Phototrophic Bioremediation of Municipal Tertiary Wastewater Coupling with Lipid Biosynthesis Using Scenedesmus dimorphus: Effect of Nitrogen to Phosphorous Ratio with/without CO2 Supplementation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microalgal Strain and Culture Medium
2.2. Experimental Technique for Microalgae Culturing
2.3. Analytical Techniques
2.3.1. Microalgal Growth Characteristics
2.3.2. Microalgal Biomass Growth
2.3.3. Specific Growth Rate
2.3.4. Biomass Productivity
2.3.5. Nutrient Removal Analysis
2.3.6. Lipid Quantification in Microalgae Biomass
2.4. Statistical Analysis
3. Results and Discussion
3.1. Growth and Biomass Yield
3.2. Nutrient Removal
3.2.1. Total Nitrogen Removal
3.2.2. Total Phosphorous Removal
3.3. pH Profiles
3.4. Total Lipid Content
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ganesan, R.; Manigandan, S.; Samuel, M.S.; Shanmuganathan, R.; Brindhadevi, K.; Lan Chi, N.T.; Duc, P.A.; Pugazhendhi, A. A review on prospective production of biofuel from microalgae. Biotechnol. Rep. 2020, 27, e00509. [Google Scholar] [CrossRef]
- Maity, J.P.; Bundschuh, J.; Chen, C.Y.; Bhattacharya, P. Microalgae for third generation biofuel production, mitigation ofgreenhouse gas emissions and wastewater treatment: Present andfuture perspectives—A mini review. Energy 2014, 78, 104–113. [Google Scholar] [CrossRef]
- Becerra-Castro, C.; Lopes, A.R.; Vaz-Moreira, I.; Silva, E.F.; Manaia, C.M.; Nunes, O.C. Wastewater reuse in irrigation: A microbiological perspective on implications in soil fertility and human and environmental health. Environ. Int. 2015, 75, 117–135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Razzak, S.A.; Faruque, M.O.; Alsheikh, Z.; Alsheikhmohamad, L.; Alkuroud, D.; Alfayez, A.; Hossain, S.M.Z.; Hossain, M.M. A comprehensive review on conventional and biological-driven heavy metals removal from industrial wastewater. Environ. Adv. 2022, 7, 100168. [Google Scholar] [CrossRef]
- Hossain, S.M.Z.; Sultana, N.; Jassim, M.S.; Coskuner, G.; Hazin, L.M.; Razzak, S.A.; Hossain, M.M. Soft-computing modeling and multiresponse optimization for nutrient removal process from municipal wastewater using microalgae. J. Water Process Eng. 2022, 45, 102490. [Google Scholar] [CrossRef]
- Gonçalves, A.L.; Pires, J.C.M.; Simões, M. A review on the use of microalgal consortia for wastewater treatment. Algal Res. 2017, 24, 403–415. [Google Scholar] [CrossRef]
- Razzak, S.A. In situ biological CO2 fixation and wastewater nutrient removal with Neochloris oleoabundans in batch photobioreactor. Bioprocess Biosyst. Eng. 2019, 42, 93–105. [Google Scholar] [CrossRef]
- Ince, M.; Kaplan Ince, O. Heavy Metal Removal Techniques Using Response Surface Methodology: Water/Wastewater Treatment. In Biochemical Toxicology—Heavy Metals and Nanomaterials; IntechOpen: London, UK, 2020. [Google Scholar]
- Paerl, H.W.; Scott, J.T.; McCarthy, M.J.; Newell, S.E.; Gardner, W.S.; Havens, K.E.; Hoffman, D.K.; Wilhelm, S.W.; Wurtsbaugh, W.A. It Takes Two to Tango: When and Where Dual Nutrient (N & P) Reductions Are Needed to Protect Lakes and Downstream Ecosystems. Environ. Sci. Technol. 2016, 50, 10805–10813. [Google Scholar] [CrossRef] [Green Version]
- Passos, F.; Gutiérrez, R.; Brockmann, D.; Steyer, J.P.; García, J.; Ferrer, I. Microalgae production in wastewater treatment systems, anaerobic digestion and modelling using ADM1. Algal Res. 2015, 10, 55–63. [Google Scholar] [CrossRef] [Green Version]
- Faruque, M.O.; Mohammed, K.A.; Hossain, M.M.; Razzak, S.A. Influence of elevated CO2 concentrations on growth, nutrient removal, and CO2 biofixation using Chlorella kessleri cultivation. Int. J. Environ. Sci. Technol. 2020, 18, 913–926. [Google Scholar] [CrossRef]
- Molazadeh, M.; Ahmadzadeh, H.; Pourianfar, H.R.; Lyon, S.; Rampelotto, P.H. The use of microalgae for coupling wastewater treatment with CO2 biofixation. Front. Bioeng. Biotechnol. 2019, 7, 42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hossain, S.M.Z.; Alnoaimi, A.; Razzak, S.A.; Ezuber, H.; Al-Bastaki, N.; Safdar, M.; Alkaabi, S.; Hossain, M.M. Multiobjective optimization of microalgae (Chlorella sp.) growth in a photobioreactor using Box-Behnken design approach. Can. J. Chem. Eng. 2018, 96, 1903–1910. [Google Scholar] [CrossRef]
- Kırlı, M.S.; Fahrioğlu, M. Sustainable development of Turkey: Deployment of geothermal resources for carbon capture, utilization, and storage. Energy Sources Part A Recover. Util. Environ. Eff. 2019, 41, 1739–1751. [Google Scholar] [CrossRef]
- Nayak, M.; Karemore, A.; Sen, R. Performance evaluation of microalgae for concomitant wastewater bioremediation, CO2 biofixation and lipid biosynthesis for biodiesel application. Algal Res. 2016, 16, 216–223. [Google Scholar] [CrossRef]
- Rahman, S.M.; Al-Ismail, F.S.; Haque, M.E.; Shafiullah, M.; Islam, M.R.; Chowdhury, M.T.; Alam, M.S.; Razzak, S.A.; Ali, A.; Khan, Z.A. Electricity generation in Saudi Arabia: Tracing opportunities and challenges to reducing greenhouse gas emissions. IEEE Access 2021, 9, 116163–116182. [Google Scholar] [CrossRef]
- Cheah, W.Y.; Show, P.L.; Chang, J.S.; Ling, T.C.; Juan, J.C. Biosequestration of atmospheric CO2 and flue gas-containing CO2 by microalgae. Bioresour. Technol. 2015, 184, 190–201. [Google Scholar] [CrossRef]
- Omar Faruque, M.; Ilyas, M.; Mozahar Hossain, M.; Abdur Razzak, S. Influence of Nitrogen to Phosphorus Ratio and CO2 Concentration on Lipids Accumulation of Scenedesmus dimorphus for Bioenergy Production and CO2 Biofixation. Chem. Asian J. 2020, 5, 4307–4320. [Google Scholar] [CrossRef]
- Renuka, N.; Sood, A.; Prasanna, R.; Ahluwalia, A.S. Phycoremediation of wastewaters: A synergistic approach using microalgae for bioremediation and biomass generation. Int. J. Environ. Sci. Technol. 2015, 12, 1443–1460. [Google Scholar] [CrossRef] [Green Version]
- Grace, C.E.; Lakshmi, P.K.; Meenakshi, S.; Vaidyanathan, S.; Srisudha, S.; Mary, M.B. Briget Mary Biomolecular transitions and lipid accumulation in green microalgae monitored by FTIR and Raman analysis. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 224, 117382. [Google Scholar] [CrossRef]
- Razzak, S.A.; Ali, S.A.M.; Hossain, M.M.; deLasa, H. Biological CO2 fixation with production of microalgae in wastewater—A review. Renew. Sustain. Energy Rev. 2017, 76, 379–390. [Google Scholar] [CrossRef]
- Yang, J.; Xu, M.; Zhang, X.; Hu, Q.; Sommerfeld, M.; Chen, Y. Life-cycle analysis on biodiesel production from microalgae: Water footprint and nutrients balance. Bioresour. Technol. 2011, 102, 159–165. [Google Scholar] [CrossRef] [PubMed]
- Razzak, S.A.; Hossain, M.M.; Lucky, R.A.; Bassi, A.S.; De Lasa, H. Integrated CO2 capture, wastewater treatment and biofuel production by microalgae culturing—A review. Renew. Sustain. Energy Rev. 2013, 27, 622–653. [Google Scholar] [CrossRef]
- Ansari, F.A.; Singh, P.; Guldhe, A.; Bux, F. Microalgal cultivation using aquaculture wastewater: Integrated biomass generation and nutrient remediation. Algal Res. 2017, 21, 169–177. [Google Scholar] [CrossRef]
- Chu, W.L.; Phang, S.M. Microalgae of Biofuel and for Development Biotechnology Wastewater Treatment; Springer: Berlin/Heidelberg, Germany, 2019; ISBN 9789811322648. [Google Scholar]
- Higgins, B.T.; Gennity, I.; Fitzgerald, P.S.; Ceballos, S.J.; Fiehn, O.; VanderGheynst, J.S. Algal–bacterial synergy in treatment of winery wastewater. Npj Clean Water 2018, 1, 6. [Google Scholar] [CrossRef] [Green Version]
- Yu, H.; Kim, J.; Lee, C. Nutrient removal and microalgal biomass production from different anaerobic digestion effluents with Chlorella species. Sci. Rep. 2019, 9, 6123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ajala, S.O.; Alexander, M.L. Assessment of Chlorella vulgaris, Scenedesmus obliquus, and Oocystis minuta for removal of sulfate, nitrate, and phosphate in wastewater. Int. J. Energy Environ. Eng. 2020, 11, 311–326. [Google Scholar] [CrossRef] [Green Version]
- Zhai, J.; Li, X.; Li, W.; Rahaman, M.H.; Zhao, Y.; Wei, B.; Wei, H. Optimization of biomass production and nutrients removal by Spirulina platensis from municipal wastewater. Ecol. Eng. 2017, 108, 83–92. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhang, W.; Wang, J.; Chen, Y.; Shen, S.; Liu, T. Utilization of simulated flue gas for cultivation of Scenedesmus dimorphus. Bioresour. Technol. 2013, 128, 359–364. [Google Scholar] [CrossRef]
- Li, X.; Hu, H.-y.; Gan, K.; Sun, Y.-x. Effects of different nitrogen and phosphorus concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater microalga Scenedesmus sp. Bioresour. Technol. 2010, 101, 5494–5500. [Google Scholar] [CrossRef]
- Baldisserotto, C.; Demaria, S.; Accoto, O.; Marchesini, R.; Zanella, M.; Benetti, L.; Avolio, F.; Maglie, M.; Ferroni, L.; Pancaldi, S. Removal of nitrogen and phosphorus from thickening effluent of an urban wastewater treatment plant by an isolated green microalga. Plants 2020, 9, 1802. [Google Scholar] [CrossRef]
- Mohsenpour, S.F.; Hennige, S.; Willoughby, N.; Adeloye, A.; Gutierrez, T. Integrating micro-algae into wastewater treatment: A review. Sci. Total Environ. 2021, 752, 142168. [Google Scholar] [CrossRef] [PubMed]
- Lutzu, G.A.; Zhang, W.; Liu, T. Feasibility of using brewery wastewater for biodiesel production and nutrient removal by Scenedesmus dimorphus Algae as a model for production of high value products (HVP) and biofuel View project. Environ. Technol. 2016, 37, 1568–1581. [Google Scholar] [CrossRef] [PubMed]
- Beuckels, A.; Smolders, E.; Muylaert, K. Nitrogen availability influences phosphorus removal in microalgae-based wastewater treatment. Water Res. 2015, 77, 98–106. [Google Scholar] [CrossRef]
- Jiang, L.; Luo, S.; Fan, X.; Yang, Z.; Guo, R. Biomass and lipid production of marine microalgae using municipal wastewater and high concentration of CO2. Appl. Energy 2011, 88, 3336–3341. [Google Scholar] [CrossRef]
- Ji, M.K.; Abou-Shanab, R.A.I.; Kim, S.H.; Salama, E.S.; Lee, S.H.; Kabra, A.N.; Lee, Y.S.; Hong, S.; Jeon, B.H. Cultivation of microalgae species in tertiary municipal wastewater supplemented with CO2 for nutrient removal and biomass production. Ecol. Eng. 2013, 58, 142–148. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, T.; Qin, S. Heterotrophic cultivation of Chlorella kessleri for fatty acids production by carbon and nitrogen supplements. Biomass Bioenergy 2014, 47, 402–409. [Google Scholar] [CrossRef]
- Abreu, A.P.; Fernandes, B.; Vicente, A.A.; Teixeira, J.; Dragone, G. Mixotrophic cultivation of Chlorella vulgaris using industrial dairy waste as organic carbon source. Bioresour. Technol. 2012, 118, 61–66. [Google Scholar] [CrossRef] [Green Version]
- Tang, D.; Han, W.; Li, P.; Miao, X.; Zhong, J. CO2 biofixation and fatty acid composition of Scenedesmus obliquus and Chlorella pyrenoidosa in response to different CO2 levels. Bioresour. Technol. 2011, 102, 3071–3076. [Google Scholar] [CrossRef]
- Byreddy, A.R.; Gupta, A.; Barrow, C.J.; Puri, M. A quick colorimetric method for total lipid quantification in microalgae. J. Microbiol. Methods 2016, 125, 28–32. [Google Scholar] [CrossRef]
- Razzak, S.A. Biomass and Lipid Productivity of Neochloris oleoabundans for CO2 Biofixation and Biodiesel Application. Chem. Eng. Technol. 2018, 41, 2177–2185. [Google Scholar] [CrossRef]
- Eze, V.C.; Velasquez-Orta, S.B.; Hernández-García, A.; Monje-Ramírez, I.; Orta-Ledesma, M.T. Kinetic modelling of microalgae cultivation for wastewater treatment and carbon dioxide sequestration. Algal Res. 2018, 32, 131–141. [Google Scholar] [CrossRef]
- Xu, X.; Shen, Y.; Chen, J. Cultivation of Scenedesmus dimorphus for C/N/P removal and lipid production. Electron. J. Biotechnol. 2015, 18, 46–50. [Google Scholar] [CrossRef] [Green Version]
- Sydney, E.B.; da Silva, T.E.; Tokarski, A.; Novak, A.C.; de Carvalho, J.C.; Woiciecohwski, A.L.; Larroche, C.; Soccol, C.R. Screening of microalgae with potential for biodiesel production and nutrient removal from treated domestic sewage. Appl. Energy 2011, 88, 3291–3294. [Google Scholar] [CrossRef]
- Abou-Shanab, R.A.I.; Ji, M.K.; Kim, H.C.; Paeng, K.J.; Jeon, B.H. Microalgal species growing on piggery wastewater as a valuable candidate for nutrient removal and biodiesel production. J. Environ. Manag. 2013, 115, 257–264. [Google Scholar] [CrossRef]
- Molazadeh, M.; Danesh, S.; Ahmadzadeh, H.; Pourianfar, H.R. Influence of CO2 concentration and N:P ratio on Chlorella vulgaris-assisted nutrient bioremediation, CO2 biofixation and biomass production in a lagoon treatment plant. J. Taiwan Inst. Chem. Eng. 2019, 96, 114–120. [Google Scholar] [CrossRef]
- Cai, T.; Park, S.Y.; Li, Y. Nutrient recovery from wastewater streams by microalgae: Status and prospects. Renew. Sustain. Energy Rev. 2013, 19, 360–369. [Google Scholar] [CrossRef]
- Arbib, Z.; Ruiz, J.; Alvarez, P.; Garrido, C.; Barragan, J.; Perales, J.A. Chlorella stigmatophora for Urban Wastewater Nutrient Removal and CO2 Abatement. Int. J. Phytoremediation 2012, 14, 714–725. [Google Scholar] [CrossRef]
- Arbib, Z.; Ruiz, J.; Álvarez-Díaz, P.; Garrido-Pérez, C.; Perales, J.A. Capability of different microalgae species for phytoremediation processes: Wastewater tertiary treatment, CO2 bio-fixation and low cost biofuels production. Water Res. 2014, 49, 465–474. [Google Scholar] [CrossRef]
- Salama, E.S.; Kurade, M.B.; Abou-Shanab, R.A.I.; El-Dalatony, M.M.; Yang, I.S.; Min, B.; Jeon, B.H. Recent progress in microalgal biomass production coupled with wastewater treatment for biofuel generation. Renew. Sustain. Energy Rev. 2017, 79, 1189–1211. [Google Scholar] [CrossRef]
- Aslan, S.; Kapdan, I.K. Batch kinetics of nitrogen and phosphorus removal from synthetic wastewater by algae. Ecol. Eng. 2006, 28, 64–70. [Google Scholar] [CrossRef]
- Church, J.; Ryu, H.; Sadmani, A.H.M.A.; Randall, A.A.; Santo Domingo, J.; Lee, W.H. Multiscale investigation of a symbiotic microalgal-integrated fixed film activated sludge (MAIFAS) process for nutrient removal and photo-oxygenation. Bioresour. Technol. 2018, 268, 128–138. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Qiu, S.; Amadu, A.A.; Shen, Y.; Wang, L.; Wu, Z.; Ge, S. Simultaneous improvements on nutrient and Mg recoveries of microalgal bioremediation for municipal wastewater and nickel laterite ore wastewater. Bioresour. Technol. 2020, 297, 122517. [Google Scholar] [CrossRef] [PubMed]
- Razzak, S.A.; Ilyas, M.; Ali, S.A.M.; Hossain, M.M. Effects of CO2 Concentration and pH on mixotrophic growth of Nannochloropsis oculata. Appl. Biochem. Biotechnol. 2015, 176, 1290–1302. [Google Scholar] [CrossRef] [PubMed]
- Chavan, K.J.; Chouhan, S.; Jain, S.; Singh, P.; Yadav, M.; Tiwari, A. Environmental Factors Influencing Algal Biodiesel Production. Environ. Eng. Sci. 2014, 31, 602–611. [Google Scholar] [CrossRef]
- Vadiveloo, A.; Matos, A.P.; Chaudry, S.; Bahri, P.A.; Moheimani, N.R. Effect of CO2addition on treating anaerobically digested abattoir effluent (ADAE) using Chlorella sp. (Trebouxiophyceae). J. CO2 Util. 2020, 38, 273–281. [Google Scholar] [CrossRef]
- García, J.; Green, B.F.; Lundquist, T.; Mujeriego, R.; Hernández-Mariné, M.; Oswald, W.J. Long term diurnal variations in contaminant removal in high rate ponds treating urban wastewater. Bioresour. Technol. 2006, 97, 1709–1715. [Google Scholar] [CrossRef]
- Chi, Z.; O’Fallon, J.V.; Chen, S. Bicarbonate produced from carbon capture for algae culture. Trends Biotechnol. 2011, 29, 537–541. [Google Scholar] [CrossRef]
- Chen, G.; Zhao, L.; Qi, Y. Enhancing the productivity of microalgae cultivated in wastewater toward biofuel production: A critical review. Appl. Energy 2015, 137, 282–291. [Google Scholar] [CrossRef]
- Mofijur, M.; Rasul, M.G.; Hassan, N.M.S.; Nabi, M.N. Recent development in the production of third generation biodiesel from microalgae. Proc. Energy Procedia 2019, 156, 53–58. [Google Scholar] [CrossRef]
- Toledo-Cervantes, A.; Morales, M.; Novelo, E.; Revah, S. Carbon dioxide fixation and lipid storage by Scenedesmus obtusiusculus. Bioresour. Technol. 2013, 130, 652–658. [Google Scholar] [CrossRef]
- Ho, S.H.; Chen, C.Y.; Chang, J.S. Effect of light intensity and nitrogen starvation on CO2 fixation and lipid/carbohydrate production of an indigenous microalga Scenedesmus obliquus CNW-N. Bioresour. Technol. 2012, 113, 244–252. [Google Scholar] [CrossRef] [PubMed]
- Yeh, K.L.; Chang, J.S. Nitrogen starvation strategies and photobioreactor design for enhancing lipid content and lipid production of a newly isolated microalga Chlorella vulgaris ESP-31: Implications for biofuels. Biotechnol. J. 2011, 6, 1358–1366. [Google Scholar] [CrossRef] [PubMed]
- Xin, L.; Hong-ying, H.; Jia, Y. Lipid accumulation and nutrient removal properties of a newly isolated freshwater microalga, Scenedesmus sp. LX1, growing in secondary effluent. N. Biotechnol. 2010, 27, 59–63. [Google Scholar] [CrossRef]
Microalgae species | Scenedesmus dimorphus (UTEX B 746) |
Culture medium | Synthetic tertiary municipal wastewater |
Process type | Batch photobioreactor |
Initial working volume (mL) | 1700 mL including 100 mL inoculum |
Initial biomass concentration (mg/L) | 42 to 87 |
Gas flow rate (cc/min) | 1500 |
Light intensity (μmol photons/m2/s) | 50–54 (continuous) |
Nitrogen to phosphorous (N:P) ratio | 1:1, 2:1, 4:1, 6:1 and 8:1 |
CO2 conc. (%) in air | 0.03% (air, Case 1), 2% (Case 2) |
Temperature (°C) | 22 ± 2 |
pH (initial) | 7–7.5 |
Cultivation period (days) | 25 |
CO2 (% v/v) | N:P Ratio | Xmax (mg/L) | Pmax (mg/L/d) | µmax (d−1) |
---|---|---|---|---|
0.03% (air) | 1:1 | 433 ± 21.6 | 20.55 ± 1.03 | 0.1714 ± 0.00857 |
2:1 | 500 ± 25.0 | 21.75 ± 1.08 | 0.1698 ± 0.00849 | |
4:1 | 447 ± 22.4 | 24.83 ± 1.24 | 0.2586 ± 0.01293 | |
6:1 | 365 ± 18.3 | 18.80 ± 0.94 | 0.1792 ± 0.00896 | |
8:1 | 567 ± 28.4 | 37.00 ± 1.85 | 0.3642 ± 0.01821 | |
2% | 1:1 | 587 ± 29.4 | 25.90 ± 1.29 | 0.1792 ± 0.00896 |
2:1 | 733 ± 36.7 | 30.83 ± 1.54 | 0.2424 ± 0.01212 | |
4:1 | 640 ± 32.0 | 33.33 ± 1.67 | 0.2298 ± 0.01149 | |
6:1 | 573 ± 28.7 | 24.43 ± 1.22 | 0.1769 ± 0.00884 | |
8:1 | 647 ± 32.4 | 29.17 ± 1.45 | 0.1918 ± 0.00959 |
CO2 (% v/v) | N:P Ratio | TN Removal (%) | Nitrogen Removal Rate (mg/L/d) | Residual TN (mg/L) | T10(N) (d) |
---|---|---|---|---|---|
0.03% (air) | 1:1 | 100 | 0.828 | 0.1 | 6 |
2:1 | 100 | 1.15 | 0.1 | 14 | |
4:1 | 59 | 1.29 | 22.2 | -- | |
6:1 | 35 | 1.12 | 52.4 | -- | |
8:1 | 28 | 1.22 | 76.6 | -- | |
2% | 1:1 | 100 | 1.8 | 0.1 | 3 |
2:1 | 100 | 1.95 | 0.1 | 9 | |
4:1 | 93 | 1.96 | 3.6 | 21 | |
6:1 | 66 | 2.1 | 27.5 | -- | |
8:1 | 60 | 2.58 | 43.5 | -- |
Wastewater Media | Microalgae Species | CO2 (%) | Light Irradiance (μmol m−2 s−1) | Cultivation Period, Day and Temp. (°C) | Max. Biomass Conc. (mg L−1) | Max. Specific Growth Rate, µmax (day−1) | Initial Nutrient (mg L−1) | Final Nutrient (mg L−1) | Lipid Content (%) | References |
---|---|---|---|---|---|---|---|---|---|---|
Domestic | Scenedesmus sp. | 0.03 (air) | 60 | 7 (25) | 430 | 0.44 | TN = 41 TP = 53 | TN = 15.9 TP = 9.60 | 23.1 | [15] |
Tertiary treated | Scenedesmus obliquus | 15 | 45 | 7 (25) | 310 | 0.89 | TN = 8.7 TP = 1.7 | TN = 0.08 TP = 0.02 | 27 | [37] |
Pre-treated manure | Scenedesmus dimorphus | 15 | 238 | 7 | - | - | TN = 152 TP = 115 | TN = 145.9 TP = 109.8 | 24.2 | [44] |
Piggery refluent | Scenedesmus obliquus | - | 40 | 20 (25) | 770 | 0.28 | TN = 56 TP = 13.5 | TN = 21.8 TP = 5.40 | 31 | [46] |
Secondary treated | Scenedesmus sp. | - | 55–60 | 15 (25) | 120 | 0.12 | TN = 15.5 TP = 0.5 | TN = 0.16 TP = 0.01 | 33 | [65] |
Synthetic | Scenedesmus dimorphus | 0.03 (air) | 54 | 25 (22) | 433 | 0.17 | TN = 15 TP = 13 | TN = 0.0 TP = 6.60 | - | This study |
Synthetic | Scenedesmus dimorphus | 0.03 (air) | 54 | 25 (22) | 500 | 0.17 | TN = 27.6 TP = 13 | TN = 0.0 TP = 5.6 | - | This study |
Synthetic | Scenedesmus dimorphus | 2 | 54 | 25 (22) | 587 | 0.18 | TN = 14.5 TP = 13 | TN = 0.0 TP = 7.3 | 29 | This study |
Synthetic | Scenedesmus dimorphus | 2 | 54 | 25 (22) | 733 | 0.24 | TN = 27.5 TP = 13 | TN = 0.0 TP = 7.8 | - | This study |
Synthetic | Scenedesmus dimorphus | 2 | 54 | 25 (22) | 640 | 0.23 | TN = 52.6 TP = 13 | TN = 3.7 TP = 8.2 | - | This study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Faruque, M.O.; Hossain, M.M.; Farooq, W.; Razzak, S.A. Phototrophic Bioremediation of Municipal Tertiary Wastewater Coupling with Lipid Biosynthesis Using Scenedesmus dimorphus: Effect of Nitrogen to Phosphorous Ratio with/without CO2 Supplementation. Sustainability 2023, 15, 1409. https://doi.org/10.3390/su15021409
Faruque MO, Hossain MM, Farooq W, Razzak SA. Phototrophic Bioremediation of Municipal Tertiary Wastewater Coupling with Lipid Biosynthesis Using Scenedesmus dimorphus: Effect of Nitrogen to Phosphorous Ratio with/without CO2 Supplementation. Sustainability. 2023; 15(2):1409. https://doi.org/10.3390/su15021409
Chicago/Turabian StyleFaruque, Mohammed Omar, Mohammad Mozahar Hossain, Wasif Farooq, and Shaikh Abdur Razzak. 2023. "Phototrophic Bioremediation of Municipal Tertiary Wastewater Coupling with Lipid Biosynthesis Using Scenedesmus dimorphus: Effect of Nitrogen to Phosphorous Ratio with/without CO2 Supplementation" Sustainability 15, no. 2: 1409. https://doi.org/10.3390/su15021409
APA StyleFaruque, M. O., Hossain, M. M., Farooq, W., & Razzak, S. A. (2023). Phototrophic Bioremediation of Municipal Tertiary Wastewater Coupling with Lipid Biosynthesis Using Scenedesmus dimorphus: Effect of Nitrogen to Phosphorous Ratio with/without CO2 Supplementation. Sustainability, 15(2), 1409. https://doi.org/10.3390/su15021409