Demonstration of an Integrated Methodology for the Sustainable Valorisation of Bakery Former Food Products as a Pig Feed Ingredient: A Circular Bioeconomy Paradigm
Abstract
:1. Introduction
2. Methodology
2.1. Bakery Meal Production
2.2. Bakery Meal Characterisation
2.3. Animals, Diets and Experiment Design
2.4. Meat Analysis and Health Lipid Indices
- Σ = Summatory;
- MUFA = monounsaturated FAs;
- PUFA = polyunsaturated FAs.
2.5. Sensory Evaluation Testing
2.5.1. Participants
2.5.2. Meat Samples and Preparation
2.5.3. SET Procedure
2.6. Statistical Analysis
3. Results and Discussion
3.1. Mapping Production Points and Recording Characteristics and Quantities of Food By-Products
3.2. Experimental Evaluation of Alternative Diets with BM in the Quality of the Carcass
3.3. Findings of the Sensory Evaluation Test
Regression Analysis
3.4. Development of Smart Applications and Tools for the Traceability, Marketing, and Supply of Food By-Products
3.4.1. Traceability System
- One or more products or group of products are created, observed or destroyed (Object Event);
- One or more products are aggregated, or separated from, a larger unit, such as a box or pallet (Aggregation Event);
- One or more products are composed and transformed for the production of one or more products (Transformation Event);
- One or more products are related to or disconnected from a business transaction (Transaction Event).
- What (the subject of the event, either a specific object (EPC) or a class of object (EPC class) and a quantity);
- When (the time at which the event occurred);
- Where (the location where the event took place);
- Why (the business context of the event).
3.4.2. Digital Tools Supporting Traceability
- (i)
- B2B App: Tool for supporting the disposal of FFPs by announcing the availability of quantities of FFPs with full information regarding their composition and state. The tool supports the implementation of relevant commercial transactions as well as the planning and real-time monitoring of cargo shipments (Figure 3).
- Submission by sellers (producers, groups of producers, traders, etc.) for FFPs with specific characteristics (focusing on the potential uses of products) (Figure 3);
- Request for quotation for products by buyers;
- Negotiation process for price determination and other elements of commercial agreement;
- Quality control procedures based on relevant protocols;
- Monitoring the contract execution process, including the payment completion stage.
- (ii)
- Traceability App: A tool that covers the traceability needs with a focus on internal traceability at the level of FFP production units using GS1 global standards. It has an open architecture with interfaces with the production points for batching and labelling based on sorting and weighing (Figure 4).
- During the receipt of FFPs (Incoming LOT event);
- During the transport to processing (Shipping event, Receiving Event);
- During the processing and production of the BM (Transformation event);
- During storage (Storing event, Unstoring event);
- During transport to the rearing unit (Shipping event);
- During the receiving and storing of products (Receiving event);
- During the production of the ration (Transformation events).
- (iii)
- Label Creation App: A tool for selecting the information for label creation. It has full interface with Traceability App.
- Labels template creation at organisation level per product and per processing stage;
- Information receiving, to be printed on the label, from Traceability App;
- Label creation, checking, and printing.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Malak-Rawlikowska, A.; Gębska, M.; Hoste, R.; Leeb, C.; Montanari, C.; Wallace, M.; de Roest, K. Developing a Methodology for Aggregated Assessment of the Economic Sustainability of Pig Farms. Energies 2021, 14, 1760. [Google Scholar] [CrossRef]
- Kwas, M.; Paccagnini, A.; Rubaszek, M. Common factors and the dynamics of cereal prices. A forecasting perspective. J. Commod. Mark. 2022, 28, 100240. [Google Scholar] [CrossRef]
- Mavromichalis, I.; Kerr, B.J.; Parr, T.M.; Albin, D.M.; Gabert, V.M.; Baker, D.H. Valine requirement of nursery pigs. J. Anim. Sci. 2001, 79, 1223. [Google Scholar] [CrossRef] [PubMed]
- Gunnarsson, S.; Arvidsson Segerkvist, K.; Wallgren, T.; Hansson, H.; Sonesson, U. A Systematic Mapping of Research on Sustainability Dimensions at Farm-level in Pig Production. Sustainability 2020, 12, 4352. [Google Scholar] [CrossRef]
- Ndue, K.; Pál, G. Life Cycle Assessment Perspective for Sectoral Adaptation to Climate Change: Environmental Impact Assessment of Pig Production. Land 2022, 11, 827. [Google Scholar] [CrossRef]
- FAO. FAO Publications Catalogue 2022; FAO: Rome, Italy, 2022; ISBN 978-92-5-136969-2. [Google Scholar]
- Ruckli, A.K.; Hörtenhuber, S.J.; Ferrari, P.; Guy, J.; Helmerichs, J.; Hoste, R.; Hubbard, C.; Kasperczyk, N.; Leeb, C.; Malak-Rawlikowska, A.; et al. Integrative Sustainability Analysis of European Pig Farms: Development of a Multi-Criteria Assessment Tool. Sustainability 2022, 14, 5988. [Google Scholar] [CrossRef]
- U.S. Pork Center of Excellence. National Swine Nutrition Guide—U.S. Pork Center of Excellence. Available online: https://www.usporkcenter.org/product/national-swine-nutrition-guide/ (accessed on 21 June 2023).
- Food Waste. Available online: https://food.ec.europa.eu/safety/food-waste_en (accessed on 21 June 2023).
- Preparatory Study on Food Waste Across EU 27—European Environment Agency. Available online: https://www.eea.europa.eu/data-and-maps/data/external/preparatory-study-on-food-waste (accessed on 21 June 2023).
- Arbinolo, R. EU Wastes More Food Than It Imports, Says New Report. Available online: https://eeb.org/eu-wastes-more-food-than-it-imports-says-new-report/ (accessed on 24 July 2023).
- De Boer, F. Food waste disposal in Dutch livestock husbandry. Livest. Prod. Sci. 1980, 7, 39–48. [Google Scholar] [CrossRef]
- Westendorf, M.L.; Dong, Z.C.; Schoknecht, P.A. Recycled cafeteria food waste as a feed for swine: Nutrient content digestibility, growth, and meat quality. J. Anim. Sci. 1998, 76, 2976. [Google Scholar] [CrossRef]
- Barasona, J.A.; Gallardo, C.; Cadenas-Fernández, E.; Jurado, C.; Rivera, B.; Rodríguez-Bertos, A.; Arias, M.; Sánchez-Vizcaíno, J.M. First Oral Vaccination of Eurasian Wild Boar against African Swine Fever Virus Genotype II. Front. Vet. Sci. 2019, 6, 137. [Google Scholar] [CrossRef]
- Chenais, E.; Depner, K.; Guberti, V.; Dietze, K.; Viltrop, A.; Ståhl, K. Epidemiological considerations on African swine fever in Europe 2014–2018. Porc. Health Manag. 2019, 5, 6. [Google Scholar] [CrossRef]
- Ramu, P. Performance and Nutrient Digestibility in Sheep Fed Diets Containing Varying Levels of Biscuit Waste; Narsimha Rao Telangana Veterinary University: Hyderabad, India, 2018. [Google Scholar]
- Tiwari, M.R.; Dhakal, H.R. Bakery Waste is an Alternative of Maize to Reduce the Cost of Pork Production. Int. J. Res. Agric. For. 2020, 7, 1–9. [Google Scholar] [CrossRef]
- Mavromichalis, I. Formulating Poultry and Pig Diets with Bakery Meal. Available online: https://www.wattagnet.com/home/article/15508699/formulating-poultry-and-pig-diets-with-bakery-meal (accessed on 22 July 2023).
- Ottoboni, M.; Tretola, M.; Luciano, A.; Giuberti, G.; Gallo, A.; Pinotti, L. Carbohydrate digestion and predicted glycemic index of bakery/confectionary ex-food intended for pig nutrition. Ital. J. Anim. Sci. 2019, 18, 838–849. [Google Scholar] [CrossRef]
- European Commission. Commission Notice of 16 April 2018 Laying Down Guidelines for the Feed Use of Food No Longer Intended for Human Consumption; European Commission: Brussels, Belgium, 2018. [Google Scholar]
- Giromini, C.; Ottoboni, M.; Tretola, M.; Marchis, D.; Gottardo, D.; Caprarulo, V.; Baldi, A.; Pinotti, L. Nutritional evaluation of former food products (ex-food) intended for pig nutrition. Food Addit. Contam. Part A 2017, 34, 1436–1445. [Google Scholar] [CrossRef] [PubMed]
- Stenmarck, A.; Jensen, C.; Quested, T.; Moates, G. Estimates of European Food Waste Levels; FUSIONS: Stockholm, Sweden, 2016. [Google Scholar]
- Banik, S.; Sahoo, N.R.; Naskar, S.; Pourouchottamane, R.; Mohan, N.H.; Tamuli, M.K. Annual Report All India Coordinated Research Project and Mega Seed Project on Pig; Indian Council of Agricultural Research: New Delhi, India, 2011. [Google Scholar]
- Rojas, O.J.; Liu, Y.; Stein, H.H. Phosphorus digestibility and concentration of digestible and metabolizable energy in corn, corn coproducts, and bakery meal fed to growing pigs1. J. Anim. Sci. 2013, 91, 5326–5335. [Google Scholar] [CrossRef]
- Casas, G.A.; Almeida, J.A.S.; Stein, H.H. Amino acid digestibility in rice co-products fed to growing pigs. Anim. Feed Sci. Technol. 2015, 207, 150–158. [Google Scholar] [CrossRef]
- Slominski, B.A.; Boros, D.; Campbell, L.D.; Guenter, W.; Jones, O. Wheat by-products in poultry nutrition. Part I. Chemical and nutritive composition of wheat screenings, bakery by-products and wheat mill run. Can. J. Anim. Sci. 2004, 84, 421–428. [Google Scholar] [CrossRef]
- Liu, Y.; Jha, R.; Stein, H.H.; Adedokun, S.A.; Adeola, O.; Azain, M.J.; Baidoo, S.K.; Carter, S.D.; Crenshaw, T.D.; Dilger, R.; et al. Nutritional composition, gross energy concentration, and in vitro digestibility of dry matter in 46 sources of bakery meals. J. Anim. Sci. 2018, 96, 4685–4692. [Google Scholar] [CrossRef]
- Superchi, P.; Barbera, E.; Beretti, V.; Gatti, L.; Sabbioni, A. Bakery wastes in sows lactating diets. Ann. Fac. Med. Vet. Parma 2008, XXVIII, 201–210. [Google Scholar]
- Kumar, A.; Roy, B.; Lakhani, G.P.; Jain, A. Evaluation of dried bread waste as feedstuff for growing crossbred pigs. Vet. World 2014, 7, 698–701. [Google Scholar] [CrossRef]
- Manu, F.; Okai, D.; Boateng, M.; Frimpong, Y. Nutrient composition, pest and microbial status and effects of discarded biscuits on the growth performance, carcass characteristics and economic profiles of growing-finishing pigs. Afr. J. Food Agric. Nutr. Dev. 2015, 15, 10241–10254. [Google Scholar] [CrossRef]
- Barman, K.; Tamuli, M.K.; Sarma, D.K.; Banik, S.; Mohan, N.H.; Thomas, R.; Gokuldas, P.P.; Pegu, S.R.; Kaushik, P. Effect of Replacing Maize with Bakery Waste on the Performance of Growing Crossbred Pigs. Anim. Nutr. Feed Technol. 2016, 16, 165. [Google Scholar] [CrossRef]
- Kumar, A.; Roy, B.; Sirohi, R.; Singh, Y.; Singh, D.N. Effect of Bread Waste Feeding on Growth Performance and Carcass Traits of Crossbred Pigs. J. Anim. Res. 2016, 6, 297. [Google Scholar] [CrossRef]
- Ojediran, T.K. Growth response, cost benefit, carcass characteristics and organoleptic properties of pigs fed biscuit dough as a replacement for maize. Acta Fytotech. Zootech. 2019, 22, 58–63. [Google Scholar] [CrossRef]
- Tiwari, M.R.; Dhakal, H.R.; Sah Sudi, M. Growth comparison of piglets fed with different level of bakery waste in basal diet. J. Agric. For. Univ. 2020, 4, 261–267. [Google Scholar] [CrossRef]
- AL Sagan, A.A.; Al-Abdulkader, A.M.; Al-Dakhil, A.I.; Khalil, S.; Al-Khuraish, M.M. Technical and economic potentials of the unconventional extruded dried Arabic bread wastes in broilers diets. Saudi J. Biol. Sci. 2021, 28, 262–271. [Google Scholar] [CrossRef]
- Ramteke, B.; Gadegaonkar, G.; Prabhale, B.; Sirsat, S. Effect of Replacement of Maize with Dry Bakery Waste with or without Lysophospholipid in Broiler Diet. Int. J. Livest. Res. 2019, 9, 204–208. [Google Scholar] [CrossRef]
- Kaltenegger, A.; Humer, E.; Stauder, A.; Zebeli, Q. Feeding of bakery by-products in the replacement of grains enhanced milk performance, modulated blood metabolic profile, and lowered the risk of rumen acidosis in dairy cows. J. Dairy Sci. 2020, 103, 10122–10135. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations. Food Wastage Footprint: Impacts on Natural Resources. Summary Report; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2013; ISBN 978-92-5-107752-8. [Google Scholar]
- Albala, K. International Assessment of Agricultural Knowledge, Science and Technology for Development Study. In The SAGE Encyclopedia of Food Issues; SAGE Publications, Inc.: Thousand Oaks, CA, USA, 2015. [Google Scholar] [CrossRef]
- Ominski, K.; McAllister, T.; Stanford, K.; Mengistu, G.; Kebebe, E.G.; Omonijo, F.; Cordeiro, M.; Legesse, G.; Wittenberg, K. Utilization of by-products and food waste in livestock production systems: A Canadian perspective. Anim. Front. 2021, 11, 55–63. [Google Scholar] [CrossRef]
- Melas, L.; Batsioula, M.; Malamakis, A.; Patsios, S.I.; Geroliolios, D.; Alexandropoulos, E.; Skoutida, S.; Karkanias, C.; Dedousi, A.; Kritsa, M.-Z.; et al. Circular Bioeconomy Practices in the Greek Pig Sector: The Environmental Performance of Bakery Meal as Pig Feed Ingredient. Sustainability 2023, 15, 11688. [Google Scholar] [CrossRef]
- Shurson, G.C. “What a Waste”—Can We Improve Sustainability of Food Animal Production Systems by Recycling Food Waste Streams into Animal Feed in an Era of Health, Climate, and Economic Crises? Sustainability 2020, 12, 7071. [Google Scholar] [CrossRef]
- Govindaraju, M.; Sathasivam, K.V.; Marimuthu, K. Waste to Wealth: Value Recovery from Bakery Wastes. Sustainability 2021, 13, 2835. [Google Scholar] [CrossRef]
- Narisetty, V.; Cox, R.; Willoughby, N.; Aktas, E.; Tiwari, B.; Matharu, A.S.; Salonitis, K.; Kumar, V. Recycling bread waste into chemical building blocks using a circular biorefining approach. Sustain. Energy Fuels 2021, 5, 4842–4849. [Google Scholar] [CrossRef] [PubMed]
- Ungureanu-Comanita, E.-D.; Olteanu, S.; Cosbuc, E.L.; Smaranda, C.; Gavrilescu, M. Environmental Pressures Generated by Bakery Waste for Sustainable Management. In Proceedings of the 2021 International Conference on e-Health and Bioengineering (EHB), Iasi, Romania, 18–19 November 2021; pp. 1–4. [Google Scholar]
- Luciano, A.; Tretola, M.; Ottoboni, M.; Baldi, A.; Cattaneo, D.; Pinotti, L. Potentials and Challenges of Former Food Products (Food Leftover) as Alternative Feed Ingredients. Animals 2020, 10, 125. [Google Scholar] [CrossRef]
- The European Comission Commission Regulation (EU) No 142/2011 of 25 February 2011 implementing Regulation (EC) No 1069/2009 of the European Parliament and of the Council laying down health rules as regards animal by-products and derived products not intended for human consumpti. Off. J. Eur. Union 2011, L 54, 1–254.
- Commission Regulation (EC) No 152/2009 of 27 January 2009 Laying down the Methods of Sampling and Analysis for the Official Control of Feed (Text with EEA Relevance). Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32009R0152 (accessed on 21 June 2023).
- Dedousi, A.; Kritsa, M.-Z.; Đukić Stojčić, M.; Sfetsas, T.; Sentas, A.; Sossidou, E. Production Performance, Egg Quality Characteristics, Fatty Acid Profile and Health Lipid Indices of Produced Eggs, Blood Biochemical Parameters and Welfare Indicators of Laying Hens Fed Dried Olive Pulp. Sustainability 2022, 14, 3157. [Google Scholar] [CrossRef]
- European Commission. Consolidated Text: Commission Regulation (EEC) No 2568/91 of 11 July 1991 on the Characteristics of Olive Oil and Olive-Residue Oil and on the Relevant Methods of Analysis; European Commission: Brussels, Belgium, 1991. [Google Scholar]
- Vendl, O.; Berthiller, F.; Crews, C.; Krska, R. Simultaneous determination of deoxynivalenol, zearalenone, and their major masked metabolites in cereal-based food by LC–MS–MS. Anal. Bioanal. Chem. 2009, 395, 1347–1354. [Google Scholar] [CrossRef]
- Ouakhssase, A.; Chahid, A.; Choubbane, H.; Aitmazirt, A.; Addi, E.A. Optimization and validation of a liquid chromatography/tandem mass spectrometry (LC-MS/MS) method for the determination of aflatoxins in maize. Heliyon 2019, 5, e01565. [Google Scholar] [CrossRef] [PubMed]
- ISO 21528-2:2017; Microbiology of the Food Chain—Horizontal Method for the Detection and Enumeration of Enterobacteriaceae—Part 2: Colony-Count Technique. International Organization for Standardization: Geneva, Switzerland, 2017.
- ISO 6579-1:2017; Microbiology of the Food Chain—Horizontal Method for the Detection, Enumeration and Serotyping of Salmonella—Part 1: Detection of Salmonella spp. International Organization for Standardization: Geneva, Switzerland, 2017.
- ISO 10272-2:2017(en); Microbiology of the Food Chain—Horizontal Method for Detection and Enumeration of Campylobacter spp.—Part 2: Colony-Count Technique. International Organization for Standardization: Geneva, Switzerland, 2017.
- EU Council Directive 2008/120/EC of 18 December 2008 Laying Down Minimum Standards for the Protection of Pigs; European Commission: Brussels, Belgium, 2008.
- Mihafu, F.D.; Issa, J.Y.; Kamiyango, M.W. Implication of Sensory Evaluation and Quality Assessment in Food Product Development: A Review. Curr. Res. Nutr. Food Sci. J. 2020, 8, 690–702. [Google Scholar] [CrossRef]
- Adam, S.S.M. Sensory and Instrumental Methods of Meat Evaluation: A Review. Int. J. Food Sci. Agric. 2021, 5, 627–638. [Google Scholar] [CrossRef]
- Dedousi, A.; Patsios, S.I.; Kritsa, M.-Z.; Kontogiannopoulos, K.N.; Ioannidou, M.; Zdragas, A.; Sossidou, E.N. Growth Performance, Meat Quality, Welfare and Behavior Indicators of Broilers Fed Diets Supplemented with Yarrowia lipolytica Yeast. Sustainability 2023, 15, 1924. [Google Scholar] [CrossRef]
- Ioannidou, M.D.; Maggira, M.; Samouris, G. Physicochemical Characteristics, Fatty Acids Profile and Lipid Oxidation during Ripening of Graviera Cheese Produced with Raw and Pasteurized Milk. Foods 2022, 11, 2138. [Google Scholar] [CrossRef] [PubMed]
- Omri, B.; Chalghoumi, R.; Izzo, L.; Ritieni, A.; Lucarini, M.; Durazzo, A.; Abdouli, H.; Santini, A. Effect of Dietary Incorporation of Linseed Alone or Together with Tomato-Red Pepper Mix on Laying Hens’ Egg Yolk Fatty Acids Profile and Health Lipid Indexes. Nutrients 2019, 11, 813. [Google Scholar] [CrossRef] [PubMed]
- Ulbricht, T.L.V.; Southgate, D.A.T. Coronary heart disease: Seven dietary factors. Lancet 1991, 338, 985–992. [Google Scholar] [CrossRef] [PubMed]
- Ko, E.-Y.; Saini, R.K.; Keum, Y.-S.; An, B.-K. Age of Laying Hens Significantly Influences the Content of Nutritionally Vital Lipophilic Compounds in Eggs. Foods 2020, 10, 22. [Google Scholar] [CrossRef]
- Zeb, A.; Ullah, F. A Simple Spectrophotometric Method for the Determination of Thiobarbituric Acid Reactive Substances in Fried Fast Foods. J. Anal. Methods Chem. 2016, 2016, 9412767. [Google Scholar] [CrossRef]
- Ruiz-Capillas, C.; Herrero, A.M.; Pintado, T.; Delgado-Pando, G. Sensory Analysis and Consumer Research in New Meat Products Development. Foods 2021, 10, 429. [Google Scholar] [CrossRef]
- Prasad, P.N.G.; Bose, B.; Chopra, N.; Dwarkanath, P.; Sarma, P.M.; Raj, J.M. P06-042-23 Sensory Evaluation and Acceptability Test of the Daily Consumed Food Snacks Prepared with Dried Mushroom Powder Enhanced with Vitamin-D2. Curr. Dev. Nutr. 2023, 7, 100878. [Google Scholar] [CrossRef]
- Luo, J.; Ji, C.; Qiu, C.; Jia, F. Agri-Food Supply Chain Management: Bibliometric and Content Analyses. Sustainability 2018, 10, 1573. [Google Scholar] [CrossRef]
- Yadav, S.; Luthra, S.; Garg, D. Internet of things (IoT) based coordination system in Agri-food supply chain: Development of an efficient framework using DEMATEL-ISM. Oper. Manag. Res. 2020, 15, 1–27. [Google Scholar] [CrossRef]
- van Wassenaer, L.; Verdouw, C.; Kassahun, A.; van Hilten, M.; van der Meij, K.; Tekinerdogan, B. Tokenizing circularity in agri-food systems: A conceptual framework and exploratory study. J. Clean. Prod. 2023, 413, 137527. [Google Scholar] [CrossRef]
- Nattassha, R.; Handayati, Y.; Simatupang, T.M.; Siallagan, M. Understanding circular economy implementation in the agri-food supply chain: The case of an Indonesian organic fertiliser producer. Agric. Food Secur. 2020, 9, 10. [Google Scholar] [CrossRef]
- Tolcha, Y.; Kassahun, A.; Montanaro, T.; Conzon, D.; Schwering, G.; Maselyne, J.; Kim, D. Towards Interoperability of Entity-Based and Event-Based IoT Platforms: The Case of NGSI and EPCIS Standards. IEEE Access 2021, 9, 49868–49880. [Google Scholar] [CrossRef]
- Bruno, G.; Viola, V. A Collaborative Architecture for Supply Chain Transparency Based on EPCIS Standard and MongoDB. In Collaboration in a Hyperconnected World; Springer International Publishing: Berlin/Heidelberg, Germany, 2016; pp. 599–607. [Google Scholar]
- Traub, K.; Armenio, F.; Barthel, H.; Dietrich, P.; Duker, J.; Floerkemeier, C.; Garrett, J.; Harrison, M.; Hogan, B.; Mitsugi, J.; et al. The GS1 EPCglobal Architecture Framework; GS1: Brussels, Belgium, 2015. [Google Scholar]
- Thakur, M.; Sørensen, C.-F.; Bjørnson, F.O.; Forås, E.; Hurburgh, C.R. Managing food traceability information using EPCIS framework. J. Food Eng. 2011, 103, 417–433. [Google Scholar] [CrossRef]
- Moysiadis, T.; Spanaki, K.; Kassahun, A.; Kläser, S.; Becker, N.; Alexiou, G.; Zotos, N.; Karali, I. AgriFood supply chain traceability: Data sharing in a~farm-to-fork case. Benchmarking Int. J. 2022. [Google Scholar] [CrossRef]
- Keogh, J.G.; Rejeb, A.; Khan, N.; Dean, K.; Hand, K.J. Optimizing global food supply chains: The case for blockchain and GSI standards. In Building the Future of Food Safety Technology; Elsevier: Amsterdam, The Netherlands, 2020; pp. 171–204. [Google Scholar]
- ISO/IEC 19987:2015; Information Technology—EPC Information Services—Specification. International Organization for Standardization: Geneva, Switzerland, 2015.
- Li, L.; Qu, H.; Wang, H.; Wang, J.; Wang, B.; Wang, W.; Xu, J.; Wang, Z. A Blockchain-Based Product Traceability System with Off-Chain EPCIS and IoT Device Authentication. Sensors 2022, 22, 8680. [Google Scholar] [CrossRef] [PubMed]
- Tsotsolas, N.; Komisopoulos, F.; Papadopoulos, P.; Koutsouraki, E. An Integrated LoRa-Based IoT Platform Serving Smart Farming and Agro-Logistics; IGI Global: Hershey, PA, USA, 2022; pp. 132–158. [Google Scholar]
Parameter | Bakery Meal |
---|---|
Moisture and Volatiles (g/100 g) | 8.57 ± 2.37 |
Ash (g/100 g) | 2.93 ± 1.71 |
Fat (g/100 g) | 13.75 ± 5.69 |
Proteins (g/100 g) | 16.09 ± 2.04 |
Crude fibers % (g/100 g) | 0.36 ± 0.08 |
Carbohydrates (g/100 g) | 58.41 ± 7.28 |
Sugars (g/100 g) | 5.87 ± 2.45 |
Starch (g/100 g) | 37.30 ± 5.66 |
Energy (kcal/100 g) | 421.7 ± 30.3 |
Fatty Acid (FA) Composition | |
Monounsaturated FA—MUFA (% w/w) | 38.5 ± 17.5 |
Polyunsaturated FA—PUFA (% w/w) | 14.5 ± 0.7 |
Saturated FA—SFA (% w/w) | 46.5 ± 23.3 |
Iodine Value (meq O2/kg) | 4.9–6.5 |
Amino acids (g/kg) | |
Alanine | 9.1 ± 4.0 |
Arginine | 5.1 ± 2.7 |
Aspartic acid | 17.7 ± 3.5 |
Glutaminic acid | 33.1 ± 5.9 |
Glycine | 15.3 ± 12.4 |
Histidine | 1.5 ± 0.7 |
Isoleucine | 5.9 ± 0.6 |
Leucine | 10.9 ± 2.4 |
Lysine | 3.1 ± 0.7 |
Methiononine | 1.6 ± 1.8 |
Phenyalanine | 8.8 ± 0.6 |
Proline | 15.3 ± 5.1 |
Serine | 9.4 ± 7.3 |
Threonine | 4.9 ± 2.8 |
Tryptophane | 0.5 ± 0.4 |
Tyrosine | 3.2 ± 1.8 |
Valine | 7.9 ± 1.2 |
Afalatoxins and Mycotoxins (μg/kg) | |
Afalatoxin B1 | <0.5 * |
Afalatoxin B2 | <0.5 * |
Afalatoxin G1 | <0.5 * |
Afalatoxin G1 | <0.5 * |
SUM of aflatoxins | <2.0 * |
ZON | <2.0 * |
DON | <40 *–120 |
Microbiological characterisation (cfu/g) | |
Enterobacteriaceae | <9.0 * |
Campylobacter spp. | ND |
Salmonella spp. | ND |
ASFV | ND |
Finishing 1 (80–123 Days) | Finishing 2 (123–180 Days) | |||
---|---|---|---|---|
Items | CON | BM20 | CON | BM20 |
Ingredient (%w/w) | ||||
Maize meal | 27.00 | 25.00 | 32.00 | 27.00 |
Corn | 15.00 | 13.00 | 12.00 | 13.00 |
Wheat pollard | 15.00 | 10.00 | 14.00 | 8.00 |
Bakery meal | 0.00 | 20.00 | 0.00 | 20.00 |
Wheat | 9.00 | 9.00 | 10.00 | 7.00 |
Soya 47 | 15.00 | 8.00 | 14.10 | 7.10 |
Premix 1 | 2.00 | 2.00 | 2.00 | 2.00 |
Soybean oil | 1.20 | 1.00 | - | - |
Mycotoxin Binders | 0.10 | 0.10 | 0.30 | 0.30 |
Marble powder | 0.80 | 0.80 | 0.80 | 0.80 |
Barley | 14.90 | 11.10 | 14.00 | 14.00 |
Vegetable fat | - | - | 0.80 | 0.80 |
Total | 100.00 | 100.00 | 100.00 | 100.00 |
Chemical composition | ||||
Dry matter (%w/w) | 88.40 | 90.10 | 87.40 | 90.20 |
Crude protein (%w/w) | 14.81 | 13.48 | 14.49 | 13.45 |
Crude fibre (%w/w) | 4.12 | 3.59 | 4.22 | 3.57 |
Ether extract (%w/w) | 5.09 | 9.44 | 4.05 | 8.51 |
Crude ash (%w/w) | 3.27 | 3.37 | 3.25 | 3.33 |
Gross energy (Mj/kg) | 15.66 | 16.37 | 15.67 | 16.53 |
Metabolisable energy (Mj/kg) | 12.54 | 13.27 | 12.52 | 13.48 |
Parameter | Bread Industry | Biscuit Industry | Flour Mills | Markets | Bakeries |
---|---|---|---|---|---|
Moisture (% w/w) | 32.7 ± 9.6 | 11.5 ± 2.5 | 6.5 ± 2.6 | 15.6 ± 4.9 | 17.8 ± 5.5 |
Energy (kcal/100 g) | 326.6 ± 56.1 | 446.8 ± 40.5 | 411.7 ± 40.3 | 412.4 ± 44.2 | 412.6 ± 45.2 |
Protein (% w/w) | 7.7 ± 2.4 | 6.0 ± 3.9 | 8.5 ± 3.2 | 7.8 ± 2.4 | 7.6 ± 2.2 |
Fat (% w/w) | 13.7 ± 9.0 | 21.3 ± 7.1 | 11.1 ± 7.5 | 17.6 ± 7.1 | 19.3 ± 7.0 |
Saturated fat (% w/w) | 5.2 ± 4.0 | 11.1 ± 4.2 | 4.4 ± 4.0 | 8.6 ± 3.9 | 9.7 ± 3.9 |
Carbohydrates (% w/w) | 43.3 ± 14.3 | 56.7 ± 8.6 | 67.1 ± 9.6 | 55.0 ± 10.1 | 52.0 ± 10.2 |
Sugars (% w/w) | 2.9 ± 2.5 | 21.1 ± 11.4 | 17.6 ± 12.7 | 17.1 ± 10.1 | 16.9 ± 9.4 |
Fibres (% w/w) | 2.2 ± 1.0 | 3.6 ± 2.3 | 6.7 ± 3.1 | 4.0 ± 2.3 | 3.4 ± 2.1 |
Salt (% w/w) | 1.1 ± 0.7 | 0.7 ± 0.3 | 0.8 ± 0.4 | 0.8 ± 0.4 | 0.8 ± 0.5 |
Dietary Treatments | ||
---|---|---|
CON | BM20 | |
Body weight (kg) | ||
80 age | 32.25 ± 0.63 | 32.00 ± 0.71 |
123 age | 64.10 ± 1.08 | 60.18 ± 1.25 |
178 age | 108.76 ± 1.85 | 106.84 ± 2.13 |
Feed consumption | ||
Period 1 (80–123 age) | 108.30 ± 0.06 a | 96.98 ± 0.01 b |
Period 2 (123–178 age) | 222.60 ± 0.03 | 222.53 ± 0.01 |
Total period (80–178 age) | 220.60 ± 27.40 | 213.00 ± 27.47 |
Average daily weight gain (kg/d) | ||
Period 1 (80–123 age) | 0.94 ± 0.02 | 0.83 ± 0.02 |
Period 2 (123–178 age) | 0.83 ± 0.05 | 0.86 ± 0.03 |
Total period (80–178 age) | 0.87 ± 0.02 | 0.85 ± 0.02 |
FCR | ||
Period 1 (80–123 age) | 3.41 ± 0.07 | 3.45 ± 0.10 |
Period 2 (123–178 age) | 5.03 ± 0.25 | 4.78 ± 0.15 |
Total period (80–178 age) | 4.33 ± 0.10 | 4.28 ± 0.11 |
Parameter | Group | T0 | T1 | T2 | Group Mean | p | ||
---|---|---|---|---|---|---|---|---|
Group | Time | Group × Time | ||||||
L* | CON | 59.333 ± 3.503 | 61.183 ± 3.503 | 62.556 ± 3.503 | 61.024 ± 2.022 | 0.654 | 0.198 | 0.643 |
BM20 | 55.479 ± 3.503 | 58.732 ± 3.503 | 64.997 ± 3.503 | 59.736 ± 2.022 | ||||
Time mean | 57.406 ± 2.477 | 59.958 ± 2.477 | 63.776 ± 2.477 | |||||
a* | CON | 44.467 ± 3.615 | 38.123 ± 3.615 | 30.677 ± 3.615 | 37.756 ± 2.087 a | 0.028 | 0.003 | 0.968 |
BM20 | 36.732 ± 3.615 | 32.107 ± 3.615 | 24.378 ± 3.615 | 31.072 ± 2.087 b | ||||
Time mean | 40.599 ± 2.556 A | 35.115 ± 2.556 AB | 27.527 ± 2.556 B | |||||
b* | CON | 29.538 ± 3.196 | 27.180 ± 3.196 | 24.439 ± 3.196 | 27.052 ± 1.845 | 0.213 | 0.644 | 0.802 |
BM20 | 24.367 ± 3.196 | 23.450 ± 3.196 | 23.451 ± 3.196 | 23.756 ± 1.845 | ||||
Time mean | 26.952 ± 2.260 | 25.315 ± 2.260 | 23.945 ± 2.260 |
Parameter | Group | T0 | T1 | T2 | Group Mean | p | ||
---|---|---|---|---|---|---|---|---|
Group | Time | Group × Time | ||||||
MDA | CON | 0.135 ± 0.003 A | 0.140 ± 0.003 A | 0.159 ± 0.003 B | 0.145 ± 0.001 | 0.957 | <0.001 | 0.666 |
BM20 | 0.137 ± 0.003 A | 0.140 ± 0.003 A | 0.157 ± 0.003 B | 0.145 ± 0.001 | ||||
Time mean | 0.136 ± 0.002 A | 0.140 ± 0.002 A | 0.158 ± 0.002 B |
Dietary Treatments | ||
---|---|---|
CON | BM20 | |
Fat (%) | 16.55 ± 2.76 | 10.92 ± 3.00 |
Proteins (%) | 17.00 ± 0.41 a | 11.48 ± 2.72 b |
pH | 5.71 ± 0.05 | 5.76 ± 0.02 |
Dietary Treatments | ||
---|---|---|
CON | BM20 | |
MUFA | 7.327 ± 1.113 | 7.540 ± 0.438 |
PUFA | 1.700 ± 0.292 | 1.738 ± 0.122 |
SFA | 7.616 ± 1.360 | 7.829 ± 0.447 |
PUFA/SFA | 0.227 ± 0.012 | 0.222 ± 0.010 |
PUFA n6 | 2.096 ± 0.585 a | 1.506 ± 0.111 b |
PUFA n3 | 0.152 ± 0.025 | 0.171 ± 0.012 |
PUFA n6/PUFA n3 | 15.918 ± 5.958 | 8.845 ± 0.385 |
AI | 0.860 ± 0.060 | 0.917 ± 0.019 |
TI | 1.427 ± 0.098 | 1.501 ± 0.033 |
h/H | 12.467 ± 2.317 | 13.433 ± 0.768 |
Fatty acids | ||
Butyric acid (C4:0) | ND | ND |
Caproic acid (C6:0) | ND | ND |
Caprylic acid (C8:0) | ND | ND |
Capric acid (C10:0) | 0.006 ± 0.002 | 0.008 ± 0.002 |
Undecanoic acid (C11:0) | ND | ND |
Lauric acid (C12:0) | 0.004 ± 0.003 | 0.014 ± 0.002 |
Tridecanoic acid (C13:0) | ND | ND |
Myristic acid (C14:0) | 0.228 ± 0.042 | 0.239 ± 0.017 |
Myristoleic acid (C14:1) | ND | ND |
Pentadecanoic acid (C15:0) | 0.001 ± 0.001 | 0.001 ± 0.001 |
Cis-10-Pentadecenoic acid (C15:1) | ND | ND |
Palmitoleic acid (C16:1) | 0.324 ± 0.050 | 0.302 ± 0.027 |
Heptadecanoic acid (C17:0) | 0.050 ± 0.010 | 0.050 ± 0.005 |
Cis-10-Heptadecenoic acid (C17:1) | 0.038 ± 0.008 | 0.036 ± 0.004 |
Stearic acid (C18:0) | 2.772 ± 0.513 | 2.882 ± 0.173 |
Palmitic acid (C16:0) | 4.510 ± 0.790 | 4.600 ± 0.266 |
Elaidic acid (C18:1n9t) | 0.010 ± 0.003 | 0.007 ± 0.002 |
Oleic acid (C18:1n9c) | 6.326 ± 1.303 | 7.172 ± 0.413 |
Linolelaidic acid (C18:2n6t) | 0.607 ± 0.607 | ND |
Linoleic acid (C18:2n6c) | 1.489 ± 0.258 | 1.503 ± 0.110 |
Arachidic acid (C20:0) | 0.028 ± 0.007 | 0.028 ± 0.004 |
γ-Linolenic acid (C18:3n6) | ND | ND |
Cis-11-Eicosenoic (C20:1) | 0.024 ± 0.004 | 0.023 ± 0.002 |
Linolenic acid (C18:3n3) | 0.142 ± 0.026 | 0.156 ± 0.010 |
Heneicosanoic acid (C21:0) | ND | ND |
Cis-11,14-Eicosadienoic acid (C20:2) | 0.057 ± 0.010 | 0.054 ± 0.008 |
Behenic acid (C22:0) | ND | ND |
Cis-8,11,14-Eicosadienoic (C20:3n6) | ND | 0.002 ± 0.001 |
Erucic acid (C22:1n9) | 0.010 ± 0.004 | 0.016 ± 0.002 |
Cis-11,14,17-Eicosatrienoic acid (C20:3n3) | ND | ND |
Arachidonic acid (C20:4n6) | ND | ND |
Tricosanoic acid (C23:0) | ND | ND |
Cis-13,16-Docosadienoic acid (C22:2) | ND | ND |
Cis-5,8,11,14,17-Eicosapentaenoic acid (C20:5n3) | ND | ND |
Lignoceric acid (C24:0) | ND | ND |
Nervonic acid (C24:1) | ND | ND |
Cis-4,7,10,13,16,19-Docosahexaenoic acid <0,01(C22:6n3) | ND | ND |
Sensory Characteristics | ||||||
---|---|---|---|---|---|---|
Tenderness | Juiciness | Aroma | Taste | Colour | Overall Acceptance | |
CON | 3.42 ± 0.01 | 3.30 ± 0.11 | 3.25 ± 0.12 | 3.47 ± 0.10 | 3.27 ± 0.10 a | 3.48 ± 0.10 |
BM20 | 3.42 ± 0.12 | 3.11 ± 0.11 | 3.28 ± 0.10 | 3.59 ± 0.11 | 3.72 ± 0.11 b | 3.62 ± 0.10 |
b 1 | p 2 | |
---|---|---|
R2 = 0.528 | ||
Tenderness | 0.034 | 0.604 |
Juiciness | 0.300 | <0.001 |
Aroma | 0.231 | <0.001 |
Taste | 0.267 | <0.001 |
Colour | 0.213 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malamakis, A.; Patsios, S.I.; Melas, L.; Dedousi, A.; Kontogiannopoulos, K.N.; Vamvakas, K.; Tsotsolas, N.; Koutsouraki, E.; Sossidou, E.N.; Banias, G.F. Demonstration of an Integrated Methodology for the Sustainable Valorisation of Bakery Former Food Products as a Pig Feed Ingredient: A Circular Bioeconomy Paradigm. Sustainability 2023, 15, 14385. https://doi.org/10.3390/su151914385
Malamakis A, Patsios SI, Melas L, Dedousi A, Kontogiannopoulos KN, Vamvakas K, Tsotsolas N, Koutsouraki E, Sossidou EN, Banias GF. Demonstration of an Integrated Methodology for the Sustainable Valorisation of Bakery Former Food Products as a Pig Feed Ingredient: A Circular Bioeconomy Paradigm. Sustainability. 2023; 15(19):14385. https://doi.org/10.3390/su151914385
Chicago/Turabian StyleMalamakis, Apostolos, Sotiris I. Patsios, Lefteris Melas, Anna Dedousi, Konstantinos N. Kontogiannopoulos, Konstantinos Vamvakas, Nikos Tsotsolas, Eleni Koutsouraki, Evangelia N. Sossidou, and George F. Banias. 2023. "Demonstration of an Integrated Methodology for the Sustainable Valorisation of Bakery Former Food Products as a Pig Feed Ingredient: A Circular Bioeconomy Paradigm" Sustainability 15, no. 19: 14385. https://doi.org/10.3390/su151914385