Sustainable Cropping System Intensification in Arid Region of India: Fallow Replacement with Limited Duration Sorghum–Legume Intercropping Followed by Eruca sativa Mill. Grown on Conserved Soil Moisture
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Experimental Details and Agronomic Practices Followed
2.3. Measurements
2.3.1. Water and Soil Measurements
2.3.2. Crop Measurements
2.3.3. Competition Indices
2.4. Economics and Statistical Analysis
3. Results
3.1. Rainfall Distribution
3.2. Yield Attributes, Yield, and Competition Behavior of Rainy-Season Crops
3.3. Available Soil Moisture (ASM) at Sowing of Eruca Sativa
3.4. Yield Attributes and Yield of Post-Rainy-Season Crop (Eruca Sativa)
3.5. System Productivity, Economics, and Rainfall Use Efficiency
3.6. Soil Fertility Status
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cherlet, M.; Hutchinson, C.; Reynolds, J.; Hill, J.; Sommer, S.; von Maltitz, G. (Eds.) World Atlas of Desertification; Publication Office of the European Union: Luxembourg, 2018. [Google Scholar]
- Gan, Y.; Hamel, C.; O’Donovan, J.T.; Cutforth, H.; Zentner, R.P.; Campbell, C.A.; Niu, Y.; Poppy, L. Diversifying crop rotations with pulses enhances system productivity. Sci. Rep. 2015, 5, 14625. [Google Scholar] [CrossRef]
- Campbell, C.A.; Zentner, R.P.; Janzen, J.J.; Bowren, K.E. Crop Rotation Studies on the Canadian Prairies; Publ. No. 184/E; Canadian Government Publication Centre, Supply Services Canada: Hull, QC, Canada, 1990.
- Pathak, P.; Miranda, S.M.; El-Swaify, S.A. Improved rainfed farming for semi-arid tropics-implications for soil and water conservation. In Soil Erosion and Conservation; Soil Conservation Society of America: Ankeny, IA, USA, 1985; pp. 338–354. [Google Scholar]
- Peterson, G.A.; Schlegel, A.J.; Tanaka, D.L.; Jones, O.R. Precipitation use efficiency as affected by cropping and tillage systems. J. Prod. Agric. 1996, 9, 180–186. [Google Scholar] [CrossRef]
- Farahani, H.J.; Peterson, G.A.; Westfal, D.G. Dryland cropping intensification: A fundamental solution to efficient use of precipitation. Adv. Agron. 1998, 64, 197–223. [Google Scholar]
- Regar, P.L.; Rao, S.S.; Joshi, N.L.; Regar, P.L.; Rao, S.S.; Joshi, N.L. Effect of in-situ moisture conservation practises on productivity of rainfed taramira (Eruca sativa) in arid Rajasthan. Indian J. Soil Cons. 2009, 37, 197–200. [Google Scholar]
- Tanaka, D.L.; Aase, J.K. Fallow method influences on soil water and precipitation storage efficiency. Soil Tillage Res. 1987, 9, 307–316. [Google Scholar] [CrossRef]
- Nielsen, D.C.; Calderón, F.J. Fallow Effects on Soil. Publications from USDA-ARS/UNL Faculty, 2011, 1391. Available online: http://digitalcommons.unl.edu/usdaarsfacpub/1391 (accessed on 10 May 2023).
- Nielsen, D.C.; Vigil, M.F. Legume green fallow effect on soil water content at wheat planting and wheat yield. Agron. J. 2005, 97, 684–689. [Google Scholar] [CrossRef]
- Nielsen, D.C.; Lyon, D.J.; Higgins, R.K.; Hergert, G.W.; Holman, J.D.; Vigil, M.F. Cover crop effect on subsequent wheat yield in the Central Great Plains. Agron. J. 2016, 108, 243–256. [Google Scholar] [CrossRef]
- Lyon, D.J.; Baltensperger, D.D.; Blumenthal, J.M.; Burgener, P.A.; Harveson, R.M. Eliminating summer fallow reduces winter wheat yields, but not necessarily system profitability. Crop Sci. 2004, 44, 855–886. [Google Scholar] [CrossRef]
- Lyon, D.J.; Baltensperger, D.D.; Blumenthal, J.M.; Burgner, P.A.; Hrveson, R.M. Choice of summer replacement crops impact subsequent winter wheat. Agron. J. 2007, 99, 578–584. [Google Scholar] [CrossRef]
- Nielsen, D.C.; Lyon, D.J.; Miceli-Garcia, J.J. Replacing fallow with forage triticale in a dryland wheat-corn-fallow rotation may increase profitability. Field Crops Res. 2017, 203, 227–237. [Google Scholar] [CrossRef]
- Holman, J.D.; Arnet, K.; Dille, J.; Maxwell, S.; Obour, A.; Roberts, T.; Roozeboom, K.; Schlegel, A. Can cover or forage crops replace fallow in semi-arid Central Great Plains? Crop Sci. 2018, 58, 932–944. [Google Scholar] [CrossRef]
- Felter, D.G.; Lyon, D.J.; Nielsen, D.C. Evaluating crops for a flexible summer cropping system. Agron. J. 2006, 98, 1510–1517. [Google Scholar] [CrossRef]
- Burgess, M.; Miller, P.; Jones, C.; Bekkerman, A. Tillage of cover crops affects soil water, nitrogen, and wheat yield components. Agron. J. 2014, 106, 1497–1508. [Google Scholar] [CrossRef]
- Hansen, N.C.; Allen, B.L.; Baumhardt, R.L.; Lyon, D.J. Research achievements and adoption of no-till: Dryland cropping in the semi-arid U.S. Great Plains. Field Crops Res. 2012, 132, 196–203. [Google Scholar] [CrossRef]
- Tanaka, D.L.; Bauer, A.; Black, A.L. Annual legume cover crops in spring wheat-fallow systems. J. Prod. Agric. 1997, 10, 251–255. [Google Scholar] [CrossRef]
- Unger, P.W.; Vigil, M.F. Cover crop effects on soil water relationships. J. Soil Water Conserv. 1998, 53, 200–207. [Google Scholar]
- Allen, B.L.; Pikul, J.L.; Waddell, J.T.; Cochran, V.L. Long-term lentil green-manure replacement for fallow in the semi aridNorthern Great Plains. Agron. J. 2011, 103, 1292–1298. [Google Scholar] [CrossRef]
- Nageswara Rao, V.; Mince, H.; Chauffeur, P.Q.; Parsons, D.; Wane, S.P.; Kopf, M.J.; Ergo, T.J. Strategic double cropping on vertisols: A viable rainfed cropping option in the Indian SAT to increase productivity and reduce risk. Eur. J. Agron. 2015, 62, 26–37. [Google Scholar] [CrossRef]
- Tanwar, S.P.S.; Rao, S.S.; Regar, P.L.; Datt, S.; Praveen-Kumar; Jodha, B.S.; Santra, P.; Kumar, R.; Ram, R. Improving water and land use efficiency of fallow-wheat system in shallow Lithic Calciorthid soils of arid region: Introduction of bed planting and rainy season sorghum–legume intercropping. Soil Tillage Res. 2014, 138, 44–55. [Google Scholar] [CrossRef]
- Muthamilselvan, M.; Manian, R.; Kathirvel, K. In situ moisture conservation techniques in dry farming—A review. Agril. Rev. 2006, 27, 67–72. [Google Scholar]
- Singh, B.P.; Sharma, H.C. In poor soils grow taramirafor better return. Haryana Fmg. 1976, 5, 5. [Google Scholar]
- Lazzeri, L.; Errani, M.; Leoni, O.; Venturi, G. Eruca sativa spp. oleifera: A new non-food crop. Ind. Crops Prod. 2004, 20, 67–73. [Google Scholar] [CrossRef]
- Li, S.; Wang, Y.; Dong, S.; Chen, Y.; Cao, F.; Chai, F.; Wang, X. Biodiesel production from Eruca Sativa Gars vegetable oil and motor, emissions properties. Renew. Energy 2009, 34, 1871–1876. [Google Scholar] [CrossRef]
- Kurdali, F. Growth and nitrogen fixation in dhaincha/sorghum and dhaincha/sunflower intercropping systems using 15nitrogen and 13carbon natural abundance techniques. Commun. Soil Sci. Plant Anal. 2009, 40, 2995–3014. [Google Scholar] [CrossRef]
- Premi, O.P.; Rathore, S.S.; Shekhawat, K.; Kandpal, B.K.; Chauhan, J.S. Sustainability of fallow—Indian mustard (Brassica juncea) system as influenced by green manure, mustard straw cycling and fertilizer application. Indian J. Agron. 2012, 57, 229–234. [Google Scholar]
- Shah, Z.; Shah, S.H.; Peoples, M.B.; Schwenke, G.D.; Herridge, D.F. Crop residue and fertilizer N effects on nitrogen fixation and yields of legume–cereal rotations and soil organic fertility. Field Crops Res. 2003, 83, 1–11. [Google Scholar] [CrossRef]
- Sharma, A.R.; Behera, U.K. Nitrogen contribution through Sesbania green manure and dual-purpose legumes in maize–wheat cropping system: Agronomic and economic considerations. Plant Soil 2009, 325, 289–304. [Google Scholar] [CrossRef]
- Singh, S.P.; Ahuja, N. Intercropping of grain sorghum with fodder legumes under dry land condition in northwestern India. Indian J. Agron. 1990, 35, 287–296. [Google Scholar]
- Ghosh, P.K.; Bandyopadhyay, K.K.; Wanjari, R.H.; Manna, M.C.; Misra, A.K.; Mohanty, M.; Subba Rao, A. Legume effect for enhancing productivity and nutrient use-efficiency in major cropping systems–an Indian perspective: A review. J. Sustain. Agric. 2007, 30, 59–86. [Google Scholar] [CrossRef]
- McGrath, S.P.; Zhao, F.J.; Withers, P.J.A. Development of sulfur deficiency in crop and its treatment. In Proceedings-Fertiliser Society, No. 379; The Fertilizer Society: Peterborough, UK, 1996. [Google Scholar]
- McGrath, S.P.; Zhao, F.J.; Withers, P.J.A. Sulfur uptake, yield response and the interactions between N and S in winter oilseed rape (Brassica napus). J. Agric. Sci. 1996, 126, 53–62. [Google Scholar] [CrossRef]
- Ahmad, A.; Abraham, G.; Gandotra, N.; Abrol, Y.P.; Abdin, M.Z. Interactive effect of nitrogen and sulfur on growth and yield of rapeseed-mustard (Brassica juncea L. Czern. and Coss. And Brassica campestris L.) genotypes. J. Agron. Crop Sci. 1998, 181, 193–199. [Google Scholar] [CrossRef]
- Walkley, A. A critical examination of a rapid method for determination of organic carbon in soils—Effect of variations in digestion conditions and of inorganic soil constituents. Soil Sci. 1947, 63, 251–257. [Google Scholar] [CrossRef]
- Subbiah, B.V.; Asija, G.L. A rapid procedure for estimation of available nitrogen in soils. Curr. Sci. 1956, 25, 259–260. [Google Scholar]
- Tabatabai, M.A. Soil enzymes. In Methods of Soil Analysis: Microbiological and Biochemical Properties; Bottomley, P.J., Angle, J.S., Weaver, R.W., Eds.; Soil Science Society of America: Madison, WI, USA, 1994; pp. 775–833. [Google Scholar]
- Kjeldahl, J. A new method for the determination of nitrogen in organic substances. Z. Anal. Chem. 1883, 22, 366–382. [Google Scholar] [CrossRef]
- Mead, R.; Willey, R.W. The concept of land and advantages in yields for intercropping. Exp. Agric. 1980, 16, 217–228. [Google Scholar] [CrossRef]
- McGilchrist, C.A. Analysis of competition experiments. Biometrics 1965, 21, 975–985. [Google Scholar] [CrossRef]
- Nielsen, D.C.; Vigil, M.F. Intensifying a semi-arid dryland crop rotation by replacing fallow with pea. Agric. Water Manag. 2017, 186, 127–138. [Google Scholar] [CrossRef]
- Gomez, K.A.; Gomez, A.A. Statistical Procedures for Agricultural Research, 2nd ed.; John Wiley and Sons: New York, NY, USA, 1984; p. 680. [Google Scholar]
- Singh, D.V.; Purohit, R.S.; Mertia, R.S.; Laxminarayan Poonia, S.; Tanwar, S.P.S.; Deb, S.M.; Kar, A.; Roy, M.M. (Eds.) Agrometeorological Data Handbook of Pali (1971–2010); Central Arid Zone Research Institute: Jodhpur, India, 2012; p. 118. [Google Scholar]
- Gupta, J.P. Soil and moisture conservation for increasing crop production in arid lands. In CAZRI Monograph No. 20; Central Arid Zone Research Institute: Jodhpur, India, 1983. [Google Scholar]
- Kurdali, F.; Mussaddak, J.; Khalaf, K. Growth and nitrogen fixation and uptake in dhaincha/sorghum intercropping system under saline and non-saline conditions. Commun. Soil Sci. Plant Anal. 2003, 34, 2471–2494. [Google Scholar] [CrossRef]
- Padhi, A.K.; Panigrahi, R.K. Effect of intercrop and crop geometry on productivity, economics, energetic and soil fertility status of maize (Zea mays)—Based intercropping systems. Indian J. Agron. 2006, 51, 174–177. [Google Scholar]
- Asseng, S.; Fillery, I.R.P.; Gregory, P.J. Wheat responses to alternative crops on a duplex soil. Aust. J. Exp. Agric. 1998, 38, 481–488. [Google Scholar] [CrossRef]
- Latati, M.; Aouiche, A.; Tellah, S.; Laribi, A.; Benlahrech, S.; Kaci, G.; Ouarem, F.; Ounane, S.M. Intercropping maize and common bean enhances microbial carbon and nitrogen availability in low phosphorus soil under Mediterranean conditions. Eur. J. Soil Biol. 2017, 80, 9–18. [Google Scholar] [CrossRef]
- Monti, M.; Pellicano, A.; Pristeri, A.; Badagliacca, G.; Preiti, G.; Gelsomino, A. Cereal/grain legume intercropping in rotation with durum wheat in crop/livestock production systems for Mediterranean farming system. Field Crops Res. 2019, 240, 23–33. [Google Scholar] [CrossRef]
- Latati, M.; Bargaz, A.; Belarbi, B.; Lazali, M.; Benlahrech, S.; Tellah, S.; Kaci, G.; Drevon, J.J.; Ounane, S.M. The intercropping common bean with maize improves the rhizobial efficiency, resource use and grain yield under low phosphorus availability. Eur. J. Agron. 2016, 72, 80–90. [Google Scholar] [CrossRef]
- Zhao, F.J.; Bilsborrow, P.E.; Evans, E.J.; Syers, J.K. Sulfur uptake and distribution in double and single low varieties of oilseed rape (Brassica napus L.). Plant Soil 1993, 150, 69–76. [Google Scholar] [CrossRef]
- Faizili, I.S.; Muzain, M.; Ahmad, S.; Jamal, A.; Khan, J.S.; Abdin, M.Z. Interactive effect of sulfur and nitrogen on growth and yield attributes of oilseed crops (Brassica campestris L. and Eruca sativa mill.) differing in yield potential. J. Plant Nutr. 2010, 33, 1216–1228. [Google Scholar] [CrossRef]
- Peoples, M.B.; Herridge, D.F.; Ladha, J.K. Biological nitrogen fixation: An efficient source of nitrogen for sustainable agricultural production? Plant Soil 1995, 174, 3–28. [Google Scholar] [CrossRef]
Soil Depth (cm) | Soil Texture (%) | pH | Bulk Density (g cm−3) | Volumetric Soil Water Content (%) | Electrical Conductivity (dS m−1) | ||||
---|---|---|---|---|---|---|---|---|---|
Fine Sand | Coarse Sand | Silt | Clay | Field Capacity | Permanent Wilting Point | ||||
0–10 | 29.7 | 16.6 | 35.8 | 17.9 | 7.6 | 1.42 | 17.2 | 7.1 | 0.16 |
10–22 | 28.0 | 15.9 | 36.4 | 19.7 | 7.8 | 1.39 | 17.2 | 7.3 | 0.16 |
22–34 | 23.9 | 14.1 | 35.8 | 26.2 | 7.8 | 1.36 | 20.6 | 10.1 | 0.15 |
34–44 | 22.1 | 16.0 | 33.9 | 28.0 | 7.8 | 1.39 | 18.7 | 9.1 | 0.15 |
44–100 | Gravelly clay loam with weathered granite fragments coated with powdery lime |
Particulars | Details |
---|---|
Rainy-season cropping | |
Experimental Design | Split plot |
Treatment Combinations | 12 |
Replications | 3 |
Plot Size | Main plot—36.0 m × 4.5 m Sub-plot—6.0 m × 4.5 m |
Fertilizer Application | Sorghum—40 kg N + 8.75 kg P ha−1; cowpea—20 kg N + 17.5 kg P ha−1 |
Crops and Crop Varieties | Sorghum cv ‘CSV 15′; Sesbania cv ‘local’; cowpea cv ‘FS 68′ |
Sowing Date | July 12, 9, and 16 during Years 1, 2, and 3 |
Harvesting Date | Sorghum and cowpea—as per treatment; Sesbania—harvesting and incorporation in soil at 35 days after sowing |
Post-Rainy-Season Cropping | |
Experimental Design | Split–split plot with control (contrast) |
Treatment Combinations | 24 + 1 |
Replications | 3 |
Plot Size | Main plot and sub-plot—same as in rainy season Sub–sub-plot—6.0 m × 2.0 m |
Fertilizer Application | 20 kg N + 8.75 kg P ha−1 |
Crop and Crop Variety | Eruca sativa cv ‘RTM 314’ |
Sowing Date | October 24 and 22 during Years 2 and 3 |
Harvesting Date | March 3 and February 25 during Years 2 and 3 |
Sorghum Yield Attributes | Fodder Yield (Mgha−1) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Treatments | Plant Height (cm.) | Leaf Area Index | Sorghum | Cowpea | Total | ||||||||
Year 1 | Year 2 | Year 3 | (Pooled) | Year 1 | Year 2 | Year 3 | Year 1 | Year 2 | Year 3 | Year 1 | Year 2 | Year 3 | |
Panting Systems | |||||||||||||
Bed Planting | 108 | 164 | 223 | 4.55 | 10.26 | 15.16 | 25.76 | 3.72 | 4.94 | 7.08 | 11.50 | 16.82 | 28.13 |
Conventional Planting | 100 | 169 | 240 | 4.36 | 9.06 | 17.69 | 28.49 | 3.24 | 3.50 | 4.55 | 10.13 | 18.86 | 29.99 |
Sem± | 1.4 | 4 | 5.8 | 0.1 | 0.66 | 0.65 | 0.77 | 0.24 | 0.11 | 0.12 | 0.71 | 0.62 | 0.74 |
CD (p = 0.05) | NS | NS | NS | NS | NS | NS | NS | NS | 0.75 | 0.79 | NS | NS | NS |
Crop Duration | |||||||||||||
50 Days | 88 | 156 | 218 | 3.94 | 8.46 | 14.56 | 24.13 | 2.70 | 3.38 | 4.68 | 9.37 | 15.70 | 25.69 |
60 Days | 120 | 177 | 244 | 4.96 | 10.85 | 18.29 | 30.11 | 4.23 | 5.05 | 6.95 | 12.27 | 19.97 | 32.43 |
Sem± | 1.6 | 3.1 | 4.1 | 0.1 | 0.55 | 0.49 | 0.85 | 0.25 | 0.35 | 0.40 | 0.53 | 0.48 | 0.83 |
CD (p = 0.05) | 4.6 | 9.1 | 12.2 | 0.2 | 1.62 | 1.45 | 2.52 | 1.00 | 1.40 | 1.63 | 1.56 | 1.41 | 2.44 |
Intercropping Systems | |||||||||||||
Sole Sorghum | 109 | 175 | 242 | 4.65 | 12.18 | 21.93 | 34.88 | - | - | - | 12.18 | 21.93 | 34.88 |
Sorghum + Sesbania | 100 | 159 | 216 | 4.31 | 7.96 | 12.95 | 20.99 | - | - | - | 7.96 | 12.95 | 20.99 |
Sorghum + Cowpea | 103 | 166 | 236 | 4.40 | 8.84 | 14.40 | 25.49 | 3.48 | 4.22 | 5.82 | 12.32 | 18.62 | 31.31 |
Sem± | 1.9 | 3.8 | 5.1 | 0.1 | 0.67 | 0.60 | 1.04 | 0.65 | 0.59 | 1.01 | |||
CD (p = 0.05) | 5.7 | 11.1 | 14.9 | 0.2 | 1.98 | 1.78 | 3.08 | 1.91 | 1.73 | 2.99 |
Particulars | Year 1 | Year 2 | Year 3 |
---|---|---|---|
Sesbania Biomass (Mg ha−1) | 10.05 ± 0.65 | 11.25 ± 1.37 | 13.00 ± 0.90 |
Percent N Content (on dry weight basis) | 2.86 | 2.71 | 2.80 |
Treatments | Year 1 | Year 2 | Year 3 | ||||||
---|---|---|---|---|---|---|---|---|---|
Sorghum | Intercrop | System | Sorghum | Intercrop | System | Sorghum | Intercrop | System | |
Land Equivalent Ratio (LER) | |||||||||
Sole Sorghum | 1.00 b | - | 1.00 b | 1.00 b | 0.00 | 1.00 | 1.00 b | - | 1.00 b |
Sorghum + Sesbania | 0.66 a | 0.57 a | 1.23 a | 0.60 a | 0.52 a | 1.12 a | 0.60 a | 0.57 a | 1.17 a |
Sorghum + Cowpea | 0.78 a | 0.51 b | 1.28 a | 0.66 a | 0.53 a | 1.19 a | 0.73 a | 0.52 b | 1.25 a |
Aggressivity | |||||||||
Sorghum + Sesbania | 0.19 a | −0.19 a | 0.17 a | −0.17 a | 0.07 a | −0.07 a | |||
Sorghum + Cowpea | 0.53 b | −0.53 b | 0.28 a | −0.28 a | 0.40 a | −0.40 a |
Treatments | Available Soil Moisture at Sowing of Eruca sativa (mm) | ||
---|---|---|---|
Year 1 | Year 2 | Year 3 | |
Planting Systems | |||
Bed Planting | 28 | 78 | 64 |
Conventional Planting | 26 | 75 | 58 |
Sem± | 0.86 | 1.6 | 2.1 |
CD (p = 0.05) | NS | NS | NS |
Crop Duration (Rainy Season) | |||
50 Days | 30 | 78 | 64 |
60 Days | 25 | 74 | 57 |
Sem± | 0.76 | 2.1 | 1.3 |
CD (p = 0.05) | 2.24 | NS | 3.8 |
Intercropping Systems (Rainy Season) | |||
Sole Sorghum | 23 | 69 | 53 |
Sorghum + Sesbania | 32 | 79 | 67 |
Sorghum + Cowpea | 28 | 80 | 61 |
Sem± | 0.93 | 2.5 | 1.6 |
CD (p = 0.05) | 2.75 | 7.5 | 4.7 |
Contrast | |||
Fallow–Eruca sativa | 35 | 83 | 71 |
Rest | 27 | 76 | 61 |
‘F’ test | Sig. | Sig. | Sig. |
Treatments | Eruca sativa | |||||
---|---|---|---|---|---|---|
Plant Height (cm) | Silique/Plant | 1000 Seed Weight (g) | ||||
Year 2 | Year 3 | Year 2 | Year 3 | Year 2 | Year 3 | |
Planting Systems | ||||||
Bed Planting | 104 | 70 | 135.5 | 71.4 | 3.65 | 3.05 |
Conventional Planting | 100 | 61 | 115.8 | 53.1 | 3.33 | 2.68 |
Sem± | 2.4 | 1.0 | 3.2 | 2.8 | 0.04 | 0.07 |
CD (p = 0.05) | NS | 6.0 | 19.6 | 17.3 | 0.27 | NS |
Crop Duration (Rainy Season) | ||||||
50 Days | 103 | 65 | 127.4 | 63.3 | 3.58 | 3.05 |
60 Days | 101 | 65 | 123.9 | 61.3 | 3.40 | 2.68 |
Sem± | 1.5 | 1.6 | 3.7 | 1.8 | 0.07 | 0.08 |
CD (p = 0.05) | NS | NS | NS | NS | NS | 0.24 |
Intercropping Systems (Rainy Season) | ||||||
Sole Sorghum | 100 | 67 | 106.1 | 53.8 | 3.23 | 2.69 |
Sorghum + Sesbania | 104 | 65 | 145.9 | 66.2 | 3.63 | 3.06 |
Sorghum + Cowpea | 102 | 64 | 125.0 | 66.8 | 3.60 | 2.84 |
Sem± | 1.8 | 1.9 | 4.6 | 2.2 | 0.08 | 0.10 |
CD (p = 0.05) | NS | NS | 13.5 | 6.4 | 0.24 | 0.29 |
Gypsum (applied to Eruca sativa) | ||||||
Gypsum at 250 kg ha−1 | 105 | 68 | 130.9 | 65.5 | 3.84 | 3.05 |
No Gypsum | 99 | 62 | 120.4 | 59.1 | 3.14 | 2.68 |
Sem± | 1.2 | 1.1 | 3.6 | 1.8 | 0.04 | 0.03 |
CD (p = 0.05) | 3.4 | 3.1 | 10.4 | 5.1 | 0.12 | 0.09 |
Contrast | ||||||
Fallow–Eruca sativa | 105 | 64 | 133.0 | 120.0 | ||
Rest | 102 | 66 | 125.4 | 91.3 | ||
‘F’ test | NS | NS | Sig. | Sig. |
Treatments | Post-Rainy-Season Productivity (Eruca sativa Seed Yield, kg ha−1) | System Productivity (Rainy + Post-Rainy) (as Eruca sativa Seed Equivalent Yield, kg ha−1) | ||||
---|---|---|---|---|---|---|
Year 1 | Year 2 | Year 3 | Year 1 | Year 2 | Year 3 | |
Planting System | ||||||
Bed Planting | - | 1002 | 485 | 559 | 1818 | 1203 |
Conventional Planting | - | 933 | 424 | 493 | 1842 | 1184 |
Sem± | 23 | 11 | 34 | 53 | 27 | |
CD (p = 0.05) | NS | NS | NS | NS | NS | |
Crop Duration (Rainy Season) | ||||||
50 Days | - | 1027 | 486 | 455 | 1785 | 1138 |
60 Days | - | 908 | 423 | 597 | 1875 | 1248 |
Sem± | 20 | 13 | 25 | 31 | 26 | |
CD (p = 0.05) | 59 | 0.37 | 74 | NS | 76 | |
Intercropping Systems (Rainy Season) | ||||||
Sole Sorghum | - | 940 | 425 | 580 | 1984 | 1297 |
Sorghum + Sesbania | - | 1023 | 489 | 379 | 1640 | 1014 |
Sorghum + Cowpea | - | 940 | 449 | 619 | 1866 | 1268 |
Sem± | 24 | 15 | 31 | 39 | 31 | |
CD (p = 0.05) | 72 | 46 | 91 | 114 | 93 | |
Gypsum (applied to Eruca sativa) | ||||||
Gypsum at 250 kg ha−1 | - | 1070 | 486 | - | 1932 | 1224 |
No gypsum | - | 865 | 423 | - | 1728 | 1162 |
Sem+ | 11 | 05 | 11 | 05 | ||
CD (p = 0.05) | 33 | 14 | 33 | 14 | ||
Contrast | ||||||
Fallow–Eruca sativa | - | 1160 | 653 | 00 | 1160 | 653 |
Rest | - | 968 | 454 | 526 | 1830 | 1194 |
‘F’ test | Sig. | Sig. | - | Sig. | Sig. |
Treatments | Cost of Cultivation (Pooled, USD ha−1) | Net Returns (USD ha−1) | Economic Rainfall Use Efficiency (USD ha−1 mm−1) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Rainy | Post-Rainy | Rainy Season | Post-Rainy Season | Rainy + Post-Rainy | ||||||||||
Year 1 | Year 2 | Year 3 | Year 1 | Year 2 | Year 3 | Year 1 | Year 2 | Year 3 | Year 1 | Year 2 | Year 3 | |||
Planting Systems | ||||||||||||||
Bed Planting | 165.7 | 138.6 | 68.8 | 141.2 | 218.8 | - | 247.6 | 128.0 | 68.8 | 388.8 | 346.8 | 0.41 | 0.84 | 0.60 |
Conventional Planting | 159.5 | 131.9 | 49.2 | 182.2 | 249.8 | - | 227.8 | 100.4 | 49.2 | 410.0 | 350.2 | 0.29 | 0.89 | 0.60 |
Sem± | 12.9 | 11.1 | 10.3 | 8.6 | 6.2 | 12.9 | 19.7 | 15.5 | 0.08 | 0.04 | 0.03 | |||
CD (p = 0.05) | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | |||
Crop Duration (Rainy Season) | ||||||||||||||
50 Days | 158.3 | 135.3 | 36.7 | 127.1 | 190.7 | - | 260.0 | 132.0 | 36.7 | 387.1 | 322.7 | 0.22 | 0.84 | 0.56 |
60 Days | 166.9 | 135.3 | 81.3 | 196.3 | 277.9 | - | 215.4 | 96.4 | 81.3 | 411.7 | 374.3 | 0.49 | 0.89 | 0.64 |
Sem± | 9.4 | 8.5 | 11.8 | - | 7.5 | 7.2 | 9.4 | 11.8 | 14.7 | 0.06 | 0.03 | 0.03 | ||
CD (p = 0.05) | 27.8 | 25.0 | 34.7 | 22.0 | 21.3 | 27.8 | NS | 43.3 | 0.17 | 0.08 | 0.07 | |||
Intercropping Systems (Rainy Season) | ||||||||||||||
Sole Sorghum | 168.5 | 135.3 | 62.2 | 224.4 | 304.1 | - | 227.2 | 97.5 | 62.2 | 451.6 | 401.6 | 0.37 | 0.98 | 0.69 |
Sorghum + Sesbania | 158.3 | 135.3 | 16.8 | 73.1 | 115.8 | - | 258.5 | 133.7 | 16.8 | 331.6 | 249.5 | 0.10 | 0.72 | 0.43 |
Sorghum + Cowpea | 161.0 | 135.3 | 98.0 | 187.6 | 283.0 | - | 227.4 | 111.4 | 98.0 | 415.0 | 381.0 | 0.58 | 0.90 | 0.68 |
Sem± | 11.5 | 10.4 | 14.4 | 9.1 | 8.8 | 11.5 | 14.4 | 18.0 | 0.07 | 0.03 | 0.03 | |||
CD (p = 0.05) | 34.0 | 30.7 | 42.5 | 26.9 | 26.1 | 34.0 | 42.6 | 53.0 | 0.20 | 0.09 | 0.09 | |||
Gypsum (applied to Eruca sativa) | ||||||||||||||
Gypsum at 250 kg ha−1 | - | 139.5 | - | - | - | - | 272.1 | 127.6 | 433.8 | 361.8 | - | 0.94 | 0.62 | |
No gypsum | - | 131.1 | - | - | - | - | 203.2 | 100.8 | 364.9 | 335.2 | - | 0.79 | 0.58 | |
Sem+ | 4.2 | 2.8 | 0.01 | 0.01 | ||||||||||
CD (p = 0.05) | 12.3 | 8.1 | 0.03 | 0.02 | ||||||||||
Contrast | ||||||||||||||
Fallow–Eruca sativa | - | 141.2 | - | - | - | - | 304.3 | 221.5 | - | 304.3 | 221.5 | - | 0.66 | 0.38 |
Rest | - | 135.3 | 58.7 | 106.4 | 234.3 | 58.7 | 237.7 | 114.2 | 59.0 | 399.4 | 348.5 | 0.36 | 0.87 | 0.60 |
‘F’ test | NS | Sig. | Sig. | Sig. | Sig. | Sig. | Sig. |
Treatments | Soil Organic Carbon (%) | Available N (mg g−1 soil) | Available P (kg ha−1) | Dehydrogenase Activity (µg tpf g−1 hr−1) |
---|---|---|---|---|
Planting System | ||||
Bed Planting | 0.39 | 81.29 | 12.94 | 9.45 |
Conventional Planting | 0.37 | 78.22 | 12.06 | 7.46 |
Sem± | 0.01 | 0.35 | 0.23 | 0.19 |
CD (p = 0.05) | NS | 2.14 | NS | 1.18 |
Crop Duration (Rainy Season) | ||||
50 Days | 0.38 | 83.13 | 13.14 | 8.54 |
60 Days | 0.38 | 76.39 | 11.86 | 8.37 |
Sem± | 0.01 | 1.67 | 0.23 | 0.22 |
CD (p = 0.05) | NS | 4.94 | 0.68 | NS |
Intercropping System (Rainy Season) | ||||
Sole Sorghum | 0.36 | 68.42 | 11.77 | 6.57 |
Sorghum + Sesbania | 0.40 | 94.44 | 13.65 | 10.37 |
Sorghum + Cowpea | 0.37 | 76.42 | 12.08 | 8.43 |
Sem± | 0.01 | 2.05 | 0.28 | 0.27 |
CD (p = 0.05) | 0.02 | 6.05 | 0.83 | 0.79 |
Contrast | ||||
Fallow–Eruca sativa | 0.36 | 87.30 | 10.93 | 6.91 |
Rest | 0.38 | 79.76 | 11.81 | 8.46 |
‘F’ test | Sig. | Sig. | NS | Sig. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tanwar, S.P.S.; Regar, P.L.; Datt, S.; Rathore, S.S. Sustainable Cropping System Intensification in Arid Region of India: Fallow Replacement with Limited Duration Sorghum–Legume Intercropping Followed by Eruca sativa Mill. Grown on Conserved Soil Moisture. Sustainability 2023, 15, 13006. https://doi.org/10.3390/su151713006
Tanwar SPS, Regar PL, Datt S, Rathore SS. Sustainable Cropping System Intensification in Arid Region of India: Fallow Replacement with Limited Duration Sorghum–Legume Intercropping Followed by Eruca sativa Mill. Grown on Conserved Soil Moisture. Sustainability. 2023; 15(17):13006. https://doi.org/10.3390/su151713006
Chicago/Turabian StyleTanwar, Suresh Pal Singh, Panna Lal Regar, Shiv Datt, and Sanjay S. Rathore. 2023. "Sustainable Cropping System Intensification in Arid Region of India: Fallow Replacement with Limited Duration Sorghum–Legume Intercropping Followed by Eruca sativa Mill. Grown on Conserved Soil Moisture" Sustainability 15, no. 17: 13006. https://doi.org/10.3390/su151713006
APA StyleTanwar, S. P. S., Regar, P. L., Datt, S., & Rathore, S. S. (2023). Sustainable Cropping System Intensification in Arid Region of India: Fallow Replacement with Limited Duration Sorghum–Legume Intercropping Followed by Eruca sativa Mill. Grown on Conserved Soil Moisture. Sustainability, 15(17), 13006. https://doi.org/10.3390/su151713006