Altitude Correction of GCM-Simulated Precipitation Isotopes in a Valley Topography of the Chinese Loess Plateau
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Isotope Data
2.2.1. Measured Isotope Data
2.2.2. Simulated Isotope Data
2.3. Methods
2.3.1. Altitude-Correlation Method
2.3.2. Statistical Measures
3. Results
3.1. Impact of Nearest One or Four Grid Boxes
3.2. Relationship between Altitude Error and Simulation Performance
3.3. Improvement in Simulations Corrected by Altitude
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dee, S.G.; Bailey, A.; Conroy, J.L.; Atwood, A.; Stevenson, S.; Nusbaumer, J.; Noone, D. Water isotopes, climate variability, and the hydrological cycle: Recent advances and new frontiers. Environ. Res. Clim. 2023, 2, 022002. [Google Scholar] [CrossRef]
- Putman, A.L.; Bowen, G.J.; Strong, C. Local and regional modes of hydroclimatic change expressed in modern multidecadal precipitation oxygen isotope trends. Geophys. Res. Lett. 2021, 48, e2020GL092006. [Google Scholar] [CrossRef]
- Xiao, K.; Griffis, T.J.; Lee, X.; Xiao, W.; Baker, J.M. A coupled equilibrium boundary layer model with stable water isotopes and its application to local water recycling. Agric. For. Meteorol. 2023, 339, 109572. [Google Scholar] [CrossRef]
- Nlend, B.; Huneau, F.; Garel, E.; Santoni, S.; Mattei, A. Precipitation isoscapes in areas with complex topography: Influence of large-scale atmospheric dynamics versus microclimatic phenomena. J. Hydrol. 2023, 617, 128896. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, X.; Xiao, Z.; He, X.; Rao, Z.; Guan, H. The relations between summer droughts/floods and oxygen isotope composition of precipitation in the Dongting Lake basin. Int. J. Climatol. 2023, 43, 3590–3604. [Google Scholar] [CrossRef]
- Wu, H.; Fu, C.; Zhang, C.; Zhang, J.; Wei, Z.; Zhang, X. Temporal variations of stable isotopes in precipitation from Yungui Plateau: Insights from moisture source and rainout effect. J. Hydrometeorol. 2022, 23, 39–51. [Google Scholar] [CrossRef]
- Vystavna, Y.; Matiatos, I.; Wassenaar, L.I. 60-year trends of δ18O in global precipitation reveal large scale hydroclimatic variations. Glob. Planet Change 2020, 195, 103335. [Google Scholar] [CrossRef]
- Vystavna, Y.; Cullmann, J.; Hipel, K.; Miller, J.; Soto, D.X.; Harjung, A.; Watson, A.; Mattei, A.; Kebede, S.; Gusyev, M. Better understand past, present and future climate variability by linking water isotopes and conventional hydrometeorology: Summary and recommendations from the International Atomic Energy Agency and World Meteorological Organization. Isot. Environ. Health Stud. 2022, 58, 311–315. [Google Scholar] [CrossRef]
- Wang, T.; Chen, J.; Zhang, C.; Zhan, L.; Guyot, A.; Li, L. An entropy-based analysis method of precipitation isotopes revealing main moisture transport corridors globally. Glob. Planet Change 2020, 187, 103134. [Google Scholar] [CrossRef]
- Markle, B.R.; Steig, E.J. Improving temperature reconstructions from ice-core water-isotope records. Clim. Past 2022, 18, 1321–1368. [Google Scholar] [CrossRef]
- Chen, H.; Zhu, L.; Hou, J.; Steinman, B.A.; He, Y.; Brown, E.T. Westerlies effect in Holocene paleoclimate records from the central Qinghai-Tibet Plateau. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2022, 598, 111036. [Google Scholar] [CrossRef]
- Zhan, Z.; Pang, H.; Wu, S.; Liu, Z.; Zhang, W.; Xu, T.; Cheng, H.; Hou, S. Determining key upstream convection and rainout zones affecting δ18O in water vapor and precipitation based on 10-year continuous observations in the East Asian Monsoon region. Earth Planet. Sci. Let. 2023, 601, 117912. [Google Scholar] [CrossRef]
- Vystavna, Y.; Matiatos, I.; Wassenaar, L.I. Temperature and precipitation effects on the isotopic composition of global precipitation reveal long-term climate dynamics. Sci. Rep. 2021, 11, 18503. [Google Scholar] [CrossRef]
- Xiang, Q.; Liu, G.; Meng, Y.; Chen, K.; Xia, C. Temporal trends of deuterium excess in global precipitation and their environmental controls under a changing climate. J. Radioanalyt. Nucl. Chem. 2022, 331, 3633–3649. [Google Scholar] [CrossRef]
- Botsyun, S.; Ehlers, T.A.; Koptev, A.; Böhme, M.; Methner, K.; Risi, C.; Stepanek, C.; Mutz, S.G.; Werner, M.; Boateng, D.; et al. Middle Miocene climate and stable oxygen isotopes in Europe based on numerical modeling. Paleoceanogr. Paleoclimatol. 2022, 37, e2022PA004442. [Google Scholar] [CrossRef]
- Goursaud, S.; Masson-Delmotte, V.; Favier, V.; Orsi, A.; Werner, M. Water stable isotope spatio-temporal variability in Antarctica in 1960–2013: Observations and simulations from the ECHAM5-wiso atmospheric general circulation model. Clim. Past 2018, 14, 923–946. [Google Scholar] [CrossRef]
- Farnsworth, A.; Valdes, P.J.; Ding, L.; Spicer, R.A.; Li, S.H.; Su, T.; Li, S.; Witkowski, C.R.; Xiong, Z. Limits of oxygen isotope palaeoaltimetry in Tibet. Earth Planet. Sci. Let. 2023, 606, 118040. [Google Scholar] [CrossRef]
- Chen, J.; Chen, J.; Zhang, X.J.; Peng, P.; Risi, C. A century and a half precipitation oxygen isoscape for China generated using data fusion and bias correction. Sci. Data 2023, 10, 185. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Risi, C.; Li, L.; Wang, X.; Pu, T.; Zhang, G.; Zhang, Y.; Wang, Z.; Kong, Y. What controls the skill of general circulation models to simulate the seasonal cycle in water isotopic composition in the Tibetan Plateau region? J. Geophys. Res. Atmos. 2022, 127, e2022JD037048. [Google Scholar] [CrossRef]
- Peng, P.; Zhang, X.J.; Chen, J. Bias correcting isotope-equipped GCMs outputs to build precipitation oxygen isoscape for eastern China. J. Hydrol. 2020, 589, 125153. [Google Scholar] [CrossRef]
- Nan, Y.; He, Z.; Tian, F.; Wei, Z.; Tian, L. Can we use precipitation isotope outputs of isotopic general circulation models to improve hydrological modeling in large mountainous catchments on the Tibetan Plateau? Hydrol. Earth Syst. Sci. 2021, 25, 6151–6172. [Google Scholar] [CrossRef]
- Bowen, G.J.; Revenaugh, J. Interpolating the isotopic composition of modern meteoric precipitation. Water Resour. Res. 2003, 39, 1299. [Google Scholar] [CrossRef]
- Terzer-Wassmuth, S.; Wassenaar, L.I.; Welker, J.M.; Araguás-Araguás, L.J. Improved high-resolution global and regionalized isoscapes of δ18O, δ2H and d-excess in precipitation. Hydrol. Process. 2021, 35, e14254. [Google Scholar] [CrossRef]
- Hatvani, I.G.; Erdelyi, D.; Vreča, P.; Kern, Z. Analysis of the spatial distribution of stable oxygen and hydrogen isotopes in precipitation across the Iberian Peninsula. Water 2020, 12, 481. [Google Scholar] [CrossRef]
- Valdivielso, S.; Hassanzadeh, A.; Vázquez-Suñé, E.; Custodio, E.; Criollo, R. Spatial distribution of meteorological factors controlling stable isotopes in precipitation in Northern Chile. J. Hydrol. 2022, 605, 127380. [Google Scholar] [CrossRef]
- Li, J.; Pang, Z. The elevation gradient of stable isotopes in precipitation in the eastern margin of Tibetan Plateau. Sci. China Earth Sci. 2022, 65, 1972–1984. [Google Scholar] [CrossRef]
- Mahindawansha, A.; Jost, M.; Gassmann, M. Spatial and temporal variations of stable isotopes in precipitation in the mountainous region, North Hesse. Water 2022, 14, 3910. [Google Scholar] [CrossRef]
- Kern, Z.; Hatvani, I.G.; Czuppon, G.; Fórizs, I.; Erdélyi, D.; Kanduč, T.; Palcsu, L.; Vreča, P. Isotopic “altitude” and “continental” effects in modern precipitation across the Adriatic-Pannonian region. Water 2020, 12, 1791. [Google Scholar] [CrossRef]
- Hemmerle, H.; van Geldern, R.; Juhlke, T.R.; Huneau, F.; Garel, E.; Santoni, S.; Barth, J.A.C. Altitude isotope effects in Mediterranean high-relief terrains: A correction method to utilize stream water data. Hydrol. Sci. J. 2021, 66, 1409–1418. [Google Scholar] [CrossRef]
- Laonamsai, J.; Ichiyanagi, K.; Kamdee, K.; Putthividhya, A.; Tanoue, M. Spatial and temporal distributions of stable isotopes in precipitation over Thailand. Hydrol. Process. 2021, 35, e13995. [Google Scholar] [CrossRef]
- IAEA/WMO. Global Network of Isotopes in Precipitation. 2021. Available online: https://www.iaea.org/water (accessed on 25 April 2022).
- Chen, F.; Zhang, M.; Wang, S.; Qiu, X.; Du, M. Environmental controls on stable isotopes of precipitation in Lanzhou, China: An enhanced network at city scale. Sci. Total Environ. 2017, 609, 1013–1022. [Google Scholar] [CrossRef] [PubMed]
- Huang, F.Q.; Wei, J.Z.; Song, X.; Zhang, Y.H.; Yang, Q.F.; Kuzyakov, Y.; Li, F.M. δ2H and δ18O in precipitation and water vapor disentangle seasonal wind directions on the Loess Plateau. Sustainability 2021, 13, 6938. [Google Scholar] [CrossRef]
- Yoshimura, K.; Kanamitsu, M.; Noone, D.; Oki, T. Historical isotope simulation using reanalysis atmospheric data. J. Geophys. Res. Atmos. 2008, 113, D19108. [Google Scholar] [CrossRef]
- Zhang, H.; Cheng, H.; Cai, Y.; Spötl, C.; Sinha, A.; Kathayat, G.; Li, H. Effect of precipitation seasonality on annual oxygen isotopic composition in the area of spring persistent rain in southeastern China and its paleoclimatic implication. Clim. Past 2020, 16, 211–225. [Google Scholar] [CrossRef]
- Zhang, J.; Yu, W.; Jing, Z.; Lewis, S.; Xu, B.; Ma, Y.; Wei, F.; Luo, L.; Qu, D. Coupled effects of moisture transport pathway and convection on stable isotopes in precipitation across the East Asian monsoon region: Implications for paleoclimate reconstruction. J. Clim. 2021, 34, 9811–9822. [Google Scholar] [CrossRef]
- Kiran Kumar, P.; Singh, A. Increase in summer monsoon rainfall over the northeast India during El Niño years since 1600. Clim. Dyn. 2021, 57, 851–863. [Google Scholar] [CrossRef]
- Taylor, K.E. Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. Atmos. 2001, 106, 7183–7192. [Google Scholar] [CrossRef]
- Salamalikis, V.; Argiriou, A.A. Validation and bias correction of monthly δ18O precipitation time series from ECHAM5-wiso model in Central Europe. Oxygen 2022, 2, 109–124. [Google Scholar] [CrossRef]
- Zhang, H.; Lei, J.; Wang, H.; Xu, C.; Yin, Y. Study on dynamic changes of soil erosion in the North and South Mountains of Lanzhou. Water 2022, 14, 2388. [Google Scholar] [CrossRef]
- He, D.; Hou, K.; Wen, J.F.; Wu, S.Q.; Wu, Z.P. A coupled study of ecological security and land use change based on GIS and entropy method—A typical region in Northwest China, Lanzhou. Environ. Sci. Pollut. Res. 2022, 29, 6347–6359. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, D.; Ren, Y.; Li, K. Construction of the green infrastructure network for adaption to the sustainable future urban sprawl: A case study of Lanzhou City, Gansu Province, China. Ecol. Indic. 2022, 145, 109715. [Google Scholar] [CrossRef]
Site | Latitude (N) | Longitude (E) | Altitude (m) | Sampling Period | Number of Samples |
---|---|---|---|---|---|
Anning | 36°06′ | 103°44′ | 1548 | 2011–2014 | 191 |
Gaolan | 36°21′ | 103°56′ | 1668 | 2011–2014 | 260 |
Daheng | 36°40′ | 103°50′ | 2029 | 2013–2014 | 53 |
Hezui | 36°12′ | 103°08′ | 1662 | 2013–2014 | 97 |
Doujiashan | 36°12′ | 103°57′ | 1725 | 2013–2014 | 65 |
Renshoushan | 36°08′ | 103°41′ | 1657 | 2013–2014 | 79 |
Yongdeng | 36°45′ | 103°15′ | 2118 | 2011–2014 | 283 |
Wushengyi | 36°53′ | 103°10′ | 2297 | 2013–2014 | 101 |
Yuzhong | 35°52′ | 104°09′ | 1874 | 2011–2014 | 225 |
Gongjing | 36°03′ | 104°23′ | 2482 | 2013–2014 | 78 |
Lanzhou | 36°03′ | 103°53′ | 1517 | 1985–1987, 1996–1999 | 39 |
Xiaguanying | 36°02′ | 104°25′ | 2400 | 2016–2017 | 89 |
Method | Site | RMSE (‰) | MAE (‰) | MBE (‰) | R |
---|---|---|---|---|---|
1 | Anning | 5.88 | 4.92 | −3.74 | 0.28 |
Gaolan | 4.24 | 3.62 | −3.02 | 0.49 | |
Daheng | 2.73 | 2.19 | −1.39 | 0.82 | |
Hezui | 3.79 | 2.95 | −2.26 | 0.74 | |
Doujiashan | 4.01 | 3.24 | −3.24 | 0.65 | |
Renshoushan | 5.44 | 4.94 | −3.81 | 0.66 | |
Yongdeng | 4.33 | 3.60 | −2.25 | 0.56 | |
Wushengyi | 4.06 | 3.05 | −2.62 | 0.57 | |
Yuzhong | 4.90 | 4.05 | −1.27 | 0.24 | |
Gongjing | 3.35 | 2.85 | −0.26 | 0.64 | |
Lanzhou | 5.16 | 4.14 | −3.01 | 0.47 | |
Xiaguanying | 4.75 | 3.62 | −0.76 | 0.10 | |
2 | Anning | 4.99 | 4.04 | −3.01 | 0.45 |
Gaolan | 3.96 | 3.42 | −2.91 | 0.45 | |
Daheng | 2.56 | 2.06 | −1.13 | 0.83 | |
Hezui | 4.06 | 3.30 | −2.86 | 0.77 | |
Doujiashan | 2.79 | 2.11 | −1.99 | 0.67 | |
Renshoushan | 4.41 | 3.94 | −2.98 | 0.81 | |
Yongdeng | 4.52 | 3.80 | −2.34 | 0.50 | |
Wushengyi | 4.04 | 3.08 | −2.70 | 0.57 | |
Yuzhong | 4.93 | 4.13 | −1.92 | 0.30 | |
Gongjing | 3.10 | 2.84 | −0.67 | 0.71 | |
Lanzhou | 4.23 | 3.38 | −2.00 | 0.60 | |
Xiaguanying | 4.57 | 3.32 | −1.13 | 0.19 |
Method | Site | Altitude Error (m) | RMSE (‰) | MAE (‰) | MBE (‰) | R |
---|---|---|---|---|---|---|
1 | Anning | 962.8 | 4.07 | 3.27 | −0.12 | 0.43 |
Gaolan | 474.5 | 3.05 | 2.23 | −0.15 | 0.46 | |
Daheng | 113.5 | 2.42 | 1.99 | 0.49 | 0.84 | |
Hezui | 480.5 | 2.91 | 2.03 | 0.26 | 0.75 | |
Doujiashan | 785.8 | 1.85 | 1.41 | 0.21 | 0.79 | |
Renshoushan | 853.8 | 3.55 | 2.59 | −0.56 | 0.73 | |
Yongdeng | 24.5 | 3.20 | 2.41 | −0.42 | 0.69 | |
Wushengyi | −154.5 | 2.93 | 2.13 | −1.35 | 0.80 | |
Yuzhong | −117.6 | 4.36 | 3.49 | 0.39 | 0.35 | |
Gongjing | −725.6 | 2.10 | 1.52 | 0.08 | 0.89 | |
Lanzhou | 993.8 | 3.72 | 2.84 | 0.70 | 0.62 | |
Xiaguanying | −643.6 | 4.00 | 3.19 | −0.13 | 0.38 | |
2 | Anning | 585.8 | 3.80 | 2.96 | −0.53 | 0.52 |
Gaolan | −237.7 | 2.95 | 2.43 | −1.32 | 0.44 | |
Daheng | −14.7 | 2.22 | 1.79 | 0.39 | 0.85 | |
Hezui | 661.0 | 2.45 | 1.75 | −0.32 | 0.84 | |
Doujiashan | 343.6 | 1.48 | 1.12 | 0.26 | 0.87 | |
Renshoushan | 489.4 | 3.10 | 2.44 | −0.67 | 0.82 | |
Yongdeng | 62.1 | 3.48 | 2.68 | −0.62 | 0.63 | |
Wushengyi | −117.2 | 2.70 | 2.11 | −1.35 | 0.82 | |
Yuzhong | 143.3 | 6.26 | 5.20 | −2.82 | 0.11 | |
Gongjing | −568.4 | 1.91 | 1.62 | 0.20 | 0.90 | |
Lanzhou | 571.9 | 3.56 | 2.79 | 0.50 | 0.66 | |
Xiaguanying | −497.4 | 3.96 | 3.05 | −0.12 | 0.40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, Y.; Yang, G.; Yoshimura, K.; Qu, D.; Chen, F.; Argiriou, A.A.; Wang, S. Altitude Correction of GCM-Simulated Precipitation Isotopes in a Valley Topography of the Chinese Loess Plateau. Sustainability 2023, 15, 13126. https://doi.org/10.3390/su151713126
Xiao Y, Yang G, Yoshimura K, Qu D, Chen F, Argiriou AA, Wang S. Altitude Correction of GCM-Simulated Precipitation Isotopes in a Valley Topography of the Chinese Loess Plateau. Sustainability. 2023; 15(17):13126. https://doi.org/10.3390/su151713126
Chicago/Turabian StyleXiao, Yanqiong, Gahong Yang, Kei Yoshimura, Deye Qu, Fenli Chen, Athanassios A. Argiriou, and Shengjie Wang. 2023. "Altitude Correction of GCM-Simulated Precipitation Isotopes in a Valley Topography of the Chinese Loess Plateau" Sustainability 15, no. 17: 13126. https://doi.org/10.3390/su151713126