Risk Analysis in the Food Cold Chain Using Decomposed Fuzzy Set-Based FMEA Approach
Abstract
:1. Introduction
2. Literature Review
3. Methods
3.1. Decomposed Fuzzy Sets (DFS)
- Optimistic way of asking the question: What is the probability that the identified risk will not occur?
- Pessimistic way of asking the question: What is the probability that the identified risk will occur?
3.2. Failure Mode and Effect Analysis (FMEA)
- Implementation subject is determined;
- A team consisting of members having different fields of expertise formed;
- Information is acquired for the subject;
- Hazard analysis is executed;
- Actions are determined and implemented.
3.3. Proposed Approach
Algorithms 1: Pseudo representation of proposed approach |
Input: n: number of evaluation dimensions (occurrence severity detectability ), : number of risks , number of experts (. Output: Scores of the risks. begin for k = 1: s do: Step 1: Construct the linguistic decomposed fuzzy decision matrices based on Table 4. Step 2: Convert these linguistic terms into corresponding decomposed fuzzy numbers based on Table 4. Step 3: Aggregate the decomposed fuzzy decision matrices by using the DWGM operator given in Equation (7) for ∀j, separately. end for. Step 4: Multiply the decomposed fuzzy occurrence, severity and detectability values of the risks obtained from Step 3 by using Equation (3). Step 5: Defuzzify the values in order to obtain crisp values. for i = 1: m calculate the consistency ratio: end for for i = 1: m compute score values: if else return 0; end for end |
4. Application
5. Comparative Analysis
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Qian, J.; Yu, Q.; Jiang, L.; Yang, H.; Wu, W. Food cold chain management improvement: A conjoint analysis on COVID-19 and food cold chain systems. Food Control 2022, 137, 108940. [Google Scholar] [CrossRef]
- Turan, C.; Ozturkoglu, Y. A conceptual framework model for an effective cold food chain management in sustainability environment. J. Model. Manag. 2022, 17, 1262–1279. [Google Scholar] [CrossRef]
- Rezaee, M.J.; Yousefi, S.; Valipour, M.; Dehdar, M.M. Risk analysis of sequential processes in food industry integrating multi-stage fuzzy cognitive map and process failure mode and effects analysis. Comput. Ind. Eng. 2018, 123, 325–337. [Google Scholar] [CrossRef]
- Sharifi, F.; Vahdatzad, M.A.; Barghi, B.; Azadeh-Fard, N. Identifying and ranking risks using combined FMEA-TOPSIS method for new product development in the dairy industry and offering mitigation strategies: Case study of Ramak Company. Int. J. Syst. Assur. Eng. Manag. 2022, 13, 2790–2807. [Google Scholar] [CrossRef]
- Mercier, S.; Villeneuve, S.; Mondor, M.; Uysal, I. Time-Temperature Management Along the Food Cold Chain: A Review of Recent Developments. Compr. Rev. Food Sci. Food Saf. 2017, 16, 647–667. [Google Scholar] [CrossRef]
- Alzghoul, A.; Backe, B.; Löfstrand, M.; Byström, A.; Liljedahl, B. Comparing a knowledge-based and a data-driven method in querying data streams for system fault detection: A hydraulic drive system application. Comput. Ind. 2014, 65, 1126–1135. [Google Scholar] [CrossRef]
- Soltanali, H.; Khojastehpour, M.; Pais, J.E.d.A.e.; Farinha, J.T. Sustainable Food Production: An Intelligent Fault Diagnosis Framework for Analyzing the Risk of Critical Processes. Sustainability 2022, 14, 1083. [Google Scholar] [CrossRef]
- Oldenhof, M.; van Leeuwen, J.; Nauta, M.; de Kaste, D.; Odekerken-Rombouts, Y.; Vredenbregt, M.; Weda, M.; Barends, D. Consistency of FMEA used in the validation of analytical procedures. J. Pharm. Biomed. Anal. 2011, 54, 592–595. [Google Scholar] [CrossRef]
- Stamatis, D.H. Failure Mode and Effect Analysis (FMEA) from Theory to Execution; American Society for Quality Press: Milwaukee, WI, USA, 2003. [Google Scholar]
- Ozilgen, S. Failure Mode and Effect Analysis (FMEA) for confectionery manufacturing in developing countries: Turkish delight production as a case study. Food Sci. Technol. 2012, 32, 505–514. [Google Scholar] [CrossRef]
- Kurt, L.; Ozilgen, S. Failure mode and effect analysis for dairy product manufacturing: Practical safety improvement action plan with cases from Turkey. Saf. Sci. 2013, 55, 195–206. [Google Scholar] [CrossRef]
- Arvanitoyannis, I.S.; Varzakas, T.H. Application of ISO 22000 and Failure Mode and Effect Analysis (FMEA) for Industrial Processing of Salmon: A Case Study. Crit. Rev. Food Sci. Nutr. 2008, 48, 411–429. [Google Scholar] [CrossRef] [PubMed]
- Ozilgen, S.; Bucak, S.; Ozilgen, M. Improvement of the safety of the red pepper spice with FMEA and post processing EWMA quality control charts. J. Food Sci. Technol. 2013, 50, 466–476. [Google Scholar] [CrossRef] [PubMed]
- Varzakas, T.H.; Arvanitoyannis, I.S. Application of Failure Mode and Effect Analysis (FMEA), Cause and Effect Analysis, and Pareto Diagram in Conjunction with HACCP to a Corn Curl Manufacturing Plant. Crit. Rev. Food Sci. Nutr. 2007, 47, 363–387. [Google Scholar] [CrossRef] [PubMed]
- Vasilakakis, K.; Sdrali, D. Supplier selection criteria in the Greek hotel food and beverage divisions. J. Hosp. Tour. Insights 2022, 6, 447–463. [Google Scholar] [CrossRef]
- Van Thanh, N.; Lan, N.T.K. A New Hybrid Triple Bottom Line Metrics and Fuzzy MCDM Model: Sustainable Supplier Selection in the Food-Processing Industry. Axioms 2022, 11, 57. [Google Scholar] [CrossRef]
- Ada, N. Sustainable Supplier Selection in Agri-Food Supply Chain Management. Int. J. Math. Eng. Manag. Sci. 2022, 7, 115–130. [Google Scholar] [CrossRef]
- Ikinci, M.; Tipi, T. Food supplier selection in the catering industry using the analytic hierarchy process. Food Sci. Technol. 2021, 42. [Google Scholar] [CrossRef]
- Leong, W.Y.; Wong, K.Y.; Wong, W.P. A New Integrated Multi-Criteria Decision-Making Model for Resilient Supplier Selection. Appl. Syst. Innov. 2022, 5, 8. [Google Scholar] [CrossRef]
- Hatami-Marbini, A.; Hekmat, S.; Agrell, P.J. A strategy-based framework for supplier selection: A grey PCA-DEA approach. Oper. Res. 2022, 22, 263–297. [Google Scholar] [CrossRef]
- Kazançoglu, Y.; Ozturkoglu, Y.; Mangla, S.K.; Ozbiltekin-Pala, M.; Ishizaka, A. A proposed framework for multi-tier supplier performance in sustainable supply chains. Int. J. Prod. Res. 2022, 61, 4742–4764. [Google Scholar] [CrossRef]
- Yazdani, M.; Pamucar, D.; Chatterjee, P.; Torkayesh, A.E. A multi-tier sustainable food supplier selection model under uncertainty. Oper. Manag. Res. 2022, 15, 116–145. [Google Scholar] [CrossRef]
- Tirkolaee, E.B.; Dashtian, Z.; Weber, G.-W.; Tomaskova, H.; Soltani, M.; Mousavi, N.S. An Integrated Decision-Making Approach for Green Supplier Selection in an Agri-Food Supply Chain: Threshold of Robustness Worthiness. Mathematics 2021, 9, 1304. [Google Scholar] [CrossRef]
- Rong, L.; Wang, L.; Liu, P. Supermarket fresh food suppliers evaluation and selection with multigranularity unbalanced hesitant fuzzy linguistic information based on prospect theory and evidential theory. Int. J. Intell. Syst. 2022, 37, 1931–1971. [Google Scholar] [CrossRef]
- Khan, A.U.; Ali, Y. Sustainable supplier selection for the cold supply chain (CSC) in the context of a developing country. Environ. Dev. Sustain. 2021, 23, 13135–13164. [Google Scholar] [CrossRef]
- Khamseh, A.A. A Time-Dependent Sustainable–Flexible Supplier Selection Considering Uncertainty and TODIM Method in Iranian Dairy Industries. Glob. J. Flex. Syst. Manag. 2021, 22, 113–126. [Google Scholar] [CrossRef]
- Wang, C.-N.; Nguyen, V.T.; Kao, J.-C.; Chen, C.-C.; Nguyen, V.T. Multi-Criteria Decision-Making Methods in Fuzzy Decision Problems: A Case Study in the Frozen Shrimp Industry. Symmetry 2021, 13, 370. [Google Scholar] [CrossRef]
- Başaran, B.; Çakır, S. Evaluation of food safety and halal criteria in supplier selection: An application in the food sector with fuzzy COPRAS method. Int. Food Res. J. 2021, 28, 576–585. [Google Scholar] [CrossRef]
- Wang, C.-N.; Tsai, H.-T.; Nguyen, V.T.; Nguyen, V.T.; Huang, Y.-F. A Hybrid Fuzzy Analytic Hierarchy Process and the Technique for Order of Preference by Similarity to Ideal Solution Supplier Evaluation and Selection in the Food Processing Industry. Symmetry 2020, 12, 211. [Google Scholar] [CrossRef]
- Verdecho, M.-J.; Alarcón-Valero, F.; Pérez-Perales, D.; Alfaro-Saiz, J.-J.; Rodríguez-Rodríguez, R. A methodology to select suppliers to increase sustainability within supply chains. Cent. Eur. J. Oper. Res. 2021, 29, 1231–1251. [Google Scholar] [CrossRef]
- Kaviani, M.A.; Peykam, A.; Khan, S.A.; Brahimi, N.; Niknam, R. A new weighted fuzzy programming model for supplier selection and order allocation in the food industry. J. Model. Manag. 2020, 15, 381–406. [Google Scholar] [CrossRef]
- Lau, H.; Shum, P.K.; Nakandala, D.; Fan, Y.; Lee, C. A game theoretic decision model for organic food supplier evaluation in the global supply chains. J. Clean. Prod. 2020, 242, 118536. [Google Scholar] [CrossRef]
- Segura, M.; Maroto, C.; Segura, B.; Casas-Rosal, J.C. Improving Food Supply Chain Management by a Sustainable Approach to Supplier Evaluation. Mathematics 2020, 8, 1952. [Google Scholar] [CrossRef]
- Zhou, F.; Chen, T.-Y. An Integrated Multicriteria Group Decision-Making Approach for Green Supplier Selection Under Pythagorean Fuzzy Scenarios. IEEE Access 2020, 8, 165216–165231. [Google Scholar] [CrossRef]
- Segura, M.; Maroto, C.; Segura, B. Quantifying the Sustainability of Products and Suppliers in Food Distribution Companies. Sustainability 2019, 11, 5875. [Google Scholar] [CrossRef]
- Ghoushchi, S.J.; Khazaeili, M.; Amini, A.; Osgooei, E. Multi-criteria sustainable supplier selection using piecewise linear value function and fuzzy best-worst method. J. Intell. Fuzzy Syst. 2019, 37, 2309–2325. [Google Scholar] [CrossRef]
- Liu, Y.; Eckert, C.; Bris, G.Y.-L.; Petit, G. A fuzzy decision tool to evaluate the sustainable performance of suppliers in an agrifood value chain. Comput. Ind. Eng. 2019, 127, 196–212. [Google Scholar] [CrossRef]
- Nie, S.; Liao, H.; Wu, X.; Xu, Z. Green Supplier Selection With a Continuous Interval-Valued Linguistic TODIM Method. IEEE Access 2019, 7, 124315–124328. [Google Scholar] [CrossRef]
- De Freitas, A.; Salgado, E.G.; Lira, J.M.S. Selectıon of Supplıers in the Green Supply Chaın: Case Study with Multı-Crıterıa Decision. Int. J. Qual. Res. 2020, 14, 51–64. [Google Scholar] [CrossRef]
- Ortiz-Barrios, M.; la Hoz, C.M.; López-Meza, P.; Petrillo, A.; De Felice, F. A case of food supply chain management with AHP, DEMATEL, and TOPSIS. J. Multi-Criteria Decis. Anal. 2020, 27, 104–128. [Google Scholar] [CrossRef]
- Khan, S.; Khan, M.I.; Haleem, A.; Jami, A.R. Prioritising the risks in Halal food supply chain: An MCDM approach. J. Islam. Mark. 2022, 13, 45–65. [Google Scholar] [CrossRef]
- Wang, C.-N.; Nguyen, V.T.; Thai, H.T.N.; Tran, N.N.; Tran, T.L.A. Sustainable Supplier Selection Process in Edible Oil Production by a Hybrid Fuzzy Analytical Hierarchy Process and Green Data Envelopment Analysis for the SMEs Food Processing Industry. Mathematics 2018, 6, 302. [Google Scholar] [CrossRef]
- Shi, H.; Quan, M.-Y.; Liu, H.-C.; Duan, C.-Y. A Novel Integrated Approach for Green Supplier Selection with Interval-Valued Intuitionistic Uncertain Linguistic Information: A Case Study in the Agri-Food Industry. Sustainability 2018, 10, 733. [Google Scholar] [CrossRef]
- Tian, Z.-P.; Zhang, H.-Y.; Wang, J.-Q.; Wang, T.-L. Green Supplier Selection Using Improved TOPSIS and Best-Worst Method Under Intuitionistic Fuzzy Environment. Informatica 2018, 29, 773–800. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, S.; Yao, J.; Li, Y.; Yang, S. Socially responsible supplier selection and sustainable supply chain development: A combined approach of total interpretive structural modeling and fuzzy analytic network process. Bus. Strat. Environ. 2018, 27, 1708–1719. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, T.; Liang, W.; Xiong, M. Closeness Degree-Based Hesitant Trapezoidal Fuzzy Multicriteria Decision Making Method for Evaluating Green Suppliers with Qualitative Information. Discret. Dyn. Nat. Soc. 2018, 2018, 3178039. [Google Scholar] [CrossRef]
- Govindan, K.; Kadziński, M.; Sivakumar, R. Application of a novel PROMETHEE-based method for construction of a group compromise ranking to prioritization of green suppliers in food supply chain. Omega 2017, 71, 129–145. [Google Scholar] [CrossRef]
- Frej, E.A.; Roselli, L.R.P.; De Almeida, J.A.; De Almeida, A.T. A Multicriteria Decision Model for Supplier Selection in a Food Industry Based on FITradeoff Method. Math. Probl. Eng. 2017, 2017, 4541914. [Google Scholar] [CrossRef]
- Duman, G.M.; Tozanli, O.; Kongar, E.; Gupta, S.M. A holistic approach for performance evaluation using quantitative and qualitative data: A food industry case study. Expert Syst. Appl. 2017, 81, 410–422. [Google Scholar] [CrossRef]
- Yazdani, M.; Chatterjee, P.; Zavadskas, E.K.; Zolfani, S.H. Integrated QFD-MCDM framework for green supplier selection. J. Clean. Prod. 2017, 142, 3728–3740. [Google Scholar] [CrossRef]
- Banaeian, N.; Mobli, H.; Fahimnia, B.; Nielsen, I.E.; Omid, M. Green supplier selection using fuzzy group decision making methods: A case study from the agri-food industry. Comput. Oper. Res. 2018, 89, 337–347. [Google Scholar] [CrossRef]
- Lau, H.; Nakandala, D.; Shum, P.K. A business process decision model for fresh-food supplier evaluation. Bus. Process Manag. J. 2018, 24, 716–744. [Google Scholar] [CrossRef]
- Amorim, P.; Curcio, E.; Almada-Lobo, B.; Barbosa-Póvoa, A.P.; Grossmann, I.E. Supplier selection in the processed food industry under uncertainty. Eur. J. Oper. Res. 2016, 252, 801–814. [Google Scholar] [CrossRef]
- Rezaei, J.; Nispeling, T.; Sarkis, J.; Tavasszy, L. A supplier selection life cycle approach integrating traditional and environmental criteria using the best worst method. J. Clean. Prod. 2016, 135, 577–588. [Google Scholar] [CrossRef]
- Ramlan, R.; Abu Bakar, E.M.N.E.; Mahmud, F.; Ng, H.K. The Ideal Criteria of Supplier Selection for SMEs Food Processing Industry. MATEC Web Conf. 2016, 70, 05006. [Google Scholar] [CrossRef]
- Banaeian, N.; Mobli, H.; Nielsen, I.E.; Omid, M. Criteria definition and approaches in green supplier selection—A case study for raw material and packaging of food industry. Prod. Manuf. Res. 2015, 3, 149–168. [Google Scholar] [CrossRef]
- de Araújo, M.C.B.; Alencar, L.H.; Viana, J.C. Structuring a model for supplier selection. Manag. Res. Rev. 2015, 38, 1213–1232. [Google Scholar] [CrossRef]
- Banaeian, N.; Mobli, H.; Nielsen, I.E.; Omid, M. A Methodology for Green Supplier Selection in Food Industries. In İçinde Technology Management for Sustainable Production and Logistics; Golińska, P., Kawa, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 3–23. [Google Scholar] [CrossRef]
- De Araújo, M.C.B.; Alencar, L.H. Integrated Model for Supplıer Selectıon and Performance Evaluatıon. S. Afr. J. Ind. Eng. 2015, 26, 41–55. [Google Scholar] [CrossRef]
- Banaeian, N.; Nielsen, I.E.; Mobli, H.; Omid, M. Green Supplier Selection in Edible oil Production by a Hybrid Model Using Delphi Method and Green Data Envelopment Analysis (GDEA). Manag. Prod. Eng. Rev. 2014, 5, 3–8. [Google Scholar] [CrossRef]
- Baynal, K.; Coşar, İ.; Ergül, Ö. Fuzzy Analytıc Hıerarchy Process and an Applıcatıon of Supplıer Selectıon in a Food Company. In Proceedings of the CIE44 & IMSS’14 Proceedings, Istanbul, Turkey, 14–16 October 2014; pp. 2210–2226. [Google Scholar]
- Aly, M.F.; El-hameed, H.M.A. Supplier Selection Using Integrated MCDM Model Combines Analytic Hierarchy Process and Genetic Algorithm. Available online: https://api.semanticscholar.org/CorpusID:31412795 (accessed on 19 July 2023).
- Azadnia, A.H.; Saman, M.Z.M.; Wong, K.Y. Sustainable supplier selection and order lot-sizing: An integrated multi-objective decision-making process. Int. J. Prod. Res. 2015, 53, 383–408. [Google Scholar] [CrossRef]
- Liu, A.H.; Bui, M.; Leach, M. Considering Technological Impacts When Selecting Food Suppliers: Comparing Retailers’ Buying Behavior in the United States and Europe. J. Bus.-Bus. Mark. 2013, 20, 81–98. [Google Scholar] [CrossRef]
- Voss, D. Supplier choice criteria and the security aware food purchasing manager. Int. J. Logist. Manag. 2013, 24, 380–406. [Google Scholar] [CrossRef]
- Magdalena, R. Supplier Selection for Food Industry: A Combination of Taguchi Loss Function and Fuzzy Analytical Hierarchy Process. Asian J. Technol. Manag. (AJTM) 2012, 5, 13–22. [Google Scholar]
- Liao, C.-N. Applying fuzzy-MSGP approach for supplier evaluation and selection in food industry. Afr. J. Agric. Res. 2012, 7, 726–740. [Google Scholar] [CrossRef]
- Shen, J.-L. Integrated multi-criteria decision-making (MCDM) method combined with decision making trial and evaluation laboratory (DEMATEL) and analytic network process (ANP) in food supplier selection. Afr. J. Bus. Manag. 2012, 6, 4595–4602. [Google Scholar] [CrossRef]
- Shen, J.-L.; Liu, Y.-M.; Tzeng, Y.-L. Central South University, 932 Lushan South Road, Changsha, Hunan 410083, China, ve National Taichung University of Education, 140 Min-Shen Road, TaiChung 40306, Taiwan. The Cluster-Weighted DEMATEL with ANP Method for Supplier Selection in Food Industry. J. Adv. Comput. Intell. Intell. Inform. 2012, 16, 567–575. [Google Scholar] [CrossRef]
- Agarwal, G. An application of supplier selection in supply chain for modeling of intangibles: A case study of multinational Food Coffee industry. Afr. J. Bus. Manag. 2011, 5, 11505. [Google Scholar] [CrossRef]
- Wang, Q.; Zhao, Z.; Wang, Z. Data-Driven Analysis of Risk-Assessment Methods for Cold Food Chains. Foods 2023, 12, 1677. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y. Influencing Factors of Agricultural Products Cold Chain Logistics Development Based on ISM Model. Wirel. Pers. Commun. 2023. [Google Scholar] [CrossRef]
- Puška, A.; Stojanović, I. Fuzzy multi-criteria analyses on green supplier selection in an agri-food company. J. Intell. Manag. Decis. 2022, 1, 2–16. [Google Scholar] [CrossRef]
- Pajić, V.; Andrejić, M.; Sternad, M. FMEA-QFD approach for effective risk assessment in distribution processes. J. Intell. Manag. Decis. 2023, 2, 46–56. [Google Scholar] [CrossRef]
- Cebi, S.; Gündoğdu, F.K.; Kahraman, C. Operational risk analysis in business processes using decomposed fuzzy sets. J. Intell. Fuzzy Syst. 2022, 43, 2485–2502. [Google Scholar] [CrossRef]
- Chiozza, M.L.; Ponzetti, C. FMEA: A model for reducing medical errors. Clin. Chim. Acta 2009, 404, 75–78. [Google Scholar] [CrossRef] [PubMed]
- Peron, M.; Arena, S.; Paltrinieri, N.; Sgarbossa, F.; Boustras, G. Risk assessment for handling hazardous substances within the European industry: Available methodologies and research streams. Available Methodol. Res. Streams 2023, 43, 1434–1462. [Google Scholar] [CrossRef]
- Chin, K.-S.; Chan, A.; Yang, J.-B. Development of a fuzzy FMEA based product design system. Int. J. Adv. Manuf. Technol. 2008, 36, 633–649. [Google Scholar] [CrossRef]
- Aguirre, P.A.G.; Pérez-Domínguez, L.; Luviano-Cruz, D.; Noriega, J.J.S.; Gómez, E.M.; Callejas-Cuervo, M. PFDA-FMEA, an Integrated Method Improving FMEA Assessment in Product Design. Appl. Sci. 2021, 11, 1406. [Google Scholar] [CrossRef]
- Wang, L.; Sun, L.; Kang, J.; Wang, Y.; Wang, H. Risk Identification of FPSO Oil and Gas Processing System Based on an Improved FMEA Approach. Appl. Sci. 2021, 11, 567. [Google Scholar] [CrossRef]
- Arabian-Hoseynabadi, H.; Oraee, H.; Tavner, P. Failure Modes and Effects Analysis (FMEA) for wind turbines. Int. J. Electr. Power Energy Syst. 2010, 32, 817–824. [Google Scholar] [CrossRef]
- Ivančan, J.; Lisjak, D. New FMEA Risks Ranking Approach Utilizing Four Fuzzy Logic Systems. Machines 2021, 9, 292. [Google Scholar] [CrossRef]
- Acuner, O.; Cebi, S. An Effective Risk-Preventive Model Proposal for Occupational Accidents at Shipyards. Brodogradnja 2016, 67, 67–84. [Google Scholar]
- Ilbahar, E.; Karaşan, A.; Cebi, S.; Kahraman, C. A novel approach to risk assessment for occupational health and safety using Pythagorean fuzzy AHP & fuzzy inference system. Saf. Sci. 2018, 103, 124–136. [Google Scholar] [CrossRef]
- Almeraz-Durán, S.; Pérez-Domínguez, L.A.; Luviano-Cruz, D.; Hernández Hernández, J.I.; Romero López, R.; Valle-Rosales, D.J. A Proposed Framework for Developing FMEA Method Using Pythagorean Fuzzy CODAS. Symmetry 2021, 13, 2236. [Google Scholar] [CrossRef]
- Gündoğdu, F.K.; Duleba, S.; Moslem, S.; Aydın, S. Evaluating public transport service quality using picture fuzzy analytic hierarchy process and linear assignment model. Appl. Soft Comput. 2021, 100, 106920. [Google Scholar] [CrossRef]
- Atanassov, K.T. Intuitionistic fuzzy sets. Fuzzy Sets Syst. 1986, 20, 87–96. [Google Scholar] [CrossRef]
- Chen, S.-M.; Tan, J.-M. Handling multicriteria fuzzy decision-making problems based on vague set theory. Fuzzy Sets Syst. 1994, 67, 163–172. [Google Scholar] [CrossRef]
- Hong, D.H.; Choi, C.-H. Multicriteria fuzzy decision-making problems based on vague set theory. Fuzzy Sets Syst. 2000, 114, 103–113. [Google Scholar] [CrossRef]
- Beliakov, G.; Bustince, H.; Goswami, D.; Mukherjee, U.; Pal, N. On averaging operators for Atanassov’s intuitionistic fuzzy sets. Inf. Sci. 2011, 181, 1116–1124. [Google Scholar] [CrossRef]
Ref. | Crisp | Fuzzy | M1 | M2 | M3 | M4 | M5 | M6 | M7 | M8 | M9 | M10 | M11 | M12 | M13 | Others |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
[15] | ✓ | |||||||||||||||
[16] | ✓ | ✓ | CoCoSo | |||||||||||||
[17] | ✓ | ✓ | ✓ | |||||||||||||
[18] | ✓ | ✓ | Factor Analysis | |||||||||||||
[19] | ✓ | ✓ | ✓ | |||||||||||||
[20] | ✓ | ✓ | ||||||||||||||
[21] | ✓ | ✓ | ✓ | |||||||||||||
[22] | ✓ | |||||||||||||||
[23] | ✓ | ✓ | ✓ | |||||||||||||
[24] | ✓ | ✓ | Game Theory | |||||||||||||
[25] | ✓ | ✓ | ISM | |||||||||||||
[26] | ✓ | ✓ | ||||||||||||||
[27] | ✓ | ✓ | WASPAS | |||||||||||||
[28] | ✓ | ✓ | ||||||||||||||
[29] | ✓ | ✓ | ✓ | |||||||||||||
[30] | ✓ | ✓ | SWARA | |||||||||||||
[31] | ✓ | ✓ | ||||||||||||||
[32] | ✓ | ✓ | ✓ | ✓ | ||||||||||||
[33] | ✓ | ✓ | ✓ | |||||||||||||
[34] | ✓ | ✓ | ✓ | |||||||||||||
[35] | ✓ | ✓ | ✓ | |||||||||||||
[36] | ✓ | ✓ | ||||||||||||||
[37] | ✓ | ✓ | ✓ | |||||||||||||
[38] | ✓ | ✓ | ||||||||||||||
[39] | ✓ | ✓ | ||||||||||||||
[40] | ✓ | ✓ | ✓ | |||||||||||||
[41] | ✓ | ✓ | ||||||||||||||
[42] | ✓ | ✓ | ✓ | |||||||||||||
[43] | ✓ | ✓ | ✓ | |||||||||||||
[44] | ✓ | ✓ | ✓ | ✓ | ||||||||||||
[45] | ✓ | ✓ | ISM | |||||||||||||
[46] | ✓ | ✓ | ||||||||||||||
[47] | ✓ | ✓ | ||||||||||||||
[48] | ✓ | LP | ||||||||||||||
[49] | ✓ | ✓ | ✓ | ✓ | ||||||||||||
[50] | ✓ | ✓ | ✓ | FITM | ||||||||||||
[51] | ✓ | ✓ | ✓ | ✓ | ||||||||||||
[52] | ✓ | ✓ | ✓ | ✓ | ||||||||||||
[53] | ✓ | QFD | ||||||||||||||
[54] | ✓ | ✓ | Stochastic MIP | |||||||||||||
[55] | ✓ | ✓ | ||||||||||||||
[56] | ✓ | ✓ | ✓ | DELPHI, LP | ||||||||||||
[57] | ✓ | ✓ | ||||||||||||||
[58] | ✓ | ✓ | ✓ | |||||||||||||
[59] | ✓ | ✓ | ||||||||||||||
[60] | ✓ | ✓ | DELPHI | |||||||||||||
[61] | ✓ | ✓ | ||||||||||||||
[62] | ✓ | ✓ | ||||||||||||||
[63] | ✓ | ✓ | GP | |||||||||||||
[64] | ✓ | |||||||||||||||
[65] | ✓ | |||||||||||||||
[66] | ✓ | ✓ | Taguchii Loss Function | |||||||||||||
[67] | ✓ | ✓ | GP | |||||||||||||
[68] | ✓ | ✓ | ||||||||||||||
[69] | ✓ | ✓ | ||||||||||||||
[70] | ✓ | |||||||||||||||
[71] | ✓ | |||||||||||||||
[72] | ✓ |
Delivery | Source |
---|---|
On time delivery | [20,29,42,44,45,56,60,61,68,69] |
Delivery speed | [20,25,27,28,40,58,68,69] |
Order fulfillment rate | [28,46,47,68,69,70] |
Delivery reliability | [16,17,39,45,63] |
Delivery capabilities | [40,46,47] |
Social | Source |
Reputation | [29,34,42,44,45,56,60,62] |
Customer satisfaction | [24,25,27,29,40,42,44,56,58,60,61,62] |
Safety | [16,21,25,39,41,45,46,47,61,63] |
Stakeholder rights | [21,25,28,39,41,45] |
Employee rights | [21,28,37,39,41,45] |
Value added influence | [16,25,26,37,39] |
Education | [39,41,63] |
Environmental | Source |
Eco-design | [16,17,21,25,39,42,44,58,60] |
Management system | [16,25,26,28,39,46,47,63,73] |
Green supply chain | [17,25,28,34,37,68] |
Waste management | [28,37,39,46,47] |
Pollution production | [16,26,37,39,63,73] |
Energy consumption | [16,28,39,46,47] |
Air emissions | [39,46,47,63] |
Carbon footprint reduction | [25,26,42,60] |
Financial | Source |
Price | [17,20,25,27,28,29,34,39,40,44,46,47,55,56,60,70,73] |
Cost | [16,17,21,29,37,39,44,56,60,63,68,69,74] |
Financial power | [17,21,29,34,40,44,56,60] |
Flexibility on price | [17,20,21,26,39,40] |
Logistics cost | [27,46,47,55,62] |
Operational cost | [39,56,68,69] |
Profit | [20,21,26] |
Quality | Source |
Product quality | [16,26,27,29,39,42,44,45,46,47,56,58,60,61,63,68,69,70,71,73] |
Quality control and planning | [27,28,29,42,44,56,58,60] |
Quality assurance | [17,27,34,40,45,46,47,70,71] |
Quality management system | [20,28,45,70,71] |
Steadiness of quality | [68,69] |
Technological Ability | Source |
Technological/technical capabilities | [16,17,21,24,25,28,29,39,42,44,56,58,60,62,63,69,71] |
Production capacity | [28,29,42,44,56,58,60,61,65] |
R&D capacity | [17,20,21,28,45,46,47] |
Capability of resources | [20,28,45,46,62,65] |
Communication system | [21,29,42,44,56,60] |
Ability to solve technical problem | [45,65,68,69,70] |
Information technology | [17,24,62] |
Food Sector | Source |
---|---|
Processed food | [15,16,18,19,21,32,38,39,40,41,45,46] [50,53,55,56,57,59,64,65,67,68,69,70] |
Food packaging | [28,31,48,50,56,61,63,66,68,70] |
Agrifood | [17,20,23,30,37,43,44,51,72,73] |
Beverage | [15,18,22,31,50,68,69,70] |
Food cold | [25,27,62,68,70,71,72] |
Dairy | [26,28,50,68,70] |
Fresh food | [24,33,35,52] |
Linguistic Terms | µ | v |
---|---|---|
Absolutely low (AL) | 0.05 | 0.9 |
Very low (VL) | 0.25 | 0.6 |
Low (L) | 0.4 | 0.5 |
Medium (M) | 0.5 | 0.5 |
High (H) | 0.7 | 0.2 |
Very high (VH) | 0.85 | 0.05 |
Absolutely high (AH) | 0.9 | 0.05 |
Risk | Explanation of the Risks | |
---|---|---|
R1 | Delivery | Risks related to delivering orders in the required quality and on time. |
R2 | Social | Risks related to security, value-added impact, employee and stakeholder rights, customer satisfaction, etc. |
R3 | Environmental | Risks related to waste management, carbon footprint reduction, energy consumption, etc. |
R4 | Financial | Risks related to logistics cost, operational cost, profit, price, etc. |
R5 | Quality | Risks related to product quality, steadiness of quality, quality assurance, etc. |
R6 | Technological ability | Risks related to information technology, R&D, technological capabilities, etc. |
Occurrence of the Potential Risk | ||||||
---|---|---|---|---|---|---|
DM1 | DM2 | DM3 | ||||
ow | pw | ow | pw | ow | pw | |
R1 | H | AL | H | M | L | H |
R2 | VL | AL | M | H | L | H |
R3 | VL | M | M | H | L | M |
R4 | M | H | M | VH | L | H |
R5 | VL | VL | M | AH | L | VH |
R6 | H | VL | M | L | M | M |
Severity of the Potential Risk | ||||||
DM1 | DM2 | DM3 | ||||
ow | pw | ow | pw | ow | pw | |
R1 | H | M | M | H | L | H |
R2 | H | H | M | M | L | M |
R3 | M | M | M | H | M | M |
R4 | H | H | M | VH | L | H |
R5 | VL | VH | M | AH | L | VH |
R6 | VL | VL | M | L | M | L |
Detectability of the Potential Risk | ||||||
DM1 | DM2 | DM3 | ||||
ow | pw | ow | pw | ow | pw | |
R1 | H | VL | M | L | L | M |
R2 | VL | AH | M | M | L | L |
R3 | M | L | M | M | M | M |
R4 | M | M | M | M | L | H |
R5 | VL | VL | M | M | L | H |
R6 | M | VL | VH | H | L | M |
Occurrence of the Potential Risk | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
DM1 | DM2 | DM3 | ||||||||||
ow | pw | ow | pw | ow | pw | |||||||
R1 | 0.7 | 0.2 | 0.05 | 0.9 | 0.7 | 0.2 | 0.5 | 0.5 | 0.4 | 0.5 | 0.7 | 0.2 |
R2 | 0.25 | 0.6 | 0.05 | 0.9 | 0.5 | 0.5 | 0.7 | 0.2 | 0.4 | 0.5 | 0.7 | 0.2 |
R3 | 0.25 | 0.6 | 0.5 | 0.5 | 0.5 | 0.5 | 0.7 | 0.2 | 0.4 | 0.5 | 0.5 | 0.5 |
R4 | 0.5 | 0.5 | 0.7 | 0.2 | 0.5 | 0.5 | 0.9 | 0.05 | 0.4 | 0.5 | 0.7 | 0.2 |
R5 | 0.25 | 0.6 | 0.25 | 0.6 | 0.5 | 0.5 | 0.9 | 0.05 | 0.4 | 0.5 | 0.85 | 0.05 |
R6 | 0.7 | 0.2 | 0.25 | 0.6 | 0.5 | 0.5 | 4 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 |
Severity of the Potential Risk | ||||||||||||
DM1 | DM2 | DM3 | ||||||||||
ow | pw | ow | pw | ow | pw | |||||||
R1 | 0.7 | 0.2 | 0.5 | 0.5 | 0.5 | 0.5 | 0.7 | 0.2 | 0.4 | 0.5 | 0.7 | 0.2 |
R2 | 0.7 | 0.2 | 0.7 | 0.2 | 0.5 | 0.5 | 0.5 | 0.5 | 0.4 | 0.5 | 0.5 | 0.5 |
R3 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.7 | 0.2 | 0.5 | 0.5 | 0.5 | 0.5 |
R4 | 0.7 | 0.2 | 0.7 | 0.2 | 0.5 | 0.5 | 0.85 | 0.05 | 0.4 | 0.5 | 0.7 | 0.2 |
R5 | 0.25 | 0.6 | 0.85 | 0.05 | 0.5 | 0.5 | 0.9 | 0.05 | 0.4 | 0.5 | 0.85 | 0.05 |
R6 | 0.25 | 0.6 | 0.25 | 0.6 | 0.5 | 0.5 | 0.4 | 0.5 | 0.5 | 0.5 | 0.4 | 0.5 |
Detectability of the Potential Risk | ||||||||||||
DM1 | DM2 | DM3 | ||||||||||
ow | pw | ow | pw | ow | pw | |||||||
R1 | 0.7 | 0.2 | 0.25 | 0.6 | 0.5 | 0.5 | 0.4 | 0.5 | 0.4 | 0.5 | 0.5 | 0.5 |
R2 | 0.25 | 0.6 | 0.9 | 0.05 | 0.5 | 0.5 | 0.5 | 0.5 | 0.4 | 0.5 | 0.4 | 0.5 |
R3 | 0.5 | 0.5 | 0.4 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 |
R4 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.4 | 0.5 | 0.7 | 0.2 |
R5 | 0.25 | 0.6 | 0.25 | 0.6 | 0.5 | 0.5 | 0.5 | 0.5 | 0.4 | 0.5 | 0.7 | 0.2 |
R6 | 0.5 | 0.5 | 0.25 | 0.6 | 0.85 | 0.05 | 0.7 | 0.2 | 0.4 | 0.5 | 0.5 | 0.5 |
Occurrence of the Potential Risk | ||||
---|---|---|---|---|
ow | pw | |||
R1 | 0.581 | 0.316 | 0.161 | 0.533 |
R2 | 0.368 | 0.536 | 0.199 | 0.433 |
R3 | 0.368 | 0.536 | 0.569 | 0.400 |
R4 | 0.464 | 0.499 | 0.780 | 0.150 |
R5 | 0.368 | 0.536 | 0.708 | 0.233 |
R6 | 0.559 | 0.415 | 0.359 | 0.383 |
Severity of the Potential Risk | ||||
ow | pw | |||
R1 | 0.519 | 0.415 | 0.637 | 0.300 |
R2 | 0.519 | 0.415 | 0.569 | 0.400 |
R3 | 0.500 | 0.500 | 0.569 | 0.400 |
R4 | 0.519 | 0.415 | 0.756 | 0.150 |
R5 | 0.368 | 0.536 | 0.868 | 0.050 |
R6 | 0.397 | 0.536 | 0.344 | 0.533 |
Detectability of the Potential Risk | ||||
ow | pw | |||
R1 | 0.519 | 0.415 | 0.359 | 0.533 |
R2 | 0.368 | 0.536 | 0.641 | 0.350 |
R3 | 0.500 | 0.500 | 0.464 | 0.500 |
R4 | 0.464 | 0.500 | 0.569 | 0.500 |
R5 | 0.368 | 0.536 | 0.452 | 0.433 |
R6 | 0.554 | 0.381 | 0.452 | 0.433 |
O × S × D | CI | SI | Rank | ||||
---|---|---|---|---|---|---|---|
Optimistic | Pessimistic | ||||||
R1 | 0.157 | 0.766 | 0.117 | 0.731 | 0.375 | 0.247 | 2 |
R2 | 0.070 | 0.874 | 0.158 | 0.663 | 0.329 | 0.204 | 6 |
R3 | 0.092 | 0.884 | 0.273 | 0.700 | 0.390 | 0.233 | 4 |
R4 | 0.112 | 0.854 | 0.423 | 0.575 | 0.552 | 0.264 | 1 |
R5 | 0.050 | 0.900 | 0.360 | 0.529 | 0.482 | 0.231 | 5 |
R6 | 0.123 | 0.832 | 0.169 | 0.717 | 0.365 | 0.234 | 3 |
Scenario 1 | Scenario 2 | Scenario 3 | ||||
---|---|---|---|---|---|---|
Score | Rank | Score | Rank | Score | Rank | |
R1 | 0.063 | 2 | 0.142 | 5 | 0.169 | 1 |
R2 | 0.097 | 5 | 0.102 | 4 | 0.074 | 5 |
R3 | 0.149 | 4 | 0.122 | 3 | 0.094 | 4 |
R4 | 0.346 | 1 | 0.213 | 1 | 0.116 | 3 |
R5 | 0.254 | 3 | 0.133 | 2 | 0.053 | 6 |
R6 | 0.059 | 6 | 0.094 | 6 | 0.129 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arslan, Ö.; Karakurt, N.; Cem, E.; Cebi, S. Risk Analysis in the Food Cold Chain Using Decomposed Fuzzy Set-Based FMEA Approach. Sustainability 2023, 15, 13169. https://doi.org/10.3390/su151713169
Arslan Ö, Karakurt N, Cem E, Cebi S. Risk Analysis in the Food Cold Chain Using Decomposed Fuzzy Set-Based FMEA Approach. Sustainability. 2023; 15(17):13169. https://doi.org/10.3390/su151713169
Chicago/Turabian StyleArslan, Özlem, Necip Karakurt, Ecem Cem, and Selcuk Cebi. 2023. "Risk Analysis in the Food Cold Chain Using Decomposed Fuzzy Set-Based FMEA Approach" Sustainability 15, no. 17: 13169. https://doi.org/10.3390/su151713169
APA StyleArslan, Ö., Karakurt, N., Cem, E., & Cebi, S. (2023). Risk Analysis in the Food Cold Chain Using Decomposed Fuzzy Set-Based FMEA Approach. Sustainability, 15(17), 13169. https://doi.org/10.3390/su151713169