Spatio-Temporal Differentiation Characteristics and Driving Factors of Urban Thermal Environment: A Case Study in Shaanxi Province, China
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources and Processing
2.3. Methods
2.3.1. Contagion Index
2.3.2. UTD Index
2.3.3. Geo-Explore Model
3. Results
3.1. Analysis of Spatio-Temporal Characteristics of AAT
3.2. Analysis of the UTD Changes
3.3. Analysis of the Causes of Temperature Spatio-Temporal Evolution
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xia, T.; Wang, J.; Song, K.; Da, L. Variations in air quality during rapid urbanization in Shanghai, China. Landsc. Ecol. Eng. 2014, 10, 181–190. [Google Scholar] [CrossRef]
- Cao, C.; Lee, X.; Liu, S.; Schultz, N.; Xiao, W.; Zhang, M.; Zhao, L. Urban heat islands in China are enhanced by haze pollution. Nat. Commun. 2016, 7, 12509. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Din, M.; Ponraj, M.; Noor, Z.; Iwao, K.; Chelliapan, S. Overview of urban heat island (UHI) phenomenon towards human thermal comfort. Environ. Eng. Manag. J. 2017, 16, 2097–2112. [Google Scholar]
- Wang, Z.; Luo, H.; Li, Y.; Li, H. Effects of Urbanization on Temperatures over the Qinling Mountains in the Past 50 Years. J. Appl. Meteorol. Sci. 2016, 27, 87–96. [Google Scholar]
- Ren, Z.; He, X.; Pu, R.; Zheng, H. The impact of urban forest structure and its spatial location on urban cool island intensity. Urban Ecosyst. 2018, 21, 863–874. [Google Scholar] [CrossRef]
- Salata, F.; Golasi, L.; Petitti, D.; Vollaro, E.; Coppi, M.; Vollaro, A. Relating microclimate, human thermal comfort and health during heat waves: An analysis of heat island mitigation strategies through a case study in an urban outdoor environment. Sustain. Cities Soc. 2017, 30, 79–96. [Google Scholar] [CrossRef]
- Wong, L.; Alias, H.; Aghamohammadi, N.; Aghazadeh, S.; Sulaiman, N. Physical, Psychological, and Social Health Impact of Temperature Rise Due to Urban Heat Island Phenomenon and Its Associated Factors. Biomed. Environ. Sci. 2018, 31, 545–550. [Google Scholar]
- Carlson, T. Applications of remote sensing to urban problems. Remote Sens. Environ. 2003, 86, 273–274. [Google Scholar] [CrossRef]
- Amiri, R.; Weng, Q.; Alimohammadi, A.; Alvipanah, S. Spatial–temporal dynamics of land surface temperature in relation to fractional vegetation cover and land use/cover in the Tabriz urban area, Iran. Remote Sens. Environ. 2009, 113, 2606–2617. [Google Scholar] [CrossRef]
- Ren, Z.; Li, Z.; Wu, F.; Ma, H.; Xu, Z.; Jiang, W.; Wang, S.; Yang, J. Spatiotemporal Evolution of the Urban Thermal Environment Effect and Its Influencing Factors: A Case Study of Beijing, China. Int. J. Geo-Inf. 2022, 11, 278. [Google Scholar] [CrossRef]
- Sun, K.; Cheng, S. Genetic algorithm-based surface component temperatures retrieval by integrating MODIS TIR DATA from Terra and Aqua satellites. J. Infrared Millim. Waves 2012, 31, 462–468. [Google Scholar] [CrossRef]
- Huang, M.; Yue, W.; Xiang, H. Correlation analysis between land surface thermal environment and landscape change and its scale effect in Chaohu Basin. China Environ. Sci. 2017, 37, 3123–3133. [Google Scholar]
- Jin, K.; Wang, F.; Zong, Q.; Qin, P.; Liu, C. Impact of variations in vegetation on surface air temperature change over the Chinese Loess Plateau. Sci. Total Environ. 2020, 716, 136967. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Chen, Y.; Tong, C. Spatiotemporal evolution of urban green space and its impact on the urban thermal environment based on remote sensing data: A case study of Fuzhou City, China. Urban For. Urban Green. 2019, 41, 333–343. [Google Scholar] [CrossRef]
- Ren, Y.; Parker, D.; Ren, G.; Dunn, R. Tempo-spatial characteristics of sub-daily temperature trends in mainland China. Clim. Dyn. 2015, 46, 2737–2748. [Google Scholar] [CrossRef][Green Version]
- Yao, R.; Wang, L.; Huang, X.; Niu, Y.; Chen, Y.; Niu, Z. The influence of different data and method on estimating the surface urban heat island intensity. Ecol. Indic. 2018, 89, 45–55. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, Y. Impacts of urban surface characteristics on spatiotemporal pattern of land surface temperature in Kunming of China. Sustain. Cities Soc. 2017, 32, 87–99. [Google Scholar] [CrossRef]
- Liu, H.; Huang, B.; Gao, S.; Wang, J.; Yang, C.; Li, R. Impacts of the evolving urban development on intra-urban surface thermal environment: Evidence from 323 Chinese cities. Sci. Total Environ. 2021, 771, 144810. [Google Scholar] [CrossRef]
- Zhang, P.; Bounoua, L.; Imhoff, M.; Wolfe, R.; Thome, K. Comparison of MODIS land surface temperature and air temperature over the continental USA meteorological stations. Can. J. Remote Sens. 2014, 40, 110–122. [Google Scholar]
- Berg, E.; Kucharik, C. The dynamic relationship between air and land surface temperature within the Madison, Wisconsin urban heat island. Remote Sens. 2022, 14, 165. [Google Scholar] [CrossRef]
- Trotter, L.; Dewan, A.; Robinson, T. Effects of rapid urbanization on the urban thermal environment between 1990 and 2011 in Dhaka Megacity, Bangladesh. AIMS Environ. Sci. 2017, 4, 145–167. [Google Scholar] [CrossRef]
- Kumi-Baoteng, B.; Stemn, E.; Agyapong, A. Effect of urban growth on urban thermal environment: A case study of Sekondi-Takoradi Metropolis of Ghana. J. Environ. Earth Sci. 2015, 5, 32–41. [Google Scholar]
- Lee, P.S.H.; Park, J. An effect of urban forest on urban thermal environment in Seoul, South Korea, based on Landsat imagery analysis. Forests 2020, 11, 630. [Google Scholar] [CrossRef]
- Watson, F.; Lockwood, R.; Newman, W.; Aderson, T.; Garrott, R. Development and comparison of Landsat radiometric and snowpack model inversion techniques for estimating geothermal heat flux. Remote Sens. Environ. 2008, 112, 471–481. [Google Scholar] [CrossRef]
- Wu, J.; Li, X.; Li, S.; Liu, C.; Yi, T.; Zhao, Y. Spatial heterogeneity and attribution analysis of urban thermal comfort in China from 2000 to 2020. Int. J. Environ. Res. Public Health 2022, 19, 5683. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, X.; Balzter, H.; Qiu, B.; Cheng, J. Directional and zonal analysis of urban thermal environmental change in Fuzhou as an indicator of urban landscape transformation. Remote Sens. 2019, 11, 2810. [Google Scholar] [CrossRef]
- Ye, H.; Li, Z.; Zhang, N.; Leng, X.; Meng, D.; Zheng, J.; Li, Y. Variations in the effects of landscape patterns on the urban thermal environment during rapid urbanization (1990–2020) in megacities. Remote Sens. 2021, 13, 3415. [Google Scholar] [CrossRef]
- Ji, Y.; Peng, Y.; Li, Z.; Li, J.; Liu, S.; Cai, X.; Yin, Y.; Feng, T. Driving Mechanism of Differentiation in Urban Thermal Environment during Rapid Urbanization. Remote Sens. 2023, 15, 2075. [Google Scholar] [CrossRef]
- Hokao, K.; Phonekeo, V.; Srivanit, M. Assessing the impact of urbanization on urban thermal environment: A case study of Bangkok Metropolitan. Int. J. Appl. Sci. Technol. 2012, 2, 243–256. [Google Scholar]
- Sharmin, T.; Steemers, K.; Matzarakis, A. Microclimatic modelling in assessing the impact of urban geometry on urban thermal environment. Sustain. Cities Soc. 2017, 34, 293–308. [Google Scholar] [CrossRef]
- Tian, Z.; Zhu, N.; Liu, J. Relationship Between Heat Island Effect and Artificial Factors. J. Tianjin Univ. 2005, 38, 380–383. [Google Scholar]
- Xiong, Y.; Zhang, F. Effect of human settlements on urban thermal environment and factor analysis based on multi-source data: A case study of Changsha city. J. Geogr. Sci. 2021, 31, 819–838. [Google Scholar] [CrossRef]
- He, Y.; Zhang, L. Temporal and spatial characteristics of climatic change from 1980 to 2006 in Shaanxi Province. J. Arid Land Resour. Environ. 2011, 25, 59–63. [Google Scholar]
- Kalnay, E.; Cai, M. Impact of Urbanization and Land-use change on Climate. Nature 2003, 423, 528–531. [Google Scholar] [CrossRef]
- Arnfield, A.J. “Köppen Climate Classification”. Encyclopedia Britannica, 7 April 2023. Available online: https://www.britannica.com/science/Koppen-climate-classification (accessed on 23 April 2023).
- Kevin, M.; Barbara, J. FRAGSTATS—Spatial Pattern Analysis Program for Quantifying Landscape Structure; USDA Forest Service, Pacific Northwest Research Station: Portland, OR, USA, 1995; pp. 58–59.
- Ji, W.; Ma, J.; Twibell, R.; Underhill, K. Characterizing urban sprawl using multi-stage remote sensing images and landscape metrics. Computers. Environ. Urban Syst. 2006, 30, 861–979. [Google Scholar] [CrossRef]
- Wu, Q.; Tan, J.; Guo, F.; Li, H.; Chen, S. Multi-Scale Relationship between Land Surface Temperature and Landscape Pattern Based on Wavelet Coherence: The Case of Metropolitan Beijing, China. Remote Sens. 2019, 11, 3021. [Google Scholar] [CrossRef]
- Wang, H.; Huang, S.; Ren, Y.; He, L.; Xiao, B. Preliminary analysis of the subsurface temperature and air temperature changes in Xi’an, China. Chin. J. Geol. 2014, 3, 874–887. [Google Scholar]
- Wang, J.; Xu, C. Geodetector: Principle and prospective. Acta Geogr. Sin. 2017, 72, 116–134. [Google Scholar]
- Qiang, C.; Leydon, J.; He, Y. Impact of COVID-19 Restrictions on the Urban Thermal Environment of Edmonton, Canada. Environ. Manag. 2023, 72, 862–882. [Google Scholar] [CrossRef]
Parameter | Specific Elements | Unit | Data | Data Sources |
---|---|---|---|---|
Daily AT data | Air temperature | °C | 1970–2017 | http://data.cma.cn (accessed on 8 September 2022) |
Near-surface temperature | °C | |||
Pressure | Pa | |||
Rainfall | mm | |||
Humidity | %rh | |||
Evaporation | mm | |||
Sunshine duration | h | |||
Maximum and minimum temperature | °C | |||
Hourly wind speed | m/s | |||
Natural factors | Relative humidity | % | 1970–2017 | http://tjj.shaanxi.gov.cn/tjsj/ (accessed on 9 September 2022) |
Surface temperature | °C | |||
Evaporation capacity | mm | |||
Sunshine duration | h | |||
Average wind speed | m/s | |||
Precipitation | mm | |||
Socio-economic factors | Population | NP | 1960–2017 | http://tjj.shaanxi.gov.cn/tjsj/ndsj/tjnj/ (accessed on 15 September 2022) or http://tjj.xa.gov.cn/tjsj/tjxx/1.html (accessed on 15 September 2022) |
Gross domestic product | Billion | 1970–2017 | ||
Urbanization rate | % | |||
Built-up area | Km2 | 1970,1980,1990–2020 | ||
Green coverage rate | % | 1970,1980,1990,2000–2017 | ||
Park area per capita | M2/per capita | 1970–2017 |
Area | Southern Area | Central Area | Northern Area |
---|---|---|---|
Year | UTD | UTD | UTD |
1970 | −0.09 | 0.08 | −0.21 |
1980 | 0.11 | 0.31 | 0.26 |
1990 | 0.42 | 0.33 | 0.45 |
2000 | 0.30 | 0.24 | 0.23 |
2010 | 0.57 | 0.67 | 0.34 |
2017 | 0.47 | 0.72 | 0.45 |
Factors | Southern Area | Central Area | Northern Area | ||||||
---|---|---|---|---|---|---|---|---|---|
q Value | p Value | Sorting of q Values | q Value | p Value | Sorting of q Values | q Value | p Value | Sorting of q Values | |
Relative humidity | 0.010 | 1.000 | 7 | 0.428 | 1.000 | 1 | 0.177 | 0.947 | 3 |
Surface temperature | 0.128 | 1.000 | 6 | 0.387 | 1.000 | 2 | 0.061 | 1.000 | 5 |
Evaporation capacity | 0.249 | 0.999 | 2 | 0.089 | 1.000 | 4 | 0.547 | 0.000 | 1 |
Sunshine duration | 0.176 | 0.144 | 4 | 0.000 | 1.000 | 7 | 0.159 | 1.000 | 4 |
Average wind speed | 0.158 | 1.000 | 5 | 0.056 | 1.000 | 5 | 0.026 | 1.000 | 6 |
Precipitation | 0.629 | 0.007 | 1 | 0.023 | 1.000 | 6 | 0.000 | 1.000 | 7 |
Average elevation | 0.235 | 1.000 | 3 | 0.355 | 1.000 | 3 | 0.432 | 0.999 | 2 |
Factor | Southern Area | Central Area | Northern Area | ||||||
---|---|---|---|---|---|---|---|---|---|
q Value | p Value | Sorting of q Values | q Value | p Value | Sorting of q Values | q Value | p Value | Sorting of q Values | |
Population | 0.022 | 1.000 | 5 | 0.085 | 1.000 | 5 | 0.025 | 1.000 | 6 |
GDP | 0.003 | 1.000 | 6 | 0.149 | 1.000 | 4 | 0.322 | 0.627 | 2 |
Urbanization rate | 0.033 | 1.000 | 4 | 0.046 | 1.000 | 6 | 0.377 | 0.999 | 1 |
Built-up area | 0.318 | 0.003 | 2 | 0.200 | 1.000 | 2 | 0.224 | 1.000 | 3 |
Green coverage rate | 0.078 | 1.000 | 3 | 0.189 | 1.000 | 3 | 0.031 | 1.000 | 5 |
Park area per capita | 0.653 | 0.000 | 1 | 0.478 | 0.988 | 1 | 0.034 | 1.000 | 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, X.; Zhou, Z.; Somenahalli, S.; Li, M.; Li, F.; Wang, Y. Spatio-Temporal Differentiation Characteristics and Driving Factors of Urban Thermal Environment: A Case Study in Shaanxi Province, China. Sustainability 2023, 15, 13206. https://doi.org/10.3390/su151713206
Feng X, Zhou Z, Somenahalli S, Li M, Li F, Wang Y. Spatio-Temporal Differentiation Characteristics and Driving Factors of Urban Thermal Environment: A Case Study in Shaanxi Province, China. Sustainability. 2023; 15(17):13206. https://doi.org/10.3390/su151713206
Chicago/Turabian StyleFeng, Xiaogang, Zaihui Zhou, Sekhar Somenahalli, Meng Li, Fengxia Li, and Yuan Wang. 2023. "Spatio-Temporal Differentiation Characteristics and Driving Factors of Urban Thermal Environment: A Case Study in Shaanxi Province, China" Sustainability 15, no. 17: 13206. https://doi.org/10.3390/su151713206
APA StyleFeng, X., Zhou, Z., Somenahalli, S., Li, M., Li, F., & Wang, Y. (2023). Spatio-Temporal Differentiation Characteristics and Driving Factors of Urban Thermal Environment: A Case Study in Shaanxi Province, China. Sustainability, 15(17), 13206. https://doi.org/10.3390/su151713206