Suppression of Meloidogyne javanica Infection in Peach (Prunus persica (L.) Batsch) Using Fungal Biocontrol Agents
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Inoculum of M. javanica
2.2. Soil Used for the Experiment
2.3. Evaluation of Biocontrol Agents for Their Effectiveness against M. Javanica
2.3.1. Mass Production of Biocontrol Agents
Pochonia chlamydosporia
Purpureocillium lilacinum, Trichoderma harzianum, and T. viride
2.4. Evaluation of the Efficacy of Biocontrol Agents
2.5. Data Recordings
2.6. Statistical Analyses
3. Results
3.1. Effect of Biocontrol Agents on Number of Galls
3.2. Effect of Biocontrol Agents on Number of Egg Masses
3.3. Effect of Biocontrol Agents on the Number of Eggs Per Egg Mass
3.4. Effect of Biocontrol Agents on Populations of M. javanica
3.5. Effect of Biocontrol Agents on the Reproductive factors of M. javanica
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Manganaris, G.A.; Minas, I.; Cirilli, M.; Torres, R.; Bassi, D.; Costa, G. Peach for the future: A specialty crop revisited. Sci. Hortic. 2022, 305, 111390. [Google Scholar] [CrossRef]
- Saeed, M.; Mukhtar, T.; Haq, M.I.; Khan, M.A. Assessment of nematicidal potential of Cannabis sativa and Azadirachta indica in the management of root-knot nematode (Meloidogyne javanica) on peach. Pak. J. Agric. Sci. 2021, 58, 1555–1561. [Google Scholar]
- FAO. Statistical Database-Agriculture. 2016. Available online: http://faostat3.fao.org (accessed on 31 August 2023).
- Ahmad, Z.; Abbas, H.; Murtaza, T.; Khan, A.U.R.; Ali, A.; Zahid, K.; Tahir, Z.; Mahmood, T.; Habib, A. Assessment of responses of peach cultivars to postharvest pathogen Botrytis cinerea and its mitigation using plant essential oils. Plant Prot. 2023, 7, 153–162. [Google Scholar]
- Eliwa, G.I.; Hagag, E.S. Approach to new peach rootstocks resistant to root-knot nematodes (Meloidogyne species) selected from local Mit-Ghamer peach cultivar. Sci. Hortic. 2021, 284, 110118. [Google Scholar] [CrossRef]
- Haq, M.A.; Mukhtar, T.; Haq, M.I.; Khalid, A. Reproduction of root-knot nematode, Meloidogyne incognita, on Solanum melongena genotypes determines their host status. Pak. J. Zool. 2022, 54, 2097–2103. [Google Scholar] [CrossRef]
- Luo, C.X.; Schnabel, G.; Hu, M.; De Cal, A. Global distribution and management of peach diseases. Phytopathol. Res. 2022, 4, 30. [Google Scholar] [CrossRef]
- Mahmood, B.; Saeed, M.; Rehman, A.U.; Saleem, S.; Khan, M.R.; Younas, M.T.; Shafqat, M.; Khan, Z.H.; Hussain, S. Surveillance of bacterial canker of peach in Azad Jammu and Kashmir, and its bio-management. Plant Prot. 2023, 7, 83–91. [Google Scholar] [CrossRef]
- Mahmood, T.; Moosa, A.; Khan, A.U.R.; Maqsood, A.; Abbas, G.; Alyas, K.; Khalid, B. Using essential oils to protect peaches from post-harvest rot caused by Rhizopus species. Plant Prot. 2023, 7, 217–223. [Google Scholar]
- Ali, I.; Wang, X.; Tareen, M.J.; Wattoo, F.M.; Qayyum, A.; Hassan, M.U.; Shafique, M.; Liaquat, M.; Asghar, S.; Hussain, T.; et al. Foliar Application of Salicylic Acid at Different Phenological Stages of Peach Fruit CV. ‘Flordaking’ Improves Harvest Quality and Reduces Chilling Injury during Low Temperature Storage. Plants 2021, 10, 1981. [Google Scholar] [CrossRef]
- Manzoor, M.; Anwar, F.; Mahmood, Z.; Rashid, U.; Ashraf, M. Variation in Minerals, Phenolics and Antioxidant Activity of Peel and Pulp of Different Varieties of Peach (Prunus persica L.) Fruit from Pakistan. Molecules 2012, 17, 6491–6506. [Google Scholar] [CrossRef]
- Khalil, M.; Alqadasi, A. Potential of Non-Fumigant Nematicides at Different Formulations Against Southern Root-knot Nematode (Meloidogyne incognita) on Tomato Plants. Int. J. Phytopathol. 2019, 8, 23–28. [Google Scholar] [CrossRef]
- Nyczepir, A.P.; Beckman, T.G. Host status of guardian peach rootstock to Meloidogyne sp. and M. javanica. Hortscience 2000, 35, 772. [Google Scholar] [CrossRef]
- Shahid, M.; Gowen, S.R.; Burhan, M. Studies on the possible role of plant host on the development of root-knot nematode, Meloidogyne javanica and Pasteuria penetrans as affected by different harvesting dates. Plant Prot. 2022, 6, 133–141. [Google Scholar] [CrossRef]
- Shahid, M.; Gowen, S.R.; Burhan, M.; Niaz, Z.; Haq, A. Studies on the efficacy of heterogeneously produced Pasteuria penetrans (PP3) isolate over individual Pasteuria isolates in the spore attachment, and pathogenic potential on three Meloidogyne species. Plant Prot. 2023, 7, 9–16. [Google Scholar] [CrossRef]
- Elling, F.A. Major emerging problems with minor Meloidogyne species. Phytopathology 2013, 103, 1092–1102. [Google Scholar] [CrossRef]
- Moens, M.; Perry, R.N.; Starr, J.L. Meloidogyne Species—A Diverse Group of Novel and Important Plant Parasites, Root-Knot Nematodes; CAB International: Wallingford, UK, 2009; pp. 1–17. [Google Scholar]
- Ahamad, L.; Siddiqui, M. Efficacy of Botanicals and Carbofuran for the Control of Meloidogyne incognita Affecting Solanum lycopersicum L. Int. J. Phytopathol. 2018, 7, 69–75. [Google Scholar] [CrossRef]
- Azeem, W.; Mukhtar, T.; Hamid, T. Evaluation of Trichoderma harzianum and Azadirachta indica in the management of Meloidogyne incognita in Tomato. Pak. J. Zool. 2021, 53, 1–7. [Google Scholar] [CrossRef]
- Nyczepir, A.P.; Wood, B.W.; Reighard, G.L. Impact of Meloidogyne incognita on the incidence of peach tree short life in the presence of Criconemella xenoplax. J. Nematol. 1997, 29, 725–730. [Google Scholar]
- Stassen, P.J.C.; Malan, A.P. Host suitability of commercial peach and plum rootstocks to plant-parasitic nematodes. Acta Hortic. Int. Soc. Hort. Sci. 2021, 1304, 315–320. [Google Scholar] [CrossRef]
- Esmenjaud, D. Deciphering resistance to root-knot nematodes in Prunus for rootstock breeding: Sources, genetics and characterization of the ma locus. Horticulturae 2021, 7, 564. [Google Scholar] [CrossRef]
- Nyczepir, A.P.; Becker, J.O. Fruit and citrus trees. Plant Nematode Interact. 1998, 36, 637–684. [Google Scholar]
- Bakr, R. Nematicidal activity of jimson weed (Datura spp.) for management of plant-parasitic nematodes with emphasis on root knot nematode: A review. Pak. J. Phytopathol. 2021, 33, 183–204. [Google Scholar] [CrossRef]
- Afzal, A.; Ahmad, A.; Hassaan, M.A.; Mushtaq, S.; Abbas, A. Enhancing agricultural sustainability in Pakistan: Addressing challenges and seizing opportunities through effective plant disease management. Plant Prot. 2023, 7, 341–350. [Google Scholar]
- Alam, E.A.A.; Nuby, A.S.E. Phytochemical and nematicidal screening on some extracts of different plant parts of egyptian Moringa oleifera L. Pak. J. Phytopathol. 2022, 34, 293–306. [Google Scholar] [CrossRef]
- Khan, M.T.A.; Mukhtar, T.; Saeed, M. Resistance or susceptibility of eight aubergine cultivars to Meloidogyne javanica. Pak. J. Zool. 2019, 51, 2187–2192. [Google Scholar] [CrossRef]
- Khan, R.A.; Atiq, M.; Rajput, N.A.; Ahmad, I.; Husnain, A.; Nawaz, A.; Mehtab, M.; Ahmad, W. Assessment of phytoextracts and synthetic chemicals for controlling leaf blight of Syzygium cumini. Plant Prot. 2023, 7, 193–205. [Google Scholar]
- Mehmood, B.; Jamil, M.; Shafique, S.; Khan, M.R.; Zafar, T.; Bhatti, R.M.; Qayyum, H.; Tasneem, K.; Younas, M.T.; Bakar, M.A. Evaluating the biocontrol efficacy of selected botanical extracts against bacterial spot of tomato. Plant Prot. 2023, 7, 255–261. [Google Scholar]
- Meyer, S.L.F.; Nyczepir, A.P.; Rupprecht, S.M.; Mitchell, A.D.; Martin, P.A.W.; Brush, C.W.; Chitwood, D.J.; Vinyard, B.T. Tall fescue ‘Jesup (max-Q)’: Meloidogyne incognita development in roots and nematotoxicity. Agron. J. 2013, 105, 755–763. [Google Scholar] [CrossRef]
- Mukhtar, T.; Tariq-Khan, M.; Aslam, M.N. Bioefficacy of Trichoderma species against Javanese root-knot nematode, Meloidogyne javanica in green gram. Gesunde Pflanz. 2021, 73, 265–272. [Google Scholar] [CrossRef]
- Nunes, L.V.; Buonicontro, D.S.; Rosado, L.D.S.; Fonseca, A.R.; Bruckner, C.H.; dos Santos, C.E.M. Selection of genotypes of peach rootstock resistant to Meloidogyne incognita. Rev. Ceres 2022, 69, 267–273. [Google Scholar] [CrossRef]
- Nyczepir, A.P.; Kluepfel, D.A.; Waldrop, V.; Wechter, W.P. Soil solarization and biological control for managing Mesocriconema xenoplax and short life in a newly established peach orchard. Plant Dis. 2012, 96, 1309–1314. [Google Scholar] [CrossRef] [PubMed]
- Rajput, P.; Thakur, A.; Singh, H.; Singh, J.; Kaur, S.; Koulagi, R.; Pathak, D. Screening of peach rootstock hybrids for resistance to root-knot nematode. Indian J Hortic. 2021, 78, 134–141. [Google Scholar] [CrossRef]
- Shahbaz, M.; Akram, A.; Raja, N.I.; Mukhtar, T.; Mehak, A.; Fatima, N.; Ajmal, M.; Ali, K.; Mustafa, N.; Abasi, F. Antifungal activity of green synthesized selenium nanoparticles and their effect on physiological, biochemical, and antioxidant defense system of mango under mango malformation disease. PLoS ONE 2023, 18, e0274679. [Google Scholar] [CrossRef]
- Shirley, A.M.; Noe, J.P.; Nyczepir, A.P.; Brannen, P.M.; Shirley, B.J.; Jagdale, G.B. Effect of spirotetramat and fluensulfone on population densities of Mesocriconema xenoplax and Meloidogyne incognita on peach. J. Nematol. 2019, 51, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Talpur, M.S.A.; Abro, M.A.; Jatoi, G.H.; Marri, J.M.; Poussio, G.B.; Qayoom, M.M.; Rajer, F.U.; Hajano, J.; Shafique, S. Exploring the effects of plant extracts, biological agents and essential oils on the non-chemical management of banana leaf spot disease. Plant Prot. 2023, 7, 321–330. [Google Scholar]
- Khan, M.; Ahmad, I.; Atiq, M.; Asif, M.; Rashid, M.H.U.; Ahmad, S.; Shaheen, H.M.F.; Adil, Z. Comparative assessment of various antibiotics for controlling bacterial blight in Eucalyptus camaldulensis. Plant Prot. 2023, 7, 311–319. [Google Scholar]
- Ahmad, G.; Khan, A.; Khan, A.A.; Ali, A.; Mohhamad, H.I. Biological control: A novel strategy for the control of the plant parasitic nematodes. Anton. Leeuw. Int. J. 2021, 114, 885–912. [Google Scholar] [CrossRef]
- Sathyan, T.; Dhanya, M.K.; Murugan, M.; Ashokkumar, K.; Aswathy, T.S.; Narayana, R.; Deepthy, K.B. Evaluation of bio-agents, synthetic insecticides and organic amendment against the root-knot nematode, Meloidogyne spp. in cardamom [Elettaria cardamomum (L.) Maton]. J. Biol. Control 2021, 35, 68–75. [Google Scholar]
- Alves, L.E.S.G.; Fontana, L.F.; Dias-Arieira, C.R. Green manure and Pochonia chlamydosporia for Meloidogyne javanica control in soybean 1. Rev. Caatinga 2022, 35, 625–632. [Google Scholar] [CrossRef]
- Krif, G.; Lahlali, R.; El Aissami, A.; Laasli, S.E.; Mimouni, A.; Serderidis, S.; Picaud, T.; Moens, A.; Dababat, A.A.; Fahad, K.; et al. Efficacy of authentic bio-nematicides against the root-knot nematode, Meloidogyne javanica infecting tomato under greenhouse conditions. Physiol. Mol. Plant Pathol. 2022, 118, 101803. [Google Scholar] [CrossRef]
- Poveda, J.; Baptista, P. Filamentous fungi as biocontrol agents in olive (Olea europaea L.) diseases: Mycorrhizal and endophytic fungi. Crop Prot. 2021, 146, 105672. [Google Scholar] [CrossRef]
- Bo, T.; Kong, C.; Zou, S.; Mo, M.; Liu, Y. Bacillus nematocida B16 enhanced the rhizosphere colonization of Pochonia chlamydosporia ZK7 and controlled the efficacy of the root-knot nematode Meloidogyne incognita. Microorganisms 2022, 10, 218. [Google Scholar] [CrossRef]
- Carvalho, R.P.; Vieira dos Santos, M.C.; Almeida, M.T.M.; Costa, S.R. Effects of commercial pesticides on the nematode biological control agent Pochonia chlamydosporia. Biocontrol Sci. Technol. 2022, 32, 1220–1231. [Google Scholar] [CrossRef]
- Das, N.; Waquar, T. Bio-Efficacy of Purpureocillium lilacinum on management of root-knot nematode, Meloidogyne incognita in tomato. Ind. J. Nematol. 2021, 51, 129–136. [Google Scholar] [CrossRef]
- Giannakou, I.O.; Tasoula, V.; Tsafara, P.; Varimpopi, M.; Antoniou, P. Efficacy of Purpureocillium lilacinum in combination with chitosan for the control of Meloidogyne javanica. Biocontrol Sci. Technol. 2020, 30, 671–684. [Google Scholar] [CrossRef]
- Zhang, X.; Song, M.; Li, J.; Liu, X.; Gao, L.; Tian, Y. Changes in Soil Nematode and Microbial Community in Cucumber Root-Zone Soil Shaped by Intercropping with Amaranth. Horticulturae 2023, 9, 924. [Google Scholar] [CrossRef]
- Watson, T.T.; Nelson, L.M.; Neilsen, D.; Neilsen, G.H.; Forge, T.A. Soil amendments influence Pratylenchus penetrans populations, beneficial rhizosphere microorganisms, and growth of newly planted sweet cherry. Appl. Soil Ecol. 2017, 117, 212–220. [Google Scholar] [CrossRef]
- Bawa, N.; Kaur, S.; Dhillon, N.K. Efficacy of Purpureocillium lilacinum, Trichoderma harzianum and T. viride bio-formulations against Meloidogyne incognita. Indian Phytopathol. 2020, 73, 799–804. [Google Scholar] [CrossRef]
- Kaur, K.; Thakur, N.; Sharma, S. Biological control of plant parasitic nematodes associated with capsicum (Capsicum annuum L.). Ind. J. Nematol. 2020, 50, 1–6. [Google Scholar]
- Arita, L.Y.; da Silva, S.A.; Machado, A.C.Z. Efficacy of chemical and biological nematicides in the management of Meloidogyne paranaensis in Coffea arabica. Crop Prot. 2020, 131, 105099. [Google Scholar] [CrossRef]
- Morgan-Jones, G.; White, J.; Rodriguez-Kabana, R. Phytonematode pathology: Ultrastructural studies. II. Parasitism of Meloidogyne arenaria eggs and larvae by Paecilomyces lilacinus. Nematropica 1984, 14, 57–71. [Google Scholar]
- Holland, R.; Williams, K.; Khan, A. Infection of Meloidogyne javanica by Paecilomyces lilacinus. Nematology 1999, 1, 131–139. [Google Scholar] [CrossRef]
- Cayrol, J.C.; Djian, C.; Pijarowski, L. Study of the nematicidal properties of the culture filtrate of the nematophagous fungus Paecilomyces lilacinus. Rev. De Nematol. 1989, 12, 331–336. [Google Scholar]
- Khan, M.; Goswami, B. Effect of culture filtrates of Paecilomyces lilacinus isolates on hatching of Meloidogyne incognita eggs. Ann. Plant Pro. Sci. 2000, 8, 62–65. [Google Scholar]
- Isogai, A.; Suzuki, A.; Higashkawa, S.; Kuyama, S.; Tamura, S. Constituents of a peptidal antibiotic P168 produced by Paecilomyces lilacinus (Thom) Samson. Agric. Biol. Chem. 1980, 44, 3029–3031. [Google Scholar] [CrossRef]
- Freire, F.; Bridge, J. Parasitism of eggs, females and juveniles of Meloidogyne incognita by Paecilomyces lilacinus and Verticillium chlamydosporium. Fitopatol. Brasil. 1985, 10, 577–596. [Google Scholar]
- Lopez-Llorca, L.; Duncan, G. A study of fungal endoparasitism of the cereal cyst nematode (Heterodera avenae) by scanning electron microscopy. Can. J. Microbiol. 1988, 34, 613–619. [Google Scholar] [CrossRef]
- Lopez-Llorca, L.; Claugher, D. Appressoria of the nematophagous fungus Verticillium suchlasporium. Micron. Microsc. Acta 1990, 21, 125–130. [Google Scholar] [CrossRef]
- Morton, O.; Hirsch, P.; Kerry, B. Infection of plant-parasitic nematodes by nematophagous fungi–A review of the application of molecular biology to understand infection processes and to improve biological control. Nematology 2004, 6, 161–170. [Google Scholar] [CrossRef]
- Lopez-Llorca, L.V.; Robertson, W.M. Immunocytochemical localization of a 32-kDa protease from the nematophagous fungus Verticillium suchlasporium in infected nematode eggs. Exp. Mycol. 1992, 16, 261–267. [Google Scholar] [CrossRef]
- Mukhtar, T.; Hussain, M.A.; Kayani, M.Z. Biocontrol potential of Pasteuria penetrans, Pochonia chlamydosporia, Paecilomyces lilacinus and Trichoderma harzianum against Meloidogyne incognita in okra. Phytopathol. Mediterr. 2013, 52, 66–76. [Google Scholar]
- Kerry, B.R. Exploitation of the nematophagous fungus Verticillium chlamydosporium Goddard for the biological control of root-knot nematodes (Meloidogyne spp.). In Fungi as Biocontrol Agents: Progress, Problems and Potential; CAB International: Wallingford, UK, 2001; pp. 155–168. [Google Scholar]
- Sharon, E.; Chet, I.; Viterbo, A.; Bar-Eyal, M.; Nagan, H.; Samuels, G.J.; Spiegel, Y. Parasitism of Trichoderma on Meloidogyne javanica and role of the gelatinous matrix. Eur. J. Plant Pathol. 2007, 118, 247–258. [Google Scholar] [CrossRef]
- Affokpon, A.; Coyne, D.L.; Htay, C.C.; Agbèdè, R.D.; Lawouin, L.; Coosemans, J. Biocontrol potential of native Trichoderma isolates against root-knot nematodes in West African vegetable production systems. Soil Biol. Biochem. 2011, 43, 600–608. [Google Scholar] [CrossRef]
- Saikia, S.K.; Tiwari, S.; Pandey, R. Rhizospheric biological weapons for growth enhancement and Meloidogyne incognita management in Withania somnifera cv. Poshita. Bio. Control 2013, 65, 225–234. [Google Scholar] [CrossRef]
- Sonkar, S.S.; Bhatt, J.; Meher, J.; Kashyap, P. Bio-efficacy of Trichoderma viride against the root-knot nematode (Meloidogyne incognita) in tomato plant. J. Pharmacogn. Phytochem. 2018, 7, 2010–2014. [Google Scholar]
- Sharon, E.; Chet, I.; Spiegel, Y. Improved attachment and parasitism of Trichoderma on Meloidogyne javanica in vitro. Eur. J. Plant Pathol. 2009, 123, 291–299. [Google Scholar] [CrossRef]
- Ragozzino, A.; d’Errico, G. Interactions between nematodes and fungi: A concise review. Redia 2012, 94, 123–125. [Google Scholar]
- Lombardi, N.; Vitale, S.; Turrà, D.; Reverberi, M.; Fanelli, C.; Vinale, F.; Lorito, M. Root exudates of stressed plants stimulate and attract Trichoderma soil fungi. Mol. Plant-Microbe Inter. 2018, 31, 982–994. [Google Scholar] [CrossRef]
- Suarez, B.; Rey, M.; Castillo, P.; Monte, E.; Llobell, A. Isolation and characterization of PRA1, a trypsin-like protease from the biocontrol agent Trichoderma harzianum CECT 2413 displaying nematicidal activity. App. Microbiol. Biotechnol. 2004, 65, 46–55. [Google Scholar] [CrossRef]
- Yang, Z.S.; Li, G.H.; Zhao, P.J.; Zheng, X.; Luo, S.L.; Li, L.; Zhang, K.Q. Nematicidal activity of Trichoderma spp. and isolation of an active compound. World J. Microbiol. Biotechnol. 2010, 26, 2297–2302. [Google Scholar] [CrossRef]
- Yang, Z.; Yu, Z.; Lei, L.; Xia, Z.; Shao, L.; Zhang, K.; Li, G. Nematicidal effect of volatiles produced by Trichoderma sp. J. Asia-Pac. Entomol. 2012, 15, 647–650. [Google Scholar] [CrossRef]
- Spiegel, Y.; Sharon, E.; Chet, I. Mechanisms and improved biocontrol of the root-knot nematodes by Trichoderma spp. Acta Hort. 2005, 698, 225–228. [Google Scholar] [CrossRef]
- Bokhari, F.M. Efficacy of Trichoderma species in the control of Rotylenchulus reniformis and Meloidogyne javanica. Arch. Phytopathol. Plant Prot. 2009, 42, 361–369. [Google Scholar] [CrossRef]
Concentration | Pochonia chlamydosporia | Purpureocillium lilacinum | Trichoderma harzianum | Trichoderma viride |
---|---|---|---|---|
0 | 218 ± 19.13 ab | 218 ± 19.13 ab | 218 ± 19.13 ab | 218 ± 19.13 ab |
2.5 × 103 | 210 ± 10.00 ab | 202 ± 25.88 abc | 214 ± 18.92 ab | 232 ± 20.63 a |
5 × 103 | 204 ± 10.20 abc | 198 ± 17.44 abc | 190 ± 18.97 bc | 224 ± 17.61 ab |
7.5 × 103 | 188 ± 23.87 bc | 168 ± 24.21 cd | 166 ± 11.85 cd | 192 ± 23.02 abc |
1 × 104 | 142 ± 23.71 de | 124 ± 19.03 e | 120 ± 13.29 e | 136 ± 18.67 de |
Rugby | 52 ± 7.00 f | 52 ± 7.00 f | 52 ± 7.00 f | 52 ± 7.00 f |
Concentration | Pochonia chlamydosporia | Purpureocillium lilacinum | Trichoderma harzianum | Trichoderma viride |
---|---|---|---|---|
0 | 0.00 | 0.00 | 0.00 | 0.00 |
2.5 × 103 | 2.11 | 5.63 | 4.23 | −0.70 |
5 × 103 | 6.34 | 7.75 | 7.04 | 2.11 |
7.5 × 103 | 11.27 | 11.97 | 9.15 | 8.45 |
1 × 104 | 16.20 | 18.31 | 16.20 | 14.08 |
Rugby | 21.83 | 21.83 | 21.83 | 21.83 |
Concentration | Pochonia chlamydosporia | Purpureocillium lilacinum | Trichoderma harzianum | Trichoderma viride |
---|---|---|---|---|
0 | 210 ± 13.78 a | 210 ± 13.78 a | 210 ± 13.78 a | 210 ± 13.78 a |
2.5 × 103 | 192 ± 21.86 abc | 182 ± 24.12 abcd | 186 ± 17.00 abcd | 198 ± 17.44 ab |
5 × 103 | 180 ± 17.89 abcd | 162 ± 12.51 bcdef | 164 ± 11.90 bcde | 182 ± 20.74 abcd |
7.5 × 103 | 152 ± 10.07 defg | 156 ± 16.67 cdefg | 138 ± 19.24 efg | 148 ± 23.71 defg |
1 × 104 | 130 ± 21.94 efg | 128 ± 16.54 efg | 122 ± 18.25 g | 124 ± 20.98 fg |
Rugby | 44 ± 9.38 h | 44 ± 9.38 h | 44 ± 9.38 h | 44 ± 9.38 h |
Concentration | Pochonia chlamydosporia | Purpureocillium lilacinum | Trichoderma harzianum | Trichoderma viride |
---|---|---|---|---|
0 | 0.00 | 0.00 | 0.00 | 0.00 |
2.5 × 103 | 8.57 | 13.33 | 11.43 | 5.71 |
5 × 103 | 14.29 | 22.86 | 21.90 | 13.33 |
7.5 × 103 | 27.62 | 25.71 | 34.29 | 29.52 |
1 × 104 | 38.10 | 39.05 | 41.90 | 40.95 |
Rugby | 79.05 | 79.05 | 79.05 | 79.05 |
Concentration | Pochonia chlamydosporia | Purpureocillium lilacinum | Trichoderma harzianum | Trichoderma viride |
---|---|---|---|---|
0 | 284 ± 16.79 a | 284 ± 16.79 a | 284 ± 16.79 a | 284 ± 16.79 a |
2.5 × 103 | 278 ± 20.83 ab | 268 ± 19.44 abcd | 272 ± 14.35 abc | 286 ± 17.72 a |
5 × 103 | 266 ± 12.81 abcd | 262 ± 12.88 abcd | 264 ± 15.03 abcd | 278 ± 16.06 ab |
7.5 × 103 | 252 ± 14.63 abcde | 250 ± 14.14 abcde | 258 ± 17.72 abcde | 260 ± 21.91 abcde |
1 × 104 | 238 ± 21.31 cde | 232 ± 12.00 de | 238 ± 14.28 cde | 244 ± 9.70 bcde |
Rugby | 222 ± 14.83 e | 222 ± 14.83 e | 222 ± 14.83 e | 222 ± 14.83 e |
Concentration | Pochonia chlamydosporia | Purpureocillium lilacinum | Trichoderma harzianum | Trichoderma viride |
---|---|---|---|---|
0 | 0.00 | 0.00 | 0.00 | 0.00 |
2.5 × 103 | 2.11 | 5.63 | 4.23 | −0.70 |
5 × 103 | 6.34 | 7.75 | 7.04 | 2.11 |
7.5 × 103 | 11.27 | 11.97 | 9.15 | 8.45 |
1 × 104 | 16.20 | 18.31 | 16.20 | 14.08 |
Rugby | 21.83 | 21.83 | 21.83 | 21.83 |
Concentration | Pochonia chlamydosporia | Purpureocillium lilacinum | Trichoderma harzianum | Trichoderma viride |
---|---|---|---|---|
0 | 61,510 ± 4915 a | 61,510 ± 4917 a | 61,510 ± 4915 a | 61,510 ± 4917 a |
2.5 × 103 | 55,078 ± 9271 abc | 49,862 ± 4617 abcde | 51,998 ± 5387 abcd | 58,346 ± 7832 ab |
5 × 103 | 48,988 ± 3620 bcdef | 43,582 ± 4479 cdefg | 44,466 ± 4355 cdef | 51,612 ± 3249 abcd |
7.5 × 103 | 39,316 ± 2045 efgh | 40,052 ± 5388 defgh | 36,776 ± 6530 fgh | 39,832 ± 8550 defgh |
1 × 104 | 31,912 ± 6194 gh | 30,678 ± 4920 h | 29,896 ± 4553 h | 31,312 ± 5747 gh |
Rugby | 10,590 ± 2257 i | 10,590 ± 2258 i | 10,590 ± 2257 i | 10,590 ± 2257 i |
Concentration | Pochonia chlamydosporia | Purpureocillium lilacinum | Trichoderma harzianum | Trichoderma viride |
---|---|---|---|---|
0 | 0.00 | 0.00 | 0.00 | 0.00 |
2.5 × 103 | 10.46 | 18.94 | 15.46 | 5.14 |
5 × 103 | 20.36 | 29.15 | 27.71 | 16.09 |
7.5 × 103 | 36.08 | 34.89 | 40.21 | 35.24 |
1 × 104 | 48.12 | 50.13 | 51.40 | 49.09 |
Rugby | 82.78 | 82.78 | 82.78 | 82.78 |
Concentration | Pochonia chlamydosporia | Purpureocillium lilacinum | Trichoderma harzianum | Trichoderma viride |
---|---|---|---|---|
0 | 12.302 ± 0.98 a | 12.302 ± 0.98 a | 12.302 ± 0.98 a | 12.302 ± 0.98 a |
2.5 × 103 | 11.016 ± 1.85 abc | 9.972 ± 0.92 abcde | 10.400 ± 1.08 abcd | 11.669 ± 1.57 ab |
5 × 103 | 9.798 ± 0.72 bcdef | 8.716 ± 0.90 cdefg | 8.893 ± 0.87 cdef | 10.322 ± 0.65 abcd |
7.5 × 103 | 7.863 ± 0.41 efgh | 8.010 ± 1.08 defgh | 7.355 ± 1.31 fgh | 7.966 ± 1.71 defgh |
1 × 104 | 6.382 ± 1.24 gh | 6.136 ± 0.98 h | 5.979 ± 0.91 h | 6.262 ± 1.15 gh |
Rugby | 2.118 ± 0.45 i | 2.118 ± 0.45 i | 2.118 ± 0.45 i | 2.118 ± 0.45 i |
Concentration | Pochonia chlamydosporia | Purpureocillium lilacinum | Trichoderma harzianum | Trichoderma viride |
---|---|---|---|---|
0 | 0.00 | 0.00 | 0.00 | 0.00 |
2.5 × 103 | 10.41 | 18.94 | 15.45 | 5.12 |
5 × 103 | 20.33 | 29.11 | 27.72 | 16.10 |
7.5 × 103 | 36.10 | 34.88 | 40.16 | 35.20 |
1 × 104 | 48.13 | 50.08 | 51.38 | 49.11 |
Rugby | 82.76 | 82.76 | 82.76 | 82.76 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saeed, M.; Mukhtar, T.; Ahmed, R.; Ahmad, T.; Iqbal, M.A. Suppression of Meloidogyne javanica Infection in Peach (Prunus persica (L.) Batsch) Using Fungal Biocontrol Agents. Sustainability 2023, 15, 13833. https://doi.org/10.3390/su151813833
Saeed M, Mukhtar T, Ahmed R, Ahmad T, Iqbal MA. Suppression of Meloidogyne javanica Infection in Peach (Prunus persica (L.) Batsch) Using Fungal Biocontrol Agents. Sustainability. 2023; 15(18):13833. https://doi.org/10.3390/su151813833
Chicago/Turabian StyleSaeed, Muhammad, Tariq Mukhtar, Raees Ahmed, Tanveer Ahmad, and Muhammad Aamir Iqbal. 2023. "Suppression of Meloidogyne javanica Infection in Peach (Prunus persica (L.) Batsch) Using Fungal Biocontrol Agents" Sustainability 15, no. 18: 13833. https://doi.org/10.3390/su151813833
APA StyleSaeed, M., Mukhtar, T., Ahmed, R., Ahmad, T., & Iqbal, M. A. (2023). Suppression of Meloidogyne javanica Infection in Peach (Prunus persica (L.) Batsch) Using Fungal Biocontrol Agents. Sustainability, 15(18), 13833. https://doi.org/10.3390/su151813833