Multi-Hazard Population Exposure in Low-Elevation Coastal Zones of China from 1990 to 2020
Abstract
:1. Introduction
2. Data and Methodology
2.1. Study Area
2.2. Data
2.3. Methods
2.3.1. Defining the Hazard Extent in the LECZ
2.3.2. Characteristics of Temporal Changes in Population Exposure
2.3.3. Multi-Hazard Population Exposure Index for LECZ
Data Processing
- (1)
- Transformation
- (2)
- Outlier identification
- (3)
- Normalisation
- (4)
- Inversion
Multi-Hazard Population Exposure Index
- (1)
- Absolute and relative indicator construction
- (2)
- Indicator aggregation
Classification of Multi-Hazard Population Exposure Index
2.3.4. Spatial Pattern of Exposure Index
3. Results
3.1. Distribution of Multi-Hazards in the LECZ
3.2. Exposed Population Characteristics of Multi-Hazards in the LECZ
3.2.1. Distribution of Exposed Population in the LECZ in 2020
3.2.2. Spatial–Temporal Variation Characteristics of Exposed Population in 1990–2020
3.3. Comprehensive Exposure of Multi-Hazards in the LECZ
3.3.1. Spatial Distribution of Comprehensive Exposure to Multi-Hazards in the LECZ in 2020
3.3.2. Changes in the Comprehensive Exposure to Multi-Hazards in the LECZ from 1990 to 2020
4. Discussion
4.1. Contribution of Each Hazard Exposure Index to the Comprehensive Exposure Index
4.2. Policy Implications
4.3. Limitations
5. Conclusions
- (1)
- Among the hazards, TCs have the largest area, accounting for 90.08% of the LECZ of China. The population exposure to TC has the fastest growth rate, with an average annual growth rate of 2.36%, which is higher than that of the LECZ (2.29%). The central LECZ has the largest area exposed to each hazard. Additionally, with the increase in earthquake population exposure, the risk of earthquake hazards will be more severe in the future.
- (2)
- The central region of LECZ is the region with the largest number of increased exposure populations for each hazard, the area with very high and high levels of exposure index, and the region with the largest number of districts and counties with high–high clustering of exposure index from 1990 to 2020. The southern region of LECZ has the fastest increase in exposed population for each hazard type. Among the LECZ regions, the central LECZ is the hotspot with a high population concentration and a large exposed population, while the southern region of LECZ is facing greater disaster risk due to the fastest rate of population growth.
- (3)
- Overall, the flood exposure indicator contributed the most to the multi-hazard risk index among the hazards in the LECZ. Therefore, floods are the focus of multi-hazard risk management in LECZ.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- McGranahan, G.; Balk, D.; Anderson, B. The rising tide: Assessing the risks of climate change and human settlements in low elevation coastal zones. Environ. Urban. 2007, 19, 17–37. [Google Scholar] [CrossRef]
- Lichter, M.; Vafeidis, A.T.; Nicholls, R.J.; Kaiser, G. Exploring data-related uncertainties in analyses of land area and population in the “Low-Elevation Coastal Zone”(LECZ). J. Coast.Res. 2011, 27, 757–768. [Google Scholar] [CrossRef]
- Liu, J.; Wen, J.; Huang, Y.; Shi, M.; Meng, Q.; Ding, J.; Xu, H. Human settlement and regional development in the context of climate change: A spatial analysis of low elevation coastal zones in China. Mitig. Adapt. Strateg. Glob. Chang. 2015, 20, 527–546. [Google Scholar] [CrossRef]
- Pan, S.; Du, S.; Xu, H.; Wu, Y.; Wang, L.; Zong, W.; Wen, J. Spatio-Temporal Analysis on Low Elevation Coastal Zone and Its Population in the Yangtze River Delta Region. Areal Res. Dev. 2016, 35, 161–165. [Google Scholar]
- Oppenheimer, M.; Glavovic, B.; Hinkel, J.; van de Wal, R.; Magnan, A.K.; Abd-Elgawad, A.; Cai, R.; Cifuentes-Jara, M.; Deconto, R.M.; Ghosh, T. Sea Level Rise and Implications for Low Lying Islands, Coasts and Communities; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2019; pp. 321–445. [Google Scholar] [CrossRef]
- Vafeidis, A.; Neumann, B.; Zimmerman, J.; Nicholls, R.J. MR9: Analysis of Land Area and Population in the Low-Elevation Coastal Zone (LECZ); Migration and Global Environmental Change, Government Office for Science: London, UK, 2011; pp. 12–26.
- Nicholls, R.J.; Cazenave, A. Sea-level rise and its impact on coastal zones. Science 2010, 328, 1517–1520. [Google Scholar] [CrossRef] [PubMed]
- Brown, S.; Nicholls, R.J.; Woodroffe, C.D.; Hanson, S.; Hinkel, J.; Kebede, A.S.; Neumann, B.; Vafeidis, A.T. Sea-level rise impacts and responses: A global perspective. In Coastal Hazards; Springer: Berlin/Heidelberg, Germany, 2013; pp. 117–149. [Google Scholar]
- Diaz, D.B. Estimating global damages from sea level rise with the Coastal Impact and Adaptation Model (CIAM). Clim. Change 2016, 137, 143–156. [Google Scholar] [CrossRef]
- Wahl, T.; Haigh, I.D.; Nicholls, R.J.; Arns, A.; Dangendorf, S.; Hinkel, J.; Slangen, A.B. Understanding extreme sea levels for broad-scale coastal impact and adaptation analysis. Nat. Commun. 2017, 8, 16075. [Google Scholar] [CrossRef]
- Fang, J.; Shi, P. A review of coastal flood risk research under global climate change. Prog. Geogr. 2019, 38, 625–636. [Google Scholar]
- Kulp, S.A.; Strauss, B.H. New elevation data triple estimates of global vulnerability to sea-level rise and coastal flooding. Nat. Commun. 2019, 10, 4484. [Google Scholar]
- Xu, S.; Wang, J.; Shi, C.; Yan, J. Research of the Natural Disaster Risk on Coastal Cities. Acta Geogr. Sinica 2006, 61, 127–138. [Google Scholar]
- Sheik Mujabar, P.; Chandrasekar, N. Coastal erosion hazard and vulnerability assessment for southern coastal Tamil Nadu of India by using remote sensing and GIS. Nat. Hazards 2013, 69, 1295–1314. [Google Scholar] [CrossRef]
- Lu, Y.; Hou, Y.; Guo, L.; Zhao, Y.; Chen, L. Preliminary Study on Integrated Assessment for Multi-hazard of Coastal City: Case Study of Quanzhou, Fujian Province. J. Catastrophology 2015, 30, 211–216. [Google Scholar]
- Jongman, B.; Ward, P.J.; Aerts, J.C. Global exposure to river and coastal flooding: Long term trends and changes. Glob. Environ. Change 2012, 22, 823–835. [Google Scholar] [CrossRef]
- Clark, P.U.; Shakun, J.D.; Marcott, S.A.; Mix, A.C.; Eby, M.; Kulp, S.; Levermann, A.; Milne, G.A.; Pfister, P.L.; Santer, B.D. Consequences of twenty-first-century policy for multi-millennial climate and sea-level change. Nat. Clim. Chang. 2016, 6, 360–369. [Google Scholar] [CrossRef]
- Cai, R.; Li, B.; Fang, W.; Fu, S.; Han, Z.; Han, J.; Tan, H. An Integrated Risk Study of Global Change in China’s Coastal Zone and Coastal Areas. China Basic Sci. 2017, 19, 24–29. [Google Scholar]
- IPCC. Summary for Policymakers. In Climate Change 2023: Synthesis Report. A Report of the Intergovernmental Panel on Climate Change. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Lee, H., Romero, J., Eds.; IPCC: Geneva, Switzerland, 2023; p. 36. [Google Scholar]
- Xu, H.; Hou, X.; Li, D.; Zheng, X.; Fan, C. Projections of coastal flooding under different RCP scenarios over the 21st century: A case study of China’s coastal zone. Estuar. Coast. Shelf Sci. 2022, 279, 108155. [Google Scholar] [CrossRef]
- Hoyos, C.D.; Agudelo, P.A.; Webster, P.J.; Curry, J.A. Deconvolution of the factors contributing to the increase in global hurricane intensity. Science 2006, 312, 94–97. [Google Scholar] [CrossRef]
- Gao, Y.; Wang, H.; Liu, G.M.; Sun, X.Y.; Fei, X.Y.; Wang, P.T.; Lv, T.T.; Xue, Z.S.; He, Y.W. Risk assessment of tropical storm surges for coastal regions of China. J. Geophys. Res. Atmos. 2014, 119, 5364–5374. [Google Scholar] [CrossRef]
- Feng, S.; Wu, Q.; Shen, L.; Wang, H.; Wen, J. Population Expousure in the High Seismic Hazard AREA of Low-elevation Coastal Zone in China from 1990 to 2015. Technol. Earthq. Disaster Prev. 2022, 17, 719–726. [Google Scholar]
- Liang, Y.; Wen, J.; Du, S.; Xu, H.; Yan, J. Spatial—Temporal distribution modeling of population and its applications in disaster and risk management. J. Catastrophology 2015, 30, 220–228. [Google Scholar]
- Yang, X.; Yao, C.; Chen, Q.; Ye, T.; Jin, C. Improved estimates of population exposure in low-elevation coastal zones of China. Int. J. Environ. Res. Public Health 2019, 16, 4012. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2014 Impacts, Adaptation, and Vulnerability Part A: Global and Sectoral Aspects. In Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University: Cambridge, UK; New York, NY, USA, 2014. [Google Scholar]
- Hoque, M.A.; Phinn, S.; Roelfsema, C.; Childs, I. Assessing tropical cyclone risks using geospatial techniques. Appl. Geogr. 2018, 98, 22–33. [Google Scholar] [CrossRef]
- Novelo-Casanova, D.A.; Suarez, G. Exposure of main critical facilities to natural and man-made hazards in Grand Cayman, Cayman Islands. Nat. Hazards 2012, 61, 1277–1292. [Google Scholar] [CrossRef]
- Ehrlich, D.; Melchiorri, M.; Florczyk, A.J.; Pesaresi, M.; Kemper, T.; Corbane, C.; Freire, S.; Schiavina, M.; Siragusa, A. Remote sensing derived built-up area and population density to quantify global exposure to five natural hazards over time. Remote Sens. 2018, 10, 1378. [Google Scholar] [CrossRef]
- Chen, Y.; Xie, W.; Xu, X. Changes of population, built-up land, and cropland exposure to natural hazards in China from 1995 to 2015. Int. J. Disaster Risk Sci. 2019, 10, 557–572. [Google Scholar] [CrossRef]
- Rahmati, O.; Yousefi, S.; Kalantari, Z.; Uuemaa, E.; Teimurian, T.; Keesstra, S.; Pham, T.D.; Tien Bui, D. Multi-hazard exposure mapping using machine learning techniques: A case study from Iran. Remote Sens. 2019, 11, 1943. [Google Scholar] [CrossRef]
- Liu, J.; Wen, J.; Yang, K.; Shang, Z.; Zhang, H. GIS-Based analysis of flood disaster risk in LECZ of China and population exposure. In Proceedings of the 2011 19th International Conference on Geoinformatics, Shanghai, China, 24–26 June 2011; pp. 1–4. [Google Scholar]
- Neumann, B.; Vafeidis, A.T.; Zimmermann, J.; Nicholls, R.J. Future coastal population growth and exposure to sea-level rise and coastal flooding-a global assessment. PLoS ONE 2015, 10, e118571. [Google Scholar] [CrossRef]
- Yuan, S.; Zhao, X.; Li, L. Combination evaluation and case analysis of vulnerability of storm surge in coastal provinces of China. Haiyang Xuebao 2016, 38, 16–24. [Google Scholar]
- He, C.; Huang, Q.; Dou, Y.; Tu, W.; Liu, J. The population in China’s earthquake-prone areas has increased by over 32 million along with rapid urbanization. Environ. Res. Lett. 2016, 11, 074028. [Google Scholar] [CrossRef]
- Dou, Y.; Huang, Q.; He, C.; Meng, S.; Zhang, Q. Rapid population growth throughout Asia’s earthquake-prone areas: A multiscale analysis. Int. J. Environ. Res. Public Health 2018, 15, 1893. [Google Scholar] [CrossRef]
- Freire, S.; Aubrecht, C. Integrating population dynamics into mapping human exposure to seismic hazard. Nat. Hazards Earth Syst. Sci. 2012, 12, 3533–3543. [Google Scholar] [CrossRef]
- He, C.; Huang, Q.; Bai, X.; Robinson, D.T.; Shi, P.; Dou, Y.; Zhao, B.; Yan, J.; Zhang, Q.; Xu, F. A global analysis of the relationship between urbanization and fatalities in earthquake-prone areas. Int. J. Disaster Risk Sci. 2021, 12, 805–820. [Google Scholar] [CrossRef]
- Yuan, S. Analysis of Spatial and Temporal Population Changes and Disaster Exposure in the Coastal Lowlands of the Yangtze River Delta, 1990–2015; Shanghai Normal University: Shanghai, China, 2019. [Google Scholar]
- Liu, J. Spatial and Temporal Population Distribution and Hazard Exposure Assessment in Low-Elevation Coastal Zones of China; Shanghai Normal University: Shanghai, China, 2010. [Google Scholar]
- Zhang, H. Vulnerability Assessment of Coastal Cities to Natural Hazards in the Context of Sea Level Rise; Shanghai Normal University: Shanghai, China, 2011. [Google Scholar]
- Fitton, J.M.; Lehmann, M.; Major, D.C. Identifying coastal towns and small cities in Denmark using global population data to support climate change adaptation. Int. J. Digit. Earth 2020, 13, 1040–1054. [Google Scholar] [CrossRef]
- Kulp, S.A.; Strauss, B.H. CoastalDEM: A global coastal digital elevation model improved from SRTM using a neural network. Remote Sens. Environ. 2018, 206, 231–239. [Google Scholar] [CrossRef]
- Stevens, F.R.; Gaughan, A.E.; Linard, C.; Tatem, A.J. Disaggregating census data for population mapping using random forests with remotely-sensed and ancillary data. PLoS ONE 2015, 10, e107042. [Google Scholar] [CrossRef]
- GB 18306—2015; Seismic ground motion parameters zonation map of China. China Standards Press: Beijing, China, 2016. (In Chinese)
- Rudari, R.; Silvestro, F.; Campo, L.; Rebora, N.; Boni, G.; Herold, C. Improvement of the Global Flood Model for the GAR 2015; United Nations Office for Disaster Risk Reduction (UNISDR), Centro Internazionale in Monitoraggio Ambientale (CIMA), UNEP GRID-Arendal (GRID-Arendal): Geneva, Switzerland, 2015; p. 69. [Google Scholar]
- Muis, S.; Verlaan, M.; Nicholls, R.J.; Brown, S.; Hinkel, J.; Lincke, D.; Vafeidis, A.T.; Scussolini, P.; Winsemius, H.C.; Ward, P.J. A comparison of two global datasets of extreme sea levels and resulting flood exposure. Earths Future 2017, 5, 379–392. [Google Scholar] [CrossRef]
- Gao, C.; Wang, L.; Chen, C.; Luo, G.; Sun, Y. Population and economic risk exposure in coastal region of China under sea level rise. Acta Geogr. Sin. 2019, 74, 1590–1604. [Google Scholar]
- Marin-Ferrer, M.; Luca, V.; Karmen, P. INFORM Index for Risk Management: Concept and Methodology, Version 2017; EUR 28655 EN; Publications Office of the European Union: Luxembourg, 2017. [Google Scholar] [CrossRef]
- Taylor, H.T.; Ward, B.; Willis, M.; Zaleski, W. The Saffir-Simpson Hurricane Wind Scale; Atmospheric Administration: Washington, DC, USA, 2010.
- Li, W.; Yi, P.; Li, L. Outliers Recognition and the Dimensionless Method in Comprehensive Evaluation. Oper. Res. Manag. Sci. 2018, 27, 173–178. [Google Scholar]
- Saisana, M. 13th JRC Annual Training on Composite Indicators & Scoreboards; Joint Research Centre: Ispra, Italy, 2015. [Google Scholar]
- Anselin, L.; Syabri, I.; Kho, Y. GeoDa: An Introduction to Spatial Data Analysis. In Handbook of Applied Spatial Analysis: Software Tools, Methods and Applications; Springer: Berlin/Heidelberg, Germany, 2009; pp. 73–89. [Google Scholar]
- Mao, Q.; Long, Y.; Wu, K. Spatio-temporal changes of population density and exploration on urbanization pattern in China: 2000–2010. Plan. Stud. 2015, 39, 38–43. [Google Scholar]
- Abdi, H.; Williams, L.J. Principal component analysis. Wiley Interdiscip. Rev. Comput. Stat. 2010, 2, 433–459. [Google Scholar] [CrossRef]
- He, X.; Zhang, J.; Zhang, T.; Zhong, P.; Wang, W. Study on the sea level rising in the China coast and its adaptation strategy. Mar. Forecast. 2012, 29, 84–91. [Google Scholar]
- Kötter, T. Prevention of Environmental Disasters by Spatial Planning and Land Management. In Proceedings of the 2nd FIG Regional Conference, Marrakesh, Morocco, 13–17 April 2003; Volume 2003, pp. 2–5. [Google Scholar]
- Saravanan, D. Structural and nonstructural mitigation measures in coastal area threats. Int. J. Ocean. Oceanogr. 2016, 10, 141–148. [Google Scholar]
- Wang, J.; Lei, Y.; Zhou, H.; Yin, Y.; Chang, S.; Li, Q. Regional Features and Adaptation Countermeasures of Typhoon Disaster Chains in Southeast Coastal Regions of China. J. Beijing Norm. Univ. (Soc. Sci.) 2012, 2, 130–138. [Google Scholar]
- Buchori, I.; Pramitasari, A.; Sugiri, A.; Maryono, M.; Basuki, Y.; Sejati, A.W. Adaptation to coastal flooding and inundation: Mitigations and migration pattern in Semarang City, Indonesia. Ocean Coast Manag. 2018, 163, 445–455. [Google Scholar] [CrossRef]
- Fuchs, R.J. Cities at Risk: Asia’s Coastal Cities in an Age of Climate Change. Available online: http://hdl.handle.net/10125/17646 (accessed on 20 May 2023).
- Nawrotzki, R.J.; DeWaard, J. Putting trapped populations into place: Climate change and inter-district migration flows in Zambia. Reg. Env. Change 2018, 18, 533–546. [Google Scholar] [CrossRef]
LECZ Regions | Provincial Administration |
---|---|
Northern | Liaoning, Hebei, Tianjin, Shandong |
Central | Jiangsu Province, Shanghai, Zhejiang |
Southern | Fujian, Guangdong, Guangxi, Hainan |
Seismic Intensity | VII Level | VIII Level | ||
---|---|---|---|---|
Peak ground acceleration | 0.1 g | 0.15 g | 0.2 g | 0.3 g |
Level | Max | Min |
---|---|---|
Very high | 10 | 6.9 |
High | 6.9 | 4.7 |
Medium | 4.6 | 2.8 |
Low | 2.7 | 1.3 |
Very low | 1.2 | 0 |
Component | Contribution Rate | Cumulative Contribution Rate |
---|---|---|
1 | 63.47% | 63.47% |
2 | 18.35% | 81.83% |
3 | 12.00% | 93.83% |
Hazard | Component Coefficient | ||
---|---|---|---|
1 | 2 | 3 | |
Earthquake | 0.3 | 0.31 | −0.88 |
Flood | 0.61 | 0.66 | 0.44 |
Storm surge | 0.62 | −0.49 | −0.09 |
TC | 0.39 | −0.48 | 0.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, S.; Yang, K.; Liu, J.; Yang, Y.; Zhao, L.; Wen, J.; Wan, C.; Yan, L. Multi-Hazard Population Exposure in Low-Elevation Coastal Zones of China from 1990 to 2020. Sustainability 2023, 15, 12813. https://doi.org/10.3390/su151712813
Feng S, Yang K, Liu J, Yang Y, Zhao L, Wen J, Wan C, Yan L. Multi-Hazard Population Exposure in Low-Elevation Coastal Zones of China from 1990 to 2020. Sustainability. 2023; 15(17):12813. https://doi.org/10.3390/su151712813
Chicago/Turabian StyleFeng, Siqi, Kexin Yang, Jianli Liu, Yvlu Yang, Luna Zhao, Jiahong Wen, Chengcheng Wan, and Lijun Yan. 2023. "Multi-Hazard Population Exposure in Low-Elevation Coastal Zones of China from 1990 to 2020" Sustainability 15, no. 17: 12813. https://doi.org/10.3390/su151712813
APA StyleFeng, S., Yang, K., Liu, J., Yang, Y., Zhao, L., Wen, J., Wan, C., & Yan, L. (2023). Multi-Hazard Population Exposure in Low-Elevation Coastal Zones of China from 1990 to 2020. Sustainability, 15(17), 12813. https://doi.org/10.3390/su151712813