Assessment of Potential of Forest Wood Biomass in Terms of Sustainable Development
Abstract
:1. Introduction
2. Materials and Methods
2.1. Assessment of Self-Sufficiency and Imports Dependence on Wood Biomass
2.2. Assessment of Logging Residues
2.3. Assessment of the Ratio between Annual Fellings and the Net Annual Increment of Forest Wood Biomass
3. Results
3.1. Self-Sufficiency and Imports-Dependence Ratio in Wood Biomass
3.2. Logging Residues
3.3. Balance between Annual Fellings and the Net Annual Increment of Wood Biomass
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Correction Statement
Abbreviations
DC | Domestic consumption |
DI | Direct inputs |
EU | European Union |
EW-MFA | Economy-wide material flow accounts |
EXP | Physical exports |
ha | Hectares |
IDR | Imports-dependency ratio |
IMP | Physical imports |
NAI | Net annual increment |
RLR | Rate of logging residues |
RR | Recovery rate of logging residues |
SR | Sustainability ratio |
SSR | Self-sufficiency ratio |
t | Tonnes |
wt.% | Percentage by weight in tonnes |
×106 | Million |
×103 | Thousand |
References
- Geneva Environment Network. Importance of Forests and the Role of Geneva. Available online: https://www.genevaenvironmentnetwork.org/resources/updates/importance-of-forests-and-the-role-of-geneva/ (accessed on 19 July 2023).
- European Environment Agency. The European Environment—State and Outlook 2020. Knowledge for Transition to a Sustainable Europe. 2019. Available online: https://www.eea.europa.eu/soer/publications/soer-2020 (accessed on 19 July 2023).
- Hetemäki, L.; Nasi, R.; Palahi, M.; Cerutti, P.; Mausch, K. The Future of Wood-towards Circular Bioeconomy. 2021. Available online: https://efi.int/publications/future-wood-towards-circular-bioeconomy-2022-01-04 (accessed on 1 May 2023).
- Camia, A.; Giuntoli, J.; Jonsson, K.; Robert, N.; Cazzaniga, N.; Jasinevičius, G.; Avitabile, V.; Grassi, G.; Barredo Cano, J.I.; Mubareka, S. The Use of Woody Biomass for Energy Production in the EU; Publications Office of the European Union: Luxembourg, 2021. [Google Scholar]
- European Commission. Sustainable Europe by 2030. Available online: https://ec.europa.eu/commission/publications/reflection-paper-towards-sustainable-europe-2030_en (accessed on 22 July 2023).
- European Commission. Communication: New EU Forest Strategy for 2030. Available online: https://commission.europa.eu/document/cf3294e1-8358-4c93-8de4-3e1503b95201_en (accessed on 22 July 2023).
- Karjalainen, T.; Asikainen, A.; Ilavský, J.; Zamboni, R.; Hotari, K.E.; Röser, D. Estimation of Energy Wood Potential in Europe. 2004. Available online: https://www.researchgate.net/publication/228592570_Estimation_of_energy_wood_potential_in_Europe (accessed on 12 July 2023).
- Hetsch, S. Potential Sustainable Wood Supply in Europe; United Nations Economic Commission for Europe, Food and Agriculture Organization of the United Nations: Rome, Italy, 2009; Available online: https://unece.org/fileadmin/DAM/timber/publications/Dp-52.pdf (accessed on 12 July 2023).
- Steubing, B.; Zah, R.; Waeger, P.; Ludwig, C. Bioenergy in Switzerland: Assessing the domestic sustainable biomass potential. Renew. Sustain. Energy Rev. 2010, 14, 2258. [Google Scholar] [CrossRef]
- Verkerk, P.J.; Fitzgerald, J.B.; Datta, P.; Dees, M.; Hengeveld, G.M.; Lindner, M.; Zudin, S. Spatial distribution of the potential forest biomass availability in Europe. For. Ecosyst. 2019, 6, 5. [Google Scholar] [CrossRef]
- Jekayinfa, S.O.; Orisaleye, J.I.; Pecenka, R. An assessment of potential resources for biomass energy in Nigeria. Resources 2020, 9, 92. [Google Scholar] [CrossRef]
- Thees, O.; Erni, M.; Lemm, R.; Stadelmann, G.; Zenner, E.K. Future potentials of sustainable wood fuel from forests in Switzerland. Biomass Bioenergy 2020, 141, 105647. [Google Scholar] [CrossRef]
- Kumar, A.; Adamopoulos, S.; Jones, D.; Amiandamhen, S.O. Forest biomass availability and utilization potential in Sweden: A review. Waste Biomass Valorization 2021, 12, 65–80. [Google Scholar] [CrossRef]
- Wieruszewski, M.; Mydlarz, K. The potential of the bioenergy market in the European union—An overview of energy biomass resources. Energies 2022, 15, 9601. [Google Scholar] [CrossRef]
- Saal, U.; Iost, S.; Weimar, H. Supply of wood processing residues–a basic calculation approach and its application on the example of wood packaging. Trees For. People 2022, 7, 100199. [Google Scholar] [CrossRef]
- Godfray, H.C.J.; Beddington, J.R.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Pretty, J.; Robinson, S.; Thomas, S.M.; Toulmin, C. Food security: The challenge of feeding 9 billion people. Science 2010, 327, 812–818. [Google Scholar] [CrossRef]
- Pradhan, P.; Lüdeke, M.K.; Reusser, D.E.; Kropp, J.P. Food self-sufficiency across scales: How local can we go? Environ. Sci. Technol. 2014, 48, 9463–9470. [Google Scholar] [CrossRef]
- Clapp, J. Food self-sufficiency: Making sense of it, and when it makes sense. Food Policy 2017, 66, 88–96. [Google Scholar] [CrossRef]
- Baer-Nawrocka, A.; Sadowski, A. Food security and food self-sufficiency around the world: A typology of countries. PLoS ONE 2019, 14, e0213448. [Google Scholar] [CrossRef] [PubMed]
- Beltran-Peña, A.; Rosa, L.; D’Odorico, P. Global food self-sufficiency in the 21st century under sustainable intensification of agriculture. Environ. Res. Lett. 2020, 15, 095004. [Google Scholar] [CrossRef]
- Godenau, D.; Caceres-Hernandez, J.J.; Martin-Rodriguez, G.; Gonzalez-Gomez, J.I. A consumption-oriented approach to measuring regional food self-sufficiency. Food Security 2020, 12, 1049–1063. [Google Scholar] [CrossRef]
- Schreiber, K.; Hickey, G.M.; Metson, G.S.; Robinson, B.E.; MacDonald, G.K. Quantifying the foodshed: A systematic review of urban food flow and local food self-sufficiency research. Environ. Res. Lett. 2021, 16, 023003. [Google Scholar] [CrossRef]
- Kaufmann, L.; Mayer, A.; Matej, S.; Kalt, G.; Lauk, C.; Theurl, M.C.; Erb, K.H. Regional self-sufficiency: A multi-dimensional analysis relating agricultural production and consumption in the European Union. Sustain. Prod. Consum. 2022, 34, 12–25. [Google Scholar] [CrossRef]
- Noorollahi, Y.; Janalizadeh, H.; Yousefi, H.; Jahangir, M.H. Biofuel for energy self-sufficiency in agricultural sector of Iran. Sustain. Energy Technol. Assess. 2021, 44, 101069. [Google Scholar] [CrossRef]
- Vijay, V.; Chandra, R.; Subbarao PM, V. Biomass as a means of achieving rural energy self-sufficiency: A concept. Built Environ. Proj. Asset Manag. 2022, 12, 382–400. [Google Scholar] [CrossRef]
- Eurostat. Economy-Wide Material Flow Accounts Handbook; Publications Office of the European Union: Luxembourg, 2018; Available online: https://ec.europa.eu/eurostat/web/products-manuals-and-guidelines/-/ks-gq-18-00619p (accessed on 14 June 2023).
- Eurostat. Material Flow Accounts. 2023. Available online: https://ec.europa.eu/eurostat/cache/metadata/en/env_ac_mfa_sims.htm (accessed on 12 June 2023).
- FAO Faostat Forestry Productions Statistics—Data Structure. Available online: https://www.fao.org/forestry/49962-0f43c0da7039a611aa884b3c6c642f4ac.pdf (accessed on 1 September 2023).
- EC; FAO; ITTO; UNECE. Joint Forest Sector Questionnaire Definitions. Available online: www.fao.org/forestry/37537-0192cab302795d2aed9baa79b4d0bb040.pdf (accessed on 1 September 2023).
- European Commission. Logging Residues. 2021. Available online: https://knowledge4policy.ec.europa.eu/glossary-item/logging-residues_en (accessed on 8 August 2023).
- Pottie, M.; Guimier, D. Harvesting and Transport of Logging Residuals and Residues; FERIC Special Report SR-33; Forest Engineering Research Institute of Canada: Pointe-Claire, QU, Canada, 1986; 100p. [Google Scholar]
- Spinelli, R.; Visser, R.; Björheden, R.; Röser, D. Recovering energy biomass in conventional forest operations: A review of integrated harvesting systems. Curr. For. Rep. 2019, 5, 90–100. [Google Scholar] [CrossRef]
- Spinelli, R. (Bioeconomy Institute, Florence, Italy). Personal communication, 2023.
- The State Forestry Service (The State Forestry Service, Kaunas, Lithuania). Personal communication, 2023.
- United Nations Environment Programme. A Global Manual on Economy Wide Material Flow Accounting. The Use of Natural Resources in the Economy. 2021. Available online: https://www.resourcepanel.org/reports/global-manual-economy-wide-material-flow-accounting (accessed on 20 July 2023).
- Koopmans, A.; Koppejan, J. Agricultural and Forest Residues-Generation, Utilization and Availability. Reg. Consult. Mod. Appl. Biomass Energy 1997, 6, 10. Available online: https://wgbis.ces.iisc.ac.in/energy/HC270799/RWEDP/acrobat/p_residues.pdf (accessed on 6 June 2023).
- Krausmann, F.; Erb, K.H.; Gingrich, S.; Lauk, C.; Haberl, H. Global patterns of socioeconomic biomass flows in the year 2000: A comprehensive assessment of supply, consumption and constraints. Ecol. Econ. 2008, 65, 471–487. [Google Scholar] [CrossRef]
- Dvořák, J.; Jankovský, M.; Kormanek, M.; Natov, P.; Straka, P. Conversion of Norway spruce (Picea abies (L.) H. Karst.) tree stem volume to volumes of produced logging residues and wood chips. For. Int. J. For. Res. 2023, 96, cpad003. [Google Scholar] [CrossRef]
- Hahn, W.A.; Knoke, T. Sustainable development and sustainable forestry: Analogies, differences, and the role of flexibility. Eur. J. For. Res. 2010, 129, 787–801. [Google Scholar] [CrossRef]
- Tomter, S.M.; Kuliešis, A.; Gschwantner, T. Annual volume increment of the European forests—Description and evaluation of the national methods used. Ann. For. Sci. 2016, 73, 849–856. [Google Scholar] [CrossRef]
- Forest Europe. State of Europe’s Forests. 2020. Available online: https://foresteurope.org/wp-content/uploads/2016/08/SoEF_2020.pdf (accessed on 28 July 2023).
- European Environment Agency. Forest: Growing Stock, Increment and Fellings. Available online: https://www.eea.europa.eu/data-and-maps/indicators/forest-growing-stock-increment-and-fellings-3/assessment (accessed on 31 July 2023).
- FAO. Availability and Use of Logging Residues. Available online: https://www.fao.org/3/x6966e/X6966E01.htm (accessed on 21 June 2023).
- McKeever, D.B.; Falk, R.H. Woody Residues and Solid Waste Wood Available for Recovery in the United States, 2002. Management of Recovered Wood Recycling, Bioenergy and Other Options, 2004; pp. 307–316. Available online: http://www.fpl.fs.fed.us/documnts/pdf2004/fpl_2004_mckeever001.pdf (accessed on 7 June 2023).
- Ratnasingam, J.; Ramasamy, G.; Ioras, F.; Senin, A.L. Environmental and economic impact of using logging residues as bioenergy: The case of Malaysia. BioResources 2017, 12, 7268–7282. [Google Scholar] [CrossRef]
- Nonini, L.; Schillaci, C.; Fiala, M. Assessing logging residues availability for energy production by using forest management plans data and geographic information system (GIS). Eur. J. For. Res. 2022, 141, 959–977. [Google Scholar] [CrossRef]
- Ghaffariyan, M.R. Short review of collecting technologies and methods in forest harvesting residues recovery. Silva Balc. 2023, 24, 55–68. [Google Scholar] [CrossRef]
- Korboulewsky, N.; Bilger, I.; Bessaad, A. How to Evaluate Downed Fine Woody Debris Including Logging Residues? Forests 2021, 12, 881. [Google Scholar] [CrossRef]
- Harun, J.; Darus, A.R.M.; Wong, W.C. Wood residue and its utilization in Peninsular Malaysia. In Proceedings of the Seminar on ‘Management and Utilization of Industrial Wastes’, Serdang, Malaysia, 13–14 September 1984. [Google Scholar]
- GOI (Government of Indonesia). Situation and Outlook of the Forestry Sector in Indonesia; Government of Indonesia, Ministry of Forestry and Food and Agricultural Organisation of the United Nations: Rome, Italy, 1990.
- FRIM. Utilization of Industrial Wood Residues. In Proceedings of the Workshop on “Logging and Industrial Wood Residues Utilization”; Jakarta, Indonesia, 24 August 1992, Forest Research Institute Malaysia: Jakarta, Indonesia, 1992. [Google Scholar]
- ITTO. Final Report of the Forest Studies. 1994. Available online: https://www.itto.int/files/itto_project_db_input/2360/Technical/pd74-90-2%20(F%20I)%20e_Final%20report%20of%20the%20forest%20studies_E.pdf (accessed on 19 June 2023).
- Kong, H.Y. Current status of biomass utilization in Malaysia. For. Res. Inst. Malays. 2000, 1, 15. [Google Scholar]
- KITE (Kumasi Institute of Technology and Environment). Ghana Sawmill Energy Efficiency Study. Final Report. 2001. Available online: https://assets.publishing.service.gov.uk/media/57a08d64e5274a27b2001809/R74131.pdf (accessed on 21 June 2023).
- Cuchet, E.; Roux, P.; Spinelli, R. Performance of a logging residue bundler in the temperate forests of France. Biomass Bioenerg 2004, 27, 31–39. [Google Scholar] [CrossRef]
- Cuiping, L.; Chuangzhi, Y.W.; Haitao, H. Study on the distribution and quantity of biomass residues resource in China. Biomass Energy 2004, 27, 111–117. [Google Scholar] [CrossRef]
- Jölli, D.; Giljum, S. Unused Biomass Extraction in Agriculture, Forestry and Fishery. SERI (Sustainable Europe Research Institute) Studies, Vienna, Austria, 2005, 3. Available online: https://www.researchgate.net/profile/Stefan-Giljum/publication/228904255_Unused_biomass_extraction_in_agriculture_forestry_and_fishery/links/00b49517a639ac7aa2000000/Unused-biomass-extraction-in-agriculture-forestry-and-fishery.pdf (accessed on 8 June 2023).
- Peltola, S.; Kilpeläinen, H.; Asikainen, A. Recovery rates of logging residue harvesting in Norway spruce (Picea abies (L.) Karsten) dominated stands. Biomass Bioenergy 2011, 35, 1545–1551. [Google Scholar] [CrossRef]
- Lithuanian Forest and Land Owners Association. Available online: https://www.forest.lt/naujienos/a-1099/ (accessed on 25 July 2023).
- Thiffault, E.; Béchard, A.; Paré, D.; Allen, D. Recovery rate of harvest residues for bioenergy in boreal and temperate forests: A review. WIREs Energ Environ. 2014, 4, 429–451. [Google Scholar] [CrossRef]
- Kizha, A.R.; Han, H.-S. Forest residues recovered from whole-tree timber harvesting operations. Eur. J. For. Eng. 2015, 1, 46–55. [Google Scholar]
- Ogunrinde, O.S.; Owoyemi, J.M. Sustainable Management of Nigerian Forest Through Efficient Recovery of Harvesting Residues. Int. J. Sci. Res. Multi. Stud. 2016, 2, 1–6. [Google Scholar]
- Cave, M.; Council, G.R. Best Practices for Reducing Harvest Residues and Mitigating Mobilisation of Harvest Residues in Steepland Plantation Forests. School of Forestry, University of Canterbury, Christchurch, NZ 1IVALSA, CNR, Italy, 2018. Available online: https://www.nzffa.org.nz/system/assets/3046/1879-GSDC152-Best-practices-for-reducing-harvest-residues-a.pdf (accessed on 5 June 2023).
- Cacot, E.; Deleuze, C.; Boldrini, C. Observatoire des Pratiques de Récolte du Bois Énergie et Évaluation D’outils de Flux. In Projet GERBOISE—Gestion RaiSonnée Du Bois Énergie; ADEME: Verneuil-sur-Vienne, France, 2018; p. 51. [Google Scholar]
- Strandgard, M. Mitchell R 2019 Comparison of cost productivity residue yield of cutto-length fuel-adapted harvesting in a Pinus radiata, D. Don final harvest in Western Australia. N. Z. J. For. Sci. 2019, 49. [Google Scholar] [CrossRef]
- Tartu Regional Energy Agency. Wood Fuel User Manual. 2020. Available online: https://www.kmaik.lt/uploads/Projektai/Wood-Fuel-User-Manual.pdf (accessed on 29 May 2023).
- Numazawa, C.T.D.; Krasovskiy, A.; Kraxner, F. Pietsch SA 2020 Logging residues for charcoal production through forest management in the Brazilian Amazon: Economic gains forest regrowth effects. Environ. Res. Lett. 2020, 15, 114029. [Google Scholar] [CrossRef]
- Titus, B.D.; Brown, K.; Helmisaari, H.S.; Vanguelova, E.; Stupak, I.; Evans, A.; Clarke, N.; Guidi, C.; Bruckman, V.J.; Varnagiryte-Kabasinskiene, I.; et al. Sustainable Forest biomass: A review of current residue harvesting guidelines. Energy Sustain. Soc. 2021, 11, 1–32. [Google Scholar] [CrossRef]
- Ghaffariyan, M.R.; Dupuis, E. Analysing the impact of harvesting methods on the quantity of harvesting residues: An Australian case study. Forests 2021, 12, 1212. [Google Scholar] [CrossRef]
- Pergola, M.T.; Saulino, L.; Castellaneta, M.; Rita, A.; Pecora, G.; Cozzi, M.; Ripullone, F. Towards sustainable management of forest residues in the southern Apennine Mediterranean mountain forests: A scenario-based approach. Ann. For. Sci. 2022, 79, 1–13. [Google Scholar] [CrossRef]
- Suhartana, S.; Yuniawati; Gandaseca, S.; Dulsalam; Soenarno; Ratnasingam, J. Potential of wood harvesting residues and residual stand damage due to timber harvesting: A case study at PT Austral Byna in Central Kalimantan, Indonesia. Int. J. For. Res. 2022, 2022, 3251945. [Google Scholar] [CrossRef]
- FAO Can Logging Residues Be Used to Help Meet Timber Demands for the Downstream Processing Sector? Available online: https://www.fao.org/3/XII/0236-B4.htm (accessed on 19 June 2023).
- FAO The Potential Use of Wood Residues for Energy Generation. Available online: https://www.fao.org/3/t0269e/t0269e08.htm (accessed on 11 July 2023).
- Osman, N.B.; Othman, H.T.; Karim, R.A.; Mazlan, M.A.F. Biomass in Malaysia: Forestry-Based Residues. Int. J. Biomass Renew. 2014, 3, 7–14. Available online: https://myjms.mohe.gov.my/index.php/ijbr/article/view/13872/7153 (accessed on 11 June 2023).
- Abbasi, T.U.; Ahmad, M.; Asma, M.; Munir, M.; Zafar, M.; Katubi, K.M.; Bokhari, A. High efficient conversion of Cannabis sativa L. biomass into bioenergy by using green tungsten oxide nano-catalyst towards carbon neutrality. Fuel 2023, 336, 126796. [Google Scholar] [CrossRef]
- Scrucca, F.; Barberio, G.; Cutaia, L.; Rinaldi, C. A simplified methodology for estimating the Carbon Footprint of heat generation by forest woodchips as a support tool for sustainability assessment in decision-making. Clean. Environ. Syst. 2023, 9, 100126. [Google Scholar] [CrossRef]
- Brandão, P.C.; de Souza, A.L.; Rousset, P.; Simas FN, B.; de Mendonça, B.A.F. Forest biomass as a viable pathway for sustainable energy supply in isolated villages of Amazonia. Environ. Dev. 2021, 37, 100609. [Google Scholar] [CrossRef]
- Borrello, M.; Altomonte, E.; Cembalo, L.; D’Amico, V.; Lombardi, A. Circular bioeconomy and the forest-wood sector: Bridging the gap between policies and disadvantages forest areas. Appl. Sci. 2023, 13, 1349. [Google Scholar] [CrossRef]
- Hagemann, N.; Gawel, E.; Purkus, A.; Pannicke, N.; Hauck, J. Possible futures towards a wood-based bioeconomy: A scenario analysis for Germany. Sustainability 2016, 8, 98. [Google Scholar] [CrossRef]
- Majchrzak, M.; Szczypa, P.; Adamowicz, K. Supply of Wood Biomass in Poland in Terms of Extraordinary Threat and Energy Transition. Energies 2022, 15, 5381. [Google Scholar] [CrossRef]
- D’Adamo, I.; Gastaldi, M.; Morone, P.; Rosa, P.; Sassanelli, C.; Settembre-Blundo, D.; Shen, Y. Bioeconomy of sustainability: Drivers, opportunities and policy implications. Sustainability 2022, 14, 200. [Google Scholar] [CrossRef]
Country | Variable | Average, 2000–2021 | Standard Deviation, 2000–2021 | Minimum, 2000–2021 | Maximum, 2000–2021 |
---|---|---|---|---|---|
Austria | SSR | 79 | 7 | 66 | 91 |
IDR | 48 | 3 | 41 | 55 | |
Belgium | SSR | 37 | 14 | 19 | 79 |
IDR | 78 | 7 | 64 | 90 | |
Bulgaria | SSR | 133 | 16 | 109 | 176 |
IDR | 8 | 3 | 4 | 15 | |
Cyprus | SSR | 8 | 5 | 3 | 21 |
IDR | 92 | 5 | 79 | 97 | |
Czechia | SSR | 187 | 64 | 136 | 373 |
IDR | 19 | 6 | 12 | 30 | |
Germany | SSR | 106 | 3 | 89 | 122 |
IDR | 28 | 1 | 21 | 36 | |
Denmark | SSR | 48 | 6 | 37 | 55 |
IDR | 60 | 5 | 52 | 68 | |
Estonia | SSR | 288 | 95 | 161 | 588 |
IDR | 22 | 9 | 9 | 43 | |
Greece | SSR | 53 | 7 | 40 | 63 |
IDR | 52 | 6 | 43 | 63 | |
Spain | SSR | 89 | 20 | 63 | 114 |
IDR | 31 | 9 | 19 | 44 | |
Finland | SSR | 87 | 7 | 74 | 99 |
IDR | 25 | 6 | 16 | 35 | |
France | SSR | 103 | 4 | 96 | 108 |
IDR | 23 | 4 | 15 | 28 | |
Croatia | SSR | 233 | 111 | 122 | 508 |
IDR | 15 | 4 | 7 | 24 | |
Hungary | SSR | 110 | 13 | 82 | 133 |
IDR | 30 | 5 | 22 | 42 | |
Ireland | SSR | 141 | 43 | 85 | 224 |
IDR | 38 | 7 | 27 | 51 | |
Italy | SSR | 34 | 4 | 27 | 41 |
IDR | 67 | 4 | 63 | 75 | |
Lithuania | SSR | 140 | 18 | 117 | 173 |
IDR | 25 | 11 | 8 | 43 | |
Luxemburg | SSR | 47 | 25 | 19 | 100 |
IDR | 77 | 8 | 59 | 88 | |
Netherlands | SSR | 24 | 14 | 13 | 56 |
IDR | 87 | 5 | 75 | 92 | |
Poland | SSR | 107 | 6 | 100 | 119 |
IDR | 16 | 4 | 8 | 23 | |
Portugal | SSR | 102 | 14 | 84 | 129 |
IDR | 18 | 6 | 8 | 27 | |
Romania | SSR | 124 | 17 | 105 | 167 |
IDR | 12 | 7 | 2 | 22 | |
Sweden | SSR | 95 | 4 | 88 | 102 |
IDR | 20 | 2 | 16 | 25 | |
Slovenia | SSR | 197 | 107 | 95 | 469 |
IDR | 40 | 5 | 34 | 47 | |
Slovakia | SSR | 122 | 15 | 103 | 153 |
IDR | 15 | 9 | 5 | 39 | |
EU in total | SSR | 94 | 2 | 91 | 97 |
IDR | 30 | 2 | 27 | 34 |
Source | RLR, % | RR, % |
---|---|---|
Harun et al. [49] | 34 | 66 |
GOI [50] | 40 | |
FRIM [51] | 30 | |
ITTO [52] | 30 | |
Koopmans and Koppejan [36] | 40 | 60 |
Kong [53] | 43 | |
KITE [54] | 45–55 | |
FAO [43] | 50 | |
Cuchet et al. [55] | 50 | |
McKeever and Falk [44] | 36 | 90 |
Cuiping et al. [56] | 43 | 55 |
Jölli and Giljum [57] | 30 | 75 |
Steubing et al. [9] | 38 | |
Peltola et al. [58] | 62 | |
Lithuanian Energy Organization [59] | 20 | 50 |
Thiffault et al. [60] | 52 | |
Kizha and Han [61] | 60–70 | |
Ogunrinde and Owoyemi [62] | 20 | |
Ratnasingam et al. [45] | 43 | |
Cave and Council [63] | 15 | 25 |
Cacot et al. [64] | 20 | |
Strandgard and Mitchell [65] | 68 | |
Ververk et al. [10] | 12 | |
Spinelli et al. [32] | 30–40 | 40–70 |
Tartu Regional Energy Agency [66] | 25–30 | |
Numazawa et al. [67] | 60 | |
Korboulewsky et al. [48] | 40–50 | |
Titus et al. [68] | 33–66 | |
Ghaffariyan and Dupuis [69] | 42 | |
Nonini et al. [46] | 60 | |
Pergola et al. [70] | 9–20 | |
Suhartana et al. [71] | 35 | |
Dvořák et al. [38] | 69 | |
FAO [72] | 50 | |
FAO [73] | 60 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Konstantinavičienė, J. Assessment of Potential of Forest Wood Biomass in Terms of Sustainable Development. Sustainability 2023, 15, 13871. https://doi.org/10.3390/su151813871
Konstantinavičienė J. Assessment of Potential of Forest Wood Biomass in Terms of Sustainable Development. Sustainability. 2023; 15(18):13871. https://doi.org/10.3390/su151813871
Chicago/Turabian StyleKonstantinavičienė, Julija. 2023. "Assessment of Potential of Forest Wood Biomass in Terms of Sustainable Development" Sustainability 15, no. 18: 13871. https://doi.org/10.3390/su151813871
APA StyleKonstantinavičienė, J. (2023). Assessment of Potential of Forest Wood Biomass in Terms of Sustainable Development. Sustainability, 15(18), 13871. https://doi.org/10.3390/su151813871