A Review of Emerging Scientific Discussions on Green Infrastructure (GI)-Prospects towards Effective Use of Urban Flood Plains
Abstract
:1. Introduction
2. Review Methodology
3. An Overview of Temporal Trends of Selected Scholarly Articles and Geographic Distribution of Case Studies
4. Trending Ideologies on GI Approaches for Broader Applications (Table 1)
Concepts | Characterization | Merits | Challenges | Sources |
---|---|---|---|---|
Green Infrastructure (GI) /Blue–Green Infrastructure (BGI) | Most definitions indicate GI includes all natural, semi-natural, and artificial networks of multifunctional ecological systems at all spatial scales; within, around, and between urban areas | Accepted as a ‘core-concept’; a multi-scaled approach; ‘connectivity’ is a key element; multifunctional role; nature Inspired | Context specific; financing and management related ambiguities; complexity in application due to broad definition | [43,44,45] |
Low-Impact Development (LID) | Main focus is to keep land in an undisturbed state wherever possible and, if disturbance is necessary, to decrease impact on vegetation, soil, and aquatic systems | Control of haphazard development; low impact on ecosystems | Effectiveness; significantly subjective to climatic conditions, landscape characteristics, topography, soil type and especially management actions | [8,23] |
Nature -Based Solutions (NBS) | Defined as ‘all actions which are inspired by, supported by, or copied from nature’ | A holistic process; tackles multiple problems at the same time | A broad, rather an umbrella term; claims complex actions | [46,47] |
Sustainable Urban Drainage Systems (SUDS) | Designed to let water either infiltrate or be retained in constructed structures to mimic natural disposal of surface water; based on natural hydrological processes | Restore natural features within the urban environment landscape | Functional complexity; implementation and monitoring concerns | [8,10] |
Water -Sensitive Urban Design (WSUD) | Denotes the integration of ‘urban water systems’ with the ‘natural water systems’ as parts of the urban hydrological cycle | Holistic management of the urban water cycle; source control of storm water | Lack of continuous data to design the systems | [47] |
Water-Sensitive City (WSC) | Falls under the umbrella notion of ‘sustainable and/or integrated urban water management’; focus on three pillars, namely (i) expansion of a multiplicity of water sources, (ii) provision of ecosystem services within the urban area, (iii) importance of the necessity for strong institutional capacities | Reduce dependence on a single water source; makes water provision resilient to future uncertainties | Depends on the institutional capacities specific to the context; political and management issues | [48] |
4.1. Nature-Inspired GI
4.2. Typologies of GI Approaches
5. Highlights of Research on GI Approaches for Storm Water and Flood Management
5.1. Adopting GI–Strong Potential and Success Stories
5.2. Concluding Arguments from Applied GI Case Studies (Figure 3)
6. SWOT Analysis of GI towards Effective Use of Urban Flood Plains
6.1. Strengths and Weaknesses of GI (Table 2)
Internal Factors | |||
---|---|---|---|
SWOT Component | Details | Sources | |
Supportive | S–Strengths |
| [2,7,8,10,14,16,17,18,22,23,28,29,30,32,42,45,62,68,71,92,93,94,95] |
| |||
| |||
| |||
| |||
Obstructing | W–Weaknesses |
| [2,7,8,10,14,16,23,28,42,59,69,97,98,99,100] |
| |||
| |||
|
6.2. Opportunities of and Threats against GI
7. Green and Gray Debate and Emerging Dialogues on GI for Effective Use of Flood Plains
7.1. Dilemma of GI for Macro-Scale Flood Plain Management
7.2. Emerging Discussion on a Mutually Complementing ‘Green–Gray’ Approach
7.3. GI Dialogues in a Futuristic Approach (Figure 4)
8. Research Gaps and Opportunities for Future Advancements
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zahed, M.A.; Hadipour, M.; Mastali, G.; Esmaeilzadeh, M.; Mojiri, A. Simultaneous Ecosystem Benefit and Climate Change Control: A Future Study on Sustainable Development in Iran. Int. J. Environ. Res. 2022, 16, 1–12. [Google Scholar] [CrossRef]
- Sanesi, G.; Colangelo, G.; Lafortezza, R.; Calvo, E.; Davies, C. Urban green infrastructure and urban forests: A case study of the Metropolitan Area of Milan. Landsc. Res. 2017, 42, 164–175. [Google Scholar] [CrossRef]
- Saeedi, I.; Tabrizi, A.R.M.; Bahremand, A.; Salmanmahiny, A. A soft systems methodology and interpretive structural modeling framework for Green infrastructure development to control runoff in Tehran metropolis. Nat. Resour. Model. 2022, 35, e12339. [Google Scholar] [CrossRef]
- Zhao, J.; Chen, H.; Liang, Q.; Xia, X.; Xu, J.; Hoey, T.; Barrett, B.; Renaud, F.G.; Bosher, L.; Zhou, X. Large-scale flood risk assessment under different development strategies: The Luanhe River Basin in China. Sustain. Sci. 2021, 17, 1365–1384. [Google Scholar] [CrossRef]
- Lu, W.; Xia, W.; Shoemaker, C.A. Surrogate Global Optimization for Identifying Cost-Effective Green Infrastructure for Urban Flood Control With a Computationally Expensive Inundation Model. Water Resour. Res. 2022, 58, e2021WR030928. [Google Scholar] [CrossRef]
- O’Donnell, E.C.; Lamond, J.E.; Thorne, C.R. Recognising barriers to implementation of Blue-Green Infrastructure: A Newcastle case study. Urban Water J. 2017, 14, 964–971. [Google Scholar] [CrossRef][Green Version]
- Honey-Rosés, J.; Schneider, D.W.; Brozović, N. Changing Ecosystem Service Values Following Technological Change. Environ. Manag. 2014, 53, 1146–1157. [Google Scholar] [CrossRef]
- Zhang, L.; Oyake, Y.; Morimoto, Y.; Niwa, H.; Shibata, S. Rainwater storage/infiltration function of rain gardens for management of urban storm runoff in Japan. Landsc. Ecol. Eng. 2019, 15, 421–435. [Google Scholar] [CrossRef]
- Bush, J. The role of local government greening policies in the transition towards nature-based cities. Environ. Innov. Soc. Transitions 2020, 35, 35–44. [Google Scholar] [CrossRef]
- Hoang, L.; Fenner, R. System interactions of stormwater management using sustainable urban drainage systems and green infrastructure. Urban Water J. 2016, 13, 739–758. [Google Scholar] [CrossRef]
- Hamlin, S.L.; Nielsen-Pincus, M. From gray copycats to green wolves: Policy and infrastructure for flood risk management. J. Environ. Plan. Manag. 2021, 64, 1599–1621. [Google Scholar] [CrossRef]
- Pennino, M.J.; McDonald, R.I.; Jaffe, P.R. Watershed-scale impacts of stormwater green infrastructure on hydrology, nutrient fluxes, and combined sewer overflows in the mid-Atlantic region. Sci. Total Environ. 2016, 565, 1044–1053. [Google Scholar] [CrossRef][Green Version]
- Wang, R.; Eckelman, M.J.; Zimmerman, J.B. Consequential Environmental and Economic Life Cycle Assessment of Green and Gray Stormwater Infrastructures for Combined Sewer Systems. Environ. Sci. Technol. 2013, 47, 11189–11198. [Google Scholar] [CrossRef]
- Wong, C.P.; Jiang, B.; Kinzig, A.P.; Ouyang, Z. Quantifying multiple ecosystem services for adaptive management of green infrastructure. Ecosphere 2018, 9, e02495. [Google Scholar] [CrossRef][Green Version]
- De Sousa, M.R.C.; Montalto, F.A.; Spatari, S. Using Life Cycle Assessment to Evaluate Green and Grey Combined Sewer Overflow Control Strategies. J. Ind. Ecol. 2012, 16, 901–913. [Google Scholar] [CrossRef]
- Backhaus, A.; Fryd, O. The aesthetic performance of urban landscape-based stormwater management systems: A review of twenty projects in Northern Europe. J. Landsc. Arch. 2013, 8, 52–63. [Google Scholar] [CrossRef]
- Lee, H.; Song, K.; Kim, G.; Chon, J. Flood-adaptive green infrastructure planning for urban resilience. Landsc. Ecol. Eng. 2021, 17, 427–437. [Google Scholar] [CrossRef]
- Szulczewska, B.; Giedych, R.; Maksymiuk, G. Can we face the challenge: How to implement a theoretical concept of green infrastructure into planning practice? Warsaw case study. Landsc. Res. 2017, 42, 176–194. [Google Scholar] [CrossRef]
- Chatzimentor, A.; Apostolopoulou, E.; Mazaris, A.D. A review of green infrastructure research in Europe: Challenges and opportunities. Landsc. Urban Plan. 2020, 198, 103775. [Google Scholar] [CrossRef]
- Conley, G.; McDonald, R.I.; Nodine, T.; Chapman, T.; Holland, C.; Hawkins, C.; Beck, N. Assessing the influence of urban greenness and green stormwater infrastructure on hydrology from satellite remote sensing. Sci. Total Environ. 2022, 817, 152723. [Google Scholar] [CrossRef]
- Prudencio, L.; Null, S.E. Stormwater management and ecosystem services: A review. Environ. Res. Lett. 2018, 13, 033002. [Google Scholar] [CrossRef]
- Keeley, M.; Koburger, A.; Dolowitz, D.P.; Medearis, D.; Nickel, D.; Shuster, W. Perspectives on the Use of Green Infrastructure for Stormwater Management in Cleveland and Milwaukee. Environ. Manag. 2013, 51, 1093–1108. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Chen, W.; Feng, Q.; Peng, C.; Kang, P. Cost-Benefit Analysis of Green Infrastructures on Community Stormwater Reduction and Utilization: A Case of Beijing, China. Environ. Manag. 2016, 58, 1015–1026. [Google Scholar] [CrossRef] [PubMed]
- O’Donnell, E.C.; Thorne, C.R.; Yeakley, J.A.; Chan, F.K.S. Sustainable Flood Risk and Stormwater Management in Blue-Green Cities; an Interdisciplinary Case Study in Portland, Oregon. JAWRA J. Am. Water Resour. Assoc. 2020, 56, 757–775. [Google Scholar] [CrossRef]
- Schindler, S.; Kropik, M.; Euller, K.; Bunting, S.W.; Schulz-Zunkel, C.; Hermann, A.; Hainz-Renetzeder, C.; Kanka, R.; Mauerhofer, V.; Gasso, V.; et al. Floodplain management in temperate regions: Is multifunctionality enhancing biodiversity? Environ. Evid. 2013, 2, 10. [Google Scholar] [CrossRef][Green Version]
- United Nations. The Great Green Technological Transformation. In World Economic and Social Survey. 2011. Available online: http://www.un.org/en/development/desa/policy/wess/wess_current/2011wess.pdf (accessed on 20 June 2022).
- Katharine, D.; Vivian, P.; Cionek, D.M. Ecosystem services provided by river-floodplain ecosystems. Hydrobiologia 2022, 0123456789. [Google Scholar] [CrossRef]
- Staddon, C.; Ward, S.; De Vito, L.; Zuniga-Teran, A.; Gerlak, A.K.; Schoeman, Y.; Hart, A.; Booth, G. Contributions of green infrastructure to enhancing urban resilience. Environ. Syst. Decis. 2018, 38, 330–338. [Google Scholar] [CrossRef][Green Version]
- Herzog, C.P. A multifunctional green infrastructure design to protect and improve native biodiversity in Rio de Janeiro. Landsc. Ecol. Eng. 2013, 12, 141–150. [Google Scholar] [CrossRef]
- Thorne, C.; Lawson, E.; Ozawa, C.; Hamlin, S.; Smith, L. Overcoming uncertainty and barriers to adoption of Blue-Green Infrastructure for urban flood risk management. J. Flood Risk Manag. 2018, 11, S960–S972. [Google Scholar] [CrossRef]
- Maes, J.; Jacobs, S. Nature-Based Solutions for Europe’s Sustainable Development. Conserv. Lett. 2017, 10, 121–124. [Google Scholar] [CrossRef]
- Kim, H.; Shoji, Y.; Tsuge, T.; Kubo, T.; Nakamura, F. Relational values help explain green infrastructure preferences: The case of managing crane habitat in Hokkaido, Japan. People Nat. 2021, 3, 861–871. [Google Scholar] [CrossRef]
- Snyder, H. Literature review as a research methodology: An overview and guidelines. J. Bus. Res. 2019, 104, 333–339. [Google Scholar] [CrossRef]
- Khan, K.S.; Kunz, R.; Kleijnen, J.; Antes, G. Five steps to conducting a systematic review. J. R. Soc. Med. 2003, 96, 118–121. [Google Scholar] [CrossRef]
- Tawfik, G.M.; Dila, K.A.S.; Mohamed, M.Y.F.; Tam, D.N.H.; Kien, N.D.; Ahmed, A.M.; Huy, N.T. A step by step guide for conducting a systematic review and meta-analysis with simulation data. Trop. Med. Heal. 2019, 47, 1–9. [Google Scholar] [CrossRef]
- Cox, D.T.; Shanahan, D.F.; Hudson, H.L.; Fuller, R.A.; Gaston, K.J. The impact of urbanisation on nature dose and the implications for human health. Landsc. Urban Plan. 2018, 179, 72–80. [Google Scholar] [CrossRef]
- Lourenço, I.B.; Beleño de Oliveira, A.K.; Marques, L.S.; Quintanilha Barbosa, A.A.; Veról, A.P.; Magalhães, P.C.; Miguez, M.G. A framework to support flood prevention and mitigation in the landscape and urban planning process regarding water dynamics. J. Clean. Prod. 2020, 277, 122983. [Google Scholar] [CrossRef]
- Battemarco, B.P.; Tardin-Coelho, R.; Veról, A.P.; de Sousa, M.M.; da Fontoura, C.V.T.; Figueiredo-Cunha, J.; Barbedo, J.M.R.; Miguez, M.G. Water dynamics and blue-green infrastructure (BGI): Towards risk management and strategic spatial planning guidelines. J. Clean. Prod. 2022, 333, 129993. [Google Scholar] [CrossRef]
- Jessup, K.; Parker, S.S.; Randall, J.M.; Cohen, B.S.; Roderick-Jones, R.; Ganguly, S.; Sourial, J. Planting Stormwater Solutions: A methodology for siting nature-based solutions for pollution capture, habitat enhancement, and multiple health benefits. Urban For. Urban Green. 2021, 64, 127300. [Google Scholar] [CrossRef]
- Keyvanfar, A.; Shafaghat, A.; Ismail, N.; Mohamad, S.; Ahmad, H. Multifunctional retention pond for stormwater management: A decision-support model using Analytical Network Process (ANP) and Global Sensitivity Analysis (GSA). Ecol. Indic. 2021, 124, 107317. [Google Scholar] [CrossRef]
- Ureta, J.; Motallebi, M.; Vassalos, M.; Alhassan, M. Valuing stakeholder preferences for environmental benefits of stormwater ponds: Evidence from choice experiment. J. Environ. Manag. 2021, 293, 112828. [Google Scholar] [CrossRef]
- Vineyard, D.; Ingwersen, W.W.; Hawkins, T.R.; Xue, X.; Demeke, B.; Shuster, W. Comparing Green and Gray Infrastructure Using Life Cycle Cost and Environmental Impact: A Rain Garden Case Study in Cincinnati, OH. J. Am. Water Resour. Assoc. 2015, 51, 1342–1360. [Google Scholar] [CrossRef]
- Du Toit, M.J.; Cilliers, S.S.; Dallimer, M.; Goddard, M.; Guenat, S.; Cornelius, S.F. Urban green infrastructure and ecosystem services in sub-Saharan Africa. Landsc. Urban Plan. 2018, 180, 249–261. [Google Scholar] [CrossRef]
- European Commission. Communication from the Commission to the European Parliament, The Council, the European Economic and Social Committee and the Committee of the Regions. Green infrastructure (GI)–Enhancing Europe’s Natural Capital. European Commission, Brussels, Belgium. 2013. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A52013DC0249 (accessed on 20 June 2022).
- Kang, S.; Kim, J.-O. Morphological analysis of green infrastructure in the Seoul metropolitan area, South Korea. Landsc. Ecol. Eng. 2015, 11, 259–268. [Google Scholar] [CrossRef]
- Conte, A.; Brunetti, P.; Allevato, E.; Stazi, S.R.; Antenozio, M.L.; Passatore, L.; Cardarelli, M. Nature Based Solutions on the river environment: An example of cross-disciplinary sustainable management, with local community active participation and visual art as science transfer tool. J. Environ. Plan. Manag. 2020, 1–18. [Google Scholar] [CrossRef]
- Loc, H.H.; Do, Q.H.; Cokro, A.; Irvine, K.N. Deep neural network analyses of water quality time series associated with water sensitive urban design (WSUD) features. J. Appl. Water Eng. Res. 2020, 8, 313–332. [Google Scholar] [CrossRef]
- Kösters, M.; Bichai, F.; Schwartz, K. Institutional inertia: Challenges in urban water management on the path towards a water-sensitive Surabaya, Indonesia. Int. J. Water Resour. Dev. 2020, 36, 50–68. [Google Scholar] [CrossRef]
- Afzalan, N.; Muller, B. The Role of Social Media in Green Infrastructure Planning: A Case Study of Neighborhood Participation in Park Siting. J. Urban Technol. 2014, 21, 67–83. [Google Scholar] [CrossRef]
- Ostrom, E. Polycentric systems for coping with collective action and global environmental change. Glob. Environ. Chang. 2010, 20, 550–557. [Google Scholar] [CrossRef]
- Carlet, F. Understanding attitudes toward adoption of green infrastructure: A case study of US municipal officials. Environ. Sci. Policy 2015, 51, 65–76. [Google Scholar] [CrossRef]
- Fletcher, T.D.; Shuster, W.; Hunt, W.F.; Ashley, R.; Butler, D.; Arthur, S.; Trowsdale, S.; Barraud, S.; Semadeni-Davies, A.; Bertrand-Krajewski, J.L.; et al. SUDS, LID, BMPs, WSUD and more—The evolution and application of terminology surroun. Urban Water J. 2015, 12, 525–542. [Google Scholar] [CrossRef]
- Deely, J.; Hynes, S. Blue-green or grey, how much is the public willing to pay? Landsc. Urban Plan. 2020, 203, 103909. [Google Scholar] [CrossRef]
- Eckart, K.; McPhee, Z.; Bolisetti, T. Performance and implementation of low impact development—A review. Sci. Total Environ. 2017, 607–608, 413–432. [Google Scholar] [CrossRef]
- Leng, L.; Mao, X.; Jia, H.; Xu, T.; Chen, A.S.; Yin, D.; Fu, G. Performance assessment of coupled green-grey-blue systems for Sponge City construction. Sci. Total Environ. 2020, 728, 138608. [Google Scholar] [CrossRef]
- Leng, L.; Jia, H.; Chen, A.S.; Zhu, D.Z.; Xu, T.; Yu, S. Multi-objective optimization for green-grey infrastructures in response to external uncertainties. Sci. Total Environ. 2021, 775, 145831. [Google Scholar] [CrossRef]
- Donati, G.F.; Bolliger, J.; Psomas, A.; Maurer, M.; Bach, P.M. Reconciling cities with nature: Identifying local Blue-Green Infrastructure interventions for regional biodiversity enhancement. J. Environ. Manag. 2022, 316, 115254. [Google Scholar] [CrossRef]
- Alves, A.; Gersonius, B.; Sanchez, A.; Vojinovic, Z.; Kapelan, Z. Multi-criteria Approach for Selection of Green and Grey Infrastructure to Reduce Flood Risk and Increase CO-benefits. Water Resour. Manag. 2018, 32, 2505–2522. [Google Scholar] [CrossRef]
- Mell, I. ‘But who’s going to pay for it?’ Contemporary approaches to green infrastructure financing, development and governance in London, UK. J. Environ. Policy Plan. 2021, 23, 628–645. [Google Scholar] [CrossRef]
- Koc, C.B.; Osmond, P.; Peters, A. Towards a comprehensive green infrastructure typology: A systematic review of approaches, methods and typologies. Urban Ecosyst. 2017, 20, 15–35. [Google Scholar] [CrossRef]
- Langemeyer, J.; Wedgwood, D.; McPhearson, T.; Baró, F.; Madsen, A.L.; Barton, D.N. Creating urban green infrastructure where it is needed—A spatial ecosystem service-based decision analysis of green roofs in Barcelona. Sci. Total Environ. 2020, 707, 135487. [Google Scholar] [CrossRef]
- Nordh, H.; Olafsson, A.S. Plans for urban green infrastructure in Scandinavia. J. Environ. Plan. Manag. 2021, 64, 883–904. [Google Scholar] [CrossRef]
- Maurer, M.; Zaval, L.; Orlove, B.; Moraga, V.; Culligan, P. More than nature: Linkages between well-being and greenspace influenced by a combination of elements of nature and non-nature in a New York City urban park. Urban For. Urban Green. 2021, 61, 127081. [Google Scholar] [CrossRef]
- Cortinovis, C.; Olsson, P.; Boke-Olén, N.; Hedlund, K. Scaling up nature-based solutions for climate-change adaptation: Potential and benefits in three European cities. Urban For. Urban Green. 2022, 67, 127450. [Google Scholar] [CrossRef]
- Ayele, B.Y.; Megento, T.L.; Habetemariam, K.Y. Assessing green infrastructure spatial plans in Addis Ababa, Ethiopia. Socio-Ecological Pract. Res. 2022, 4, 85–101. [Google Scholar] [CrossRef]
- Hansen, R.; van Lierop, M.; Rolf, W.; Gantar, D.; Erjavec, I.Š.; Rall, E.L.; Pauleit, S. Using green infrastructure to stimulate discourse with and for planning practice: Experiences with fuzzy concepts from a pan-European, a national and a local perspective. Socio-Ecological Pract. Res. 2021, 3, 257–280. [Google Scholar] [CrossRef]
- Meerow, S. The politics of multifunctional green infrastructure planning in New York City. Cities 2020, 100, 102621. [Google Scholar] [CrossRef]
- Sadeghi, K.M.; Kharaghani, S.; Tam, W.; Gaerlan, N.; Loáiciga, H. Green Stormwater Infrastructure (GSI) for Stormwater Management in the City of Los Angeles: Avalon Green Alleys Network. Environ. Process. 2019, 6, 265–281. [Google Scholar] [CrossRef]
- Hamidi, A.; Ramavandi, B.; Sorial, G.A. Sponge City—An emerging concept in sustainable water resource management: A scientometric analysis. Resour. Environ. Sustain. 2021, 5, 100028. [Google Scholar] [CrossRef]
- Kim, S.K.; Joosse, P.; Bennett, M.M.; Van Gevelt, T. Impacts of green infrastructure on flood risk perceptions in Hong Kong. Clim. Change 2020, 162, 2277–2299. [Google Scholar] [CrossRef]
- Otsuka, N.; Abe, H.; Isehara, Y.; Miyagawa, T. The potential use of green infrastructure in the regeneration of brownfield sites: Three case studies from Japan’s Osaka Bay Area. Local Environ. 2021, 26, 1346–1363. [Google Scholar] [CrossRef]
- Goulden, S.; Portman, M.E.; Carmon, N.; Alon-Mozes, T. From conventional drainage to sustainable stormwater management: Beyond the technical challenges. J. Environ. Manag. 2018, 219, 37–45. [Google Scholar] [CrossRef]
- Adyel, T.M.; Oldham, C.E.; Hipsey, M.R. Stormwater nutrient attenuation in a constructed wetland with alternating surface and subsurface flow pathways: Event to annual dynamics. Water Res. 2016, 107, 66–82. [Google Scholar] [CrossRef]
- Zölch, T.; Henze, L.; Keilholz, P.; Pauleit, S. Regulating urban surface runoff through nature-based solutions—An assessment at the micro-scale. Environ. Res. 2017, 157, 135–144. [Google Scholar] [CrossRef]
- Pal, S.; Paul, S. Linking hydrological security and landscape insecurity in the moribund deltaic wetland of India using tree-based hybrid ensemble method in python. Ecol. Informatics 2021, 65, 101422. [Google Scholar] [CrossRef]
- Browne, S.; Lintern, A.; Jamali, B.; Leitão, J.P.; Bach, P.M. Stormwater management impacts of small urbanising towns: The necessity of investigating the ‘devil in the detail’. Sci. Total Environ. 2021, 757, 143835. [Google Scholar] [CrossRef]
- Busker, T.; de Moel, H.; Haer, T.; Schmeits, M.; Hurk, B.V.D.; Myers, K.; Cirkel, D.G.; Aerts, J. Blue-green roofs with forecast-based operation to reduce the impact of weather extremes. J. Environ. Manag. 2022, 301, 113750. [Google Scholar] [CrossRef]
- Oberascher, M.; Kinzel, C.; Kastlunger, U.; Kleidorfer, M.; Zingerle, C.; Rauch, W.; Sitzenfrei, R. Integrated urban water management with micro storages developed as an IoT-based solution—The smart rain barrel. Environ. Model. Softw. 2021, 139, 105028. [Google Scholar] [CrossRef]
- Langemeyer, J.; Gómez-Baggethun, E.; Haase, D.; Scheuer, S.; Elmqvist, T. Bridging the gap between ecosystem service assessments and land-use planning through Multi-Criteria Decision Analysis (MCDA). Environ. Sci. Policy 2016, 62, 45–56. [Google Scholar] [CrossRef]
- Alves, A.; Gersonius, B.; Kapelan, Z.; Vojinovic, Z.; Sanchez, A. Assessing the Co-Benefits of green-blue-grey infrastructure for sustainable urban flood risk management. J. Environ. Manag. 2019, 239, 244–254. [Google Scholar] [CrossRef]
- Bai, Y.; Guo, R. The construction of green infrastructure network in the perspectives of ecosystem services and ecological sensitivity: The case of Harbin, China. Glob. Ecol. Conserv. 2021, 27, e01534. [Google Scholar] [CrossRef]
- Kuller, M.; Bach, P.M.; Roberts, S.; Browne, D.; Deletic, A. A planning-support tool for spatial suitability assessment of green urban stormwater infrastructure. Sci. Total Environ. 2019, 686, 856–868. [Google Scholar] [CrossRef]
- Mogollón, B.; Frimpong, E.A.; Hoegh, A.B.; Angermeier, P.L. An empirical assessment of which inland floods can be managed. J. Environ. Manag. 2016, 167, 38–48. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Rabe, S.-E.; Koellner, T.; Marzelli, S.; Schumacher, P.; Grêt-Regamey, A. National ecosystem services mapping at multiple scales The German exemplar. Ecol. Indic. 2016, 70, 357–372. [Google Scholar] [CrossRef]
- Sefton, C.; Sharp, L.; Quinn, R.; Stovin, V.; Pitcher, L. The feasibility of domestic raintanks contributing to community-oriented urban flood resilience. Clim. Risk Manag. 2022, 35, 100390. [Google Scholar] [CrossRef]
- Kato, S. Green Infrastructure for Asian Cities: The Spatial Concepts and Planning Strategies. J. 2011 Int. Symp. City Plan. 2011, 2011, 161–170. [Google Scholar]
- Inkoom, J.N.; Frank, S.; Fürst, C. Challenges and opportunities of ecosystem service integration into land use planning in West Africa—An implementation framework. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 2017, 13, 67–81. [Google Scholar] [CrossRef][Green Version]
- Khirfan, L.; El-Shayeb, H. Urban climate resilience through socio-ecological planning: A case study in Charlottetown, Prince Edward Island. J. Urban. Int. Res. Placemaking Urban Sustain. 2020, 13, 187–212. [Google Scholar] [CrossRef]
- Berte, E.; Panagopoulos, T. Enhancing city resilience to climate change by means of ecosystem services improvement: A SWOT analysis for the city of Faro, Portugal. Int. J. Urban Sustain. Dev. 2014, 6, 241–253. [Google Scholar] [CrossRef]
- Nikolaou, E.; Ierapetritis, D.; Tsagarakis, K. An evaluation of the prospects of green entrepreneurship development using a SWOT analysis. Int. J. Sustain. Dev. World Ecol. 2011, 18, 1–16. [Google Scholar] [CrossRef]
- Patnaik, R.; Poyyamoli, G. Developing an eco-industrial park in Puducherry region, India—A SWOT analysis. J. Environ. Plan. Manag. 2015, 58, 976–996. [Google Scholar] [CrossRef]
- Kremer, P.; Hamstead, Z.A.; McPhearson, T. The value of urban ecosystem services in New York City: A spatially explicit multicriteria analysis of landscape scale valuation scenarios. Environ. Sci. Policy 2016, 62, 57–68. [Google Scholar] [CrossRef]
- Stephens, D.B.; Miller, M.; Moore, S.J.; Umstot, T.; Salvato, D.J. Decentralized Groundwater Recharge Systems Using Roofwater and Stormwater Runoff1. JAWRA J. Am. Water Resour. Assoc. 2012, 48, 134–144. [Google Scholar] [CrossRef]
- Berdejo-Espinola, V.; Suárez-Castro, A.F.; Amano, T.; Fielding, K.S.; Oh, R.R.Y.; Fuller, R.A. Urban green space use during a time of stress: A case study during the COVID-19 pandemic in Brisbane, Australia. People Nat. 2021, 3, 597–609. [Google Scholar] [CrossRef] [PubMed]
- Garmendia, E.; Apostolopoulou, E.; Adams, W.M.; Bormpoudakis, D. Biodiversity and Green Infrastructure in Europe: Boundary object or ecological trap? Land Use Policy 2016, 56, 315–319. [Google Scholar] [CrossRef][Green Version]
- Jia, H.; Yao, H.; Tang, Y.; Yu, S.L.; Field, R.; Tafuri, A.N. LID-BMPs planning for urban runoff control and the case study in China. J. Environ. Manag. 2015, 149, 65–76. [Google Scholar] [CrossRef] [PubMed]
- Pataki, D.E.; Carreiro, M.M.; Cherrier, J.; Grulke, N.E.; Jennings, V.; Pincetl, S.; Pouyat, R.V.; Whitlow, T.H.; Zipperer, W.C. Coupling biogeochemical cycles in urban environments: Ecosystem services, green solutions, and misconceptions. Front. Ecol. Environ. 2011, 9, 27–36. [Google Scholar] [CrossRef]
- Byrne, J. When green is White: The cultural politics of race, nature and social exclusion in a Los Angeles urban national park. Geoforum 2012, 43, 595–611. [Google Scholar] [CrossRef][Green Version]
- Wolch, J.R.; Byrne, J.; Newell, J.P. Urban green space, public health, and environmental justice: The challenge of making cities “just green enough”. Landsc. Urban Plan. 2014, 125, 234–244. [Google Scholar] [CrossRef][Green Version]
- Olson, N.C.; Gulliver, J.S.; Nieber, J.L.; Kayhanian, M. Remediation to improve infiltration into compact soils. J. Environ. Manag. 2013, 117, 85–95. [Google Scholar] [CrossRef]
- Wong-Parodi, G.; Klima, K. Preparing for local adaptation: A study of community understanding and support. Clim. Change 2017, 145, 413–429. [Google Scholar] [CrossRef]
- Wong, S.M.; Montalto, F.A. Exploring the Long-Term Economic and Social Impact of Green Infrastructure in New York City. Water Resour. Res. 2020, 56, 1–20. [Google Scholar] [CrossRef]
- Jia, H.; Wang, Z.; Zhen, X.; Clar, M.; Yu, S.L. China’s sponge city construction: A discussion on technical approaches. Front. Environ. Sci. Eng. 2017, 11, 18. [Google Scholar] [CrossRef]
- Sun, N.; Hall, M. Coupling human preferences with biophysical processes: Modeling the effect of citizen attitudes on potential urban stormwater runoff. Urban Ecosyst. 2016, 19, 1433–1454. [Google Scholar] [CrossRef]
- Bell, C.D.; Spahr, K.; Grubert, E.; Stokes-Draut, J.; Gallo, E.; McCray, J.E.; Hogue, T.S. Decision Making on the Gray-Green Stormwater Infrastructure Continuum. J. Sustain. Water Built Environ. 2019, 5, 04018016. [Google Scholar] [CrossRef]
- Rosenbloom, J. Fifty shades of gray infrastructure: Land use and the failure to create resilient cities. Wash. Law Rev. 2018, 93, 317–384. [Google Scholar] [CrossRef][Green Version]
- Browne, M.A.; Chapman, M.G. Ecologically Informed Engineering Reduces Loss of Intertidal Biodiversity on Artificial Shorelines. Environ. Sci. Technol. 2011, 45, 8204–8207. [Google Scholar] [CrossRef]
- Marcucci, D.J.; Jordan, L.M. Benefits and Challenges of Linking Green Infrastructure and Highway Planning in the United States. Environ. Manag. 2013, 51, 182–197. [Google Scholar] [CrossRef]
- Byrne, J.A.; Lo, A.Y.; Jianjun, Y. Residents’ understanding of the role of green infrastructure for climate change adaptation in Hangzhou, China. Landsc. Urban Plan. 2015, 138, 43. [Google Scholar] [CrossRef][Green Version]
- Gashu, K.; Gebre-Egziabher, T. Public assessment of green infrastructure benefits and associated influencing factors in two Ethiopian cities: Bahir Dar and Hawassa. BMC Ecol. 2019, 19, 16. [Google Scholar] [CrossRef][Green Version]
- Mekala, G.D.; Jones, R.N.; Macdonald, D.H. Valuing the Benefits of Creek Rehabilitation: Building a Business Case for Public Investments in Urban Green Infrastructure. Environ. Manag. 2015, 55, 1354–1365. [Google Scholar] [CrossRef]
- Cousins, J.J.; Hill, D.T. Green infrastructure, stormwater, and the financialization of municipal environmental governance. J. Environ. Policy Plan. 2021, 23, 581–598. [Google Scholar] [CrossRef]
- Raco, M.; Livingstone, N.; Durrant, D. Seeing like an investor: Urban development planning, financialisation, and investors’ perceptions of London as an investment space. Eur. Plan. Stud. 2019, 27, 1064–1082. [Google Scholar] [CrossRef]
- Cherrier, J.; Klein, Y.; Link, H.; Pillich, J.; Yonzan, N. Hybrid green infrastructure for reducing demands on urban water and energy systems: A New York City hypothetical case study. J. Environ. Stud. Sci. 2016, 6, 77–89. [Google Scholar] [CrossRef]
- Lennon, M.; Scott, M.; O’Neill, E. Urban Design and Adapting to Flood Risk: The Role of Green Infrastructure. J. Urban Des. 2014, 19, 745–758. [Google Scholar] [CrossRef]
- Kaluarachchi, Y. Potential advantages in combining smart and green infrastructure over silo approaches for future cities. Front. Eng. Manag. 2021, 8, 98–108. [Google Scholar] [CrossRef]
- Rendón, O.R.; Garbutt, A.; Skov, M.; Möller, I.; Alexander, M.; Ballinger, R.; Wyles, K.; Smith, G.; McKinley, E.; Griffin, J.; et al. A framework linking ecosystem services and human well-being: Saltmarsh as a case study. People Nat. 2019, 1, 486–496. [Google Scholar] [CrossRef]
- Porse, E. Open data and stormwater systems in Los Angeles: Applications for equitable green infrastructure. Local Environ. 2018, 23, 505–517. [Google Scholar] [CrossRef]
- Dzyuban, Y.; Hondula, D.M.; Coseo, P.J.; Redman, C.L. Public transit infrastructure and heat perceptions in hot and dry climates. Int. J. Biometeorol. 2022, 66, 345–356. [Google Scholar] [CrossRef]
- Lamond, J.; Everett, G. Sustainable Blue-Green Infrastructure: A social practice approach to understanding community preferences and stewardship. Landsc. Urban Plan. 2019, 191, 103639. [Google Scholar] [CrossRef]
- Beery, T.H.; Raymond, C.M.; Kyttä, M.; Olafsson, A.S.; Plieninger, T.; Sandberg, M.; Stenseke, M.; Tengö, M.; Jönsson, K.I. Fostering incidental experiences of nature through green infrastructure planning. AMBIO 2017, 46, 717–730. [Google Scholar] [CrossRef]
External Factors | |||
---|---|---|---|
SWOT Component | Details | Sources | |
Supportive | O–Opportunities |
| [1,14,16,18,22,23,24,30,42,59,64,71,82,103,104] |
| |||
| |||
| |||
| |||
Valuation of GI co-benefits is trending in business, commerce and real-estate sectors | |||
| |||
| |||
| |||
| |||
Obstructing | T–Threats |
| [1,3,6,14,16,22,28,30,42,71] |
| |||
| |||
| |||
| |||
| |||
| |||
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Herath, H.M.M.S.D.; Fujino, T.; Senavirathna, M.D.H.J. A Review of Emerging Scientific Discussions on Green Infrastructure (GI)-Prospects towards Effective Use of Urban Flood Plains. Sustainability 2023, 15, 1227. https://doi.org/10.3390/su15021227
Herath HMMSD, Fujino T, Senavirathna MDHJ. A Review of Emerging Scientific Discussions on Green Infrastructure (GI)-Prospects towards Effective Use of Urban Flood Plains. Sustainability. 2023; 15(2):1227. https://doi.org/10.3390/su15021227
Chicago/Turabian StyleHerath, Herath Mudiyanselage Malhamige Sonali Dinesha, Takeshi Fujino, and Mudalige Don Hiranya Jayasanka Senavirathna. 2023. "A Review of Emerging Scientific Discussions on Green Infrastructure (GI)-Prospects towards Effective Use of Urban Flood Plains" Sustainability 15, no. 2: 1227. https://doi.org/10.3390/su15021227