, Liu’an 0.225 | Suzhou 0.232, Yangzhou 0.296, Lianyungang 0.245, Huaian 0.265, Zhenjiang 0.233, Suqian 0.22, Zhoushan 0.294, Quzhou 0.205, Lishui 0.201, Anqing 0.236, Xuancheng 0.206, Huainan 0.211, Fuyang 0.266, Bozhou 0.234, Bengbu 0.219, Liu’an 0.236 |
0.3001–0.4 Mild disorders | Nantong 0.393, Yangzhou 0.309, Lianyungang 0.326, Taizhou 0.303, Yancheng 0.324, Zhenjiang 0.305, Xuzhou 0.373, Huzhou 0.341, Jiaxiing 0.362, Hefei 0.392 | Changzhou 0.365, Yangzhou 0.318, Lianyungang 0.305, Taizhou 0.317, Yancheng 0.336, Xuzhou 0.37, Taizhou 0.376, Huzhou 0.361, Jiaxing 0.349, Jinhua 0.37, Zhuoshan 0.318, Wuhu 0.306 | Changzhou 0.339, Taizhou 0.314, Yancheng 0.318, Shaoxing 0.38, Huzhou 0.347, Jiaxing 0.325, Jinhua 0.394, Wuhu 0.306, Chuzhou 0.308 |
0.4001–0.5 On the verge of disorder | Changzhou 0.401, Shaoxing 0.412, Taizhou 0.405, Jinhua 0.41, Wenzhou 0.454 | Wuxi 0.471, Nantong 0.401, Shaoxing 0.41, Wenzhou 0.441, Hefei 0.441 | Wuxi 0.425, Nantong 0.409, Xuzhou 0.414, Taizhou 0.4, Wenzhou 0.447 |
0.5001–0.6 Barely coordinated | Nanjing 0.55, Wuxi 0.504, Hangzhou 0.563, Ningbo 0.519 | Nanjing 0.536, Hangzhou 0.581, Ningbo 0.509 | Nanjing 0.577, Suzhou 0.537, Ningbo 0.524, Heifei 0.553 |
0.6001–0.7 Primary Coordination | Suzhou 0.63 | Suzhou 0.618 | Hangzhou 0.624 |
0.7001–0.8 Intermediate Coordination | None | None | None |
0.8001–0.9 Good Coordination | None | None | None |
0.9001–1 Quality Coordination | Shanghai 0.968 | Shanghai 0.968 | Shanghai 0.933 |
Year | 2010 | 2015 | 2020 |
---|---|---|---|
Moran’s I value | 0.319 | 0.270 | 0.145 |
First Quadrant | Quadrant II | Quadrant III | Quadrant IV | |
---|---|---|---|---|
2010 | Shanghai, Suzhou, Ningbo, Wuxi, Nantong, Changzhou, Shaoxing, Jiaxing, Huzhou, Taizhou, Jinhua | Ynagzhou, Zhenjiang, Taizhou, Lishui, Xuancheng, Hengzhou, Zhoushan, Maanshan | Yancheng, Lianyungang, Huai’an, Wuhu, Chuzhou, Suqian, Liu’an, Anqing, Huainan, Suzhou, Tongling, Chizhou, Huaibei, Bengbu, Bozhou, Fuyang, Huangshan | Hangzhou, Nanjing, Hefei, Wenzhou, Xuzhou |
2015 | Shanghai, Suzhou, Ningbo, Wuxi, Nantong, Changzhou, Shaoxing, Jiaxing, Huzhou, Taizhou, Jinhua | Yangzhou, Zhenjiang, Taizhou, Lishui, Xuancheng, Zhoushan, Maanshan | Quzhou, Lianyungang, Huai’an, Wuhu, Chuzhou, Suqian, Liu’an, Anqing, Huainan, Suzhou, Tongling, Chizhou, Huaibei, Bengbu, Bozhou, Fuyang, Huangshan | Hangzhou, Nanjing, Hefei, Wenzhou, Xuzhou, Yancheng |
2020 | Shanghai, Suzhou, Ningbo, Wuxi, Nantong, Changzhou, Shaoxing, Huzhou, Taizhou, Jinhua | Yangzhou, Zhenjiang, Taizhou, Lishui, Xuancheng, Zhoushan, Maanshan | Yancheng, Lianyungang, Huai’an, Wuhu, Chuzhou, Suqian, Liu’an, Anqing, Huainan, Suzhou, Tongling, Chizhou, Huaibei, Bengbu, Bozhou, Fuyang, Huangshan | Hangzhou, Nanjing, Hefei, Wenzhou, Xuzhou |
Economy 0.6, Logistics 0.4 (A) | 2010 | 2015 | 2020 | Economy 0.6, Logistics 0.4 (B) | 2010 | 2015 | 2020 | Contrast |
---|---|---|---|---|---|---|---|---|
Shanghai | 0.973 | 0.974 | 0.927 | Shanghai | 0.963 | 0.963 | 0.938 | A > B |
Nanjing | 0.555 | 0.547 | 0.575 | Nanjing | 0.544 | 0.524 | 0.539 | A > B |
Wuxi | 0.514 | 0.486 | 0.433 | Wuxi | 0.494 | 0.456 | 0.416 | A > B |
Changzhou | 0.406 | 0.381 | 0.349 | Changzhou | 0.395 | 0.349 | 0.329 | A > B |
Suzhou | 0.651 | 0.64 | 0.556 | Suzhou | 0.61 | 0.594 | 0.518 | A > B |
Nantong | 0.397 | 0.414 | 0.425 | Nantong | 0.389 | 0.388 | 0.393 | A > B |
Yangzhou | 0.314 | 0.328 | 0.307 | Yangzhou | 0.305 | 0.307 | 0.285 | A > B |
Zhenjiang | 0.312 | 0.299 | 0.243 | Zhenjiang | 0.298 | 0.269 | 0.223 | A > B |
Taizhou | 0.307 | 0.324 | 0.314 | Taizhou | 0.3 | 0.309 | 0.313 | A > B |
Yancheng | 0.322 | 0.341 | 0.318 | Yancheng | 0.326 | 0.331 | 0.319 | A < B |
Huai’an | 0.272 | 0.27 | 0.265 | Huai’an | 0.283 | 0.27 | 0.266 | A < B |
Lianyungang | 0.316 | 0.299 | 0.239 | Lianyungang | 0.335 | 0.311 | 0.251 | A < B |
Xuzhou | 0.367 | 0.372 | 0.411 | Xuzhou | 0.379 | 0.369 | 0.417 | A < B |
Suqian | 0.216 | 0.244 | 0.22 | Suqian | 0.228 | 0.249 | 0.22 | A < B |
Hangzhou | 0.562 | 0.584 | 0.636 | Hangzhou | 0.564 | 0.578 | 0.612 | A > B |
Shaoxing | 0.412 | 0.42 | 0.392 | Shaoxing | 0.412 | 0.4 | 0.368 | A > B |
Ningbo | 0.528 | 0.528 | 0.528 | Ningbo | 0.51 | 0.489 | 0.52 | A > B |
Taizhou | 0.396 | 0.378 | 0.398 | Taizhou | 0.413 | 0.374 | 0.402 | A > B |
Huzhou | 0.333 | 0.355 | 0.339 | Huzhou | 0.348 | 0.367 | 0.354 | A < B |
Jiaxing | 0.369 | 0.36 | 0.343 | Jiaxing | 0.356 | 0.337 | 0.306 | A > B |
Jinhua | 0.403 | 0.376 | 0.4 | Jinhua | 0.417 | 0.363 | 0.388 | A > B |
Zhoushan | 0.295 | 0.327 | 0.3 | Zhoushan | 0.297 | 0.308 | 0.287 | A > B |
Wenzhou | 0.445 | 0.443 | 0.447 | Wenzhou | 0.463 | 0.439 | 0.447 | A > B |
Quzhou | 0.265 | 0.231 | 0.206 | Quzhou | 0.292 | 0.226 | 0.204 | A < B |
Lishui | 0.236 | 0.203 | 0.2 | Lishui | 0.246 | 0.208 | 0.202 | A < B |
Hefei | 0.394 | 0.448 | 0.564 | Hefei | 0.389 | 0.435 | 0.542 | A > B |
Maanshan | 0.178 | 0.238 | 0.193 | Maanshan | 0.155 | 0.22 | 0.172 | A > B |
Wuhu | 0.267 | 0.309 | 0.307 | Wuhu | 0.266 | 0.304 | 0.304 | A > B |
Tongling | 0.177 | 0.141 | 0.131 | Tongling | 0.173 | 0.121 | 0.117 | A > B |
Anqing | 0.227 | 0.224 | 0.233 | Anqing | 0.244 | 0.233 | 0.239 | A < B |
Chuzhou | 0.209 | 0.246 | 0.301 | Chuzhou | 0.233 | 0.265 | 0.315 | A < B |
Xuancheng | 0.199 | 0.225 | 0.2 | Xuancheng | 0.216 | 0.228 | 0.212 | A < B |
Chizhou | 0.138 | 0.14 | 0.155 | Chizhou | 0.144 | 0.146 | 0.166 | A < B |
Huainan | 0.19 | 0.21 | 0.195 | Huainan | 0.204 | 0.228 | 0.225 | A < B |
Huangshan | 0.139 | 0.152 | 0.151 | Huangshan | 0.138 | 0.151 | 0.153 | A < B |
Fuyang | 0.2 | 0.23 | 0.254 | Fuyang | 0.234 | 0.262 | 0.278 | A < B |
Bozhou | 0.169 | 0.187 | 0.218 | Bozhou | 0.197 | 0.214 | 0.25 | A < B |
Bengbu | 0.197 | 0.233 | 0.219 | Bengbu | 0.213 | 0.239 | 0.218 | A < B |
Liu’an | 0.215 | 0.209 | 0.217 | Liu’an | 0.252 | 0.24 | 0.253 | A < B |
Huaibei | 0.143 | 0.162 | 0.134 | Huaibei | 0.146 | 0.164 | 0.137 | A < B |
Suzhou | 0.18 | 0.2 | 0.218 | Suzhou | 0.208 | 0.222 | 0.244 | A < B |
City | 2010 | 2015 | 2020 | Difference between 2015 and 2010 | Difference between 2020 and 2015 |
---|---|---|---|---|---|
Shanghai | 0.968 | 0.968 | 0.933 | 0 | −0.035 |
Nanjing | 0.55 | 0.536 | 0.557 | −0.014 | 0.021 |
Wuxi | 0.504 | 0.471 | 0.425 | −0.033 | −0.046 |
Changzhou | 0.401 | 0.365 | 0.339 | −0.036 | −0.026 |
Suzhou | 0.63 | 0.618 | 0.537 | −0.012 | −0.081 |
Nantong | 0.393 | 0.401 | 0.409 | 0.008 | 0.008 |
Yangzhou | 0.309 | 0.318 | 0.296 | 0.009 | −0.022 |
Zhenjiang | 0.305 | 0.284 | 0.233 | −0.021 | −0.051 |
Taizhou | 0.303 | 0.317 | 0.314 | 0.014 | −0.003 |
Yancheng | 0.324 | 0.336 | 0.318 | 0.012 | −0.018 |
Huai’an | 0.278 | 0.27 | 0.265 | −0.008 | −0.005 |
Lianyungang | 0.326 | 0.305 | 0.245 | −0.021 | −0.06 |
Xuzhou | 0.373 | 0.37 | 0.414 | −0.003 | 0.044 |
Suqian | 0.222 | 0.247 | 0.22 | 0.025 | −0.027 |
Hangzhou | 0.563 | 0.581 | 0.624 | 0.018 | 0.043 |
Shaoxing | 0.412 | 0.41 | 0.38 | −0.002 | −0.03 |
Ningbo | 0.519 | 0.509 | 0.524 | −0.01 | 0.015 |
Taizhou | 0.405 | 0.376 | 0.4 | −0.029 | 0.024 |
Huzhou | 0.341 | 0.361 | 0.347 | 0.02 | −0.014 |
Jiaxing | 0.362 | 0.349 | 0.325 | −0.013 | −0.024 |
Jinhua | 0.41 | 0.37 | 0.394 | −0.04 | 0.024 |
Zhoushan | 0.296 | 0.318 | 0.294 | 0.022 | −0.024 |
Wenzhou | 0.454 | 0.441 | 0.447 | −0.013 | 0.006 |
Quzhou | 0.278 | 0.229 | 0.205 | −0.049 | −0.024 |
Lishui | 0.241 | 0.205 | 0.201 | −0.036 | −0.004 |
Total difference | −0.212 | −0.309 | |||
Average value | 0.40668 | 0.3982 | 0.38584 | ||
Variance | 0.024702 | 0.025093 | 0.025837 |
Province | Jiangsu Province | Zhejiang Province | ||||
---|---|---|---|---|---|---|
Year | 2010 | 2015 | 2020 | 2010 | 2015 | 2020 |
Average value | 0.3783 | 0.3722 | 0.3517 | 0.3892 | 0.3772 | 0.3765 |
Variance | 0.0138 | 0.0120 | 0.0121 | 0.0099 | 0.0120 | 0.0159 |
City | 2010 | 2015 | 2020 | Difference between 2015 and 2010 | Difference between 2020 and 2015 |
---|---|---|---|---|---|
Hefei | 0.392 | 0.441 | 0.553 | 0.049 | 0.112 |
Maanshan | 0.167 | 0.229 | 0.183 | 0.062 | −0.046 |
Wuhu | 0.267 | 0.306 | 0.306 | 0.039 | 0 |
Tongling | 0.175 | 0.131 | 0.125 | −0.044 | −0.006 |
Anqing | 0.236 | 0.228 | 0.236 | −0.008 | 0.008 |
Chuzhou | 0.221 | 0.255 | 0.308 | 0.034 | 0.053 |
Xuancheng | 0.207 | 0.226 | 0.206 | 0.019 | −0.02 |
Chizhou | 0.141 | 0.143 | 0.161 | 0.002 | 0.018 |
Huainan | 0.197 | 0.219 | 0.211 | 0.022 | −0.008 |
Huangshan | 0.138 | 0.151 | 0.152 | 0.013 | 0.001 |
Fuyang | 0.218 | 0.247 | 0.266 | 0.029 | 0.019 |
Bozhou | 0.183 | 0.201 | 0.234 | 0.018 | 0.033 |
Bengbu | 0.205 | 0.236 | 0.219 | 0.031 | −0.017 |
Liu’an | 0.234 | 0.225 | 0.236 | −0.009 | 0.011 |
Huaibei | 0.145 | 0.163 | 0.136 | 0.018 | −0.027 |
Suzhou | 0.195 | 0.211 | 0.232 | 0.016 | 0.021 |
Total difference | 0.291 | 0.152 | |||
Average value | 0.2076 | 0.2258 | 0.2353 | ||
Variance | 0.0037 | 0.0054 | 0.0101 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, J.; Wang, X.; Xu, G.; Jiang, S.; Gu, J.; Zhang, J. Exploring the Coupling Coordination and Spatial Correlation of Logistics Industry and Regional Economy in the Context of Sustainable Development: Evidence from the Yangtze River Delta Region. Sustainability 2023, 15, 992. https://doi.org/10.3390/su15020992
Jiang J, Wang X, Xu G, Jiang S, Gu J, Zhang J. Exploring the Coupling Coordination and Spatial Correlation of Logistics Industry and Regional Economy in the Context of Sustainable Development: Evidence from the Yangtze River Delta Region. Sustainability. 2023; 15(2):992. https://doi.org/10.3390/su15020992
Chicago/Turabian StyleJiang, Jinde, Xiaobo Wang, Guoyin Xu, Shuhua Jiang, Jing Gu, and Jing Zhang. 2023. "Exploring the Coupling Coordination and Spatial Correlation of Logistics Industry and Regional Economy in the Context of Sustainable Development: Evidence from the Yangtze River Delta Region" Sustainability 15, no. 2: 992. https://doi.org/10.3390/su15020992