The Resource Potential and Zoning Evaluation for Deep Geothermal Resources of the Dongying Formation in Tianjin Binhai New Area
Abstract
:1. Introduction
2. Geological Setting
3. Evaluation Methods
- (1)
- The determination of evaluation indicators
- (2)
- The given evaluation score of the interval attribute
- (3)
- The quantification of evaluation factors weight
- (4)
- The calculation of a comprehensive evaluation value
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, D.; Liang, H.J.; Huang, J.C.; Liu, R. Development Path of Chinese Geothermal Business under Carbon Peaking and Carbon Neutrality Targets. Pet. Petrochem. Today 2022, 5, 6–15. [Google Scholar]
- Mao, X.; Luo, L.; Wang, X.W.; Guo, D.B. Distribution characteristics of cenozoic volcanic rocks and its geothermal exploration potential in Bohai bay basin. Geoscience 2020, 4, 858–864. [Google Scholar] [CrossRef]
- Liu, J.L.; Jin, B.Z.; Li, Y.Y.; Wang, J.G.; Yue, L.Y.; Wang, X. Geothermal occurrence analysis of Dongying formation in Tanggu of Tianjin. Global Geol. 2014, 3, 163–169. [Google Scholar]
- Yan, D.S.; Yu, Y.T. Evaluation and Utilization of Geothermal Resources in Beijing-Tianjin-Hebei Oil Region; China University of Geosciences Press: Beijing, China, 2000; pp. 8–62. [Google Scholar]
- Lin, W.J.; Liu, Z.M.; Wang, W.L.; Wang, G.L. The assessment of geothermal resources potential of China. Geol. China 2013, 1, 312–321. [Google Scholar]
- Wang, G.L.; Liu, Y.G.; Zhu, X.; Zhang, W. The status and development trend of geothermal resources in China. Earth Sci. Front. 2020, 1, 1–9. [Google Scholar] [CrossRef]
- Pang, Z.H.; Luo, J.; Cheng, Y.Z.; Duan, Z.F. Evaluation of geological conditions for the development of deep geothermal energy in China. Earth Sci. Front. 2020, 1, 134–151. [Google Scholar] [CrossRef]
- Liu, Z.M.; LIU, L.G.; Zhen, G.L.; Qi, R.Y. Study on suitability evaluation system of urban geological conditions in Beijing. Urban Geol. 2022, 2, 164–174. [Google Scholar]
- Gao, Z.X. Study on the optimization of favorable areas for exploration and development of geothermal resources in bedrock thermal reservoirs in key areas of Shandong Province. J. Shengli Coll. China Univ. Pet. 2020, 1, 19–24. [Google Scholar]
- Li, S.T.; Zhang, S.Q.; Jia, X.F.; Xu, T.F.; Ren, T.; Li, F.C. Index system research of project site selection for dry hot rocks exploration. Geol. Surv. China 2018, 2, 64–72. [Google Scholar]
- Liu, G.Y.; Zhao, Z.X.; Ren, L.; Meng, L.J. Study and Application of the Evaluation System Concerning the Hydrothermal Type Geothermal Resource at the Middle and Deep Layers of Sedimentary Basin. Oil Gas New Energy 2022, 2, 38–54. [Google Scholar]
- Jiang, D.D.; Jiang, W.W.; Hu, J.W. Study of crustal structure and geodynamic characteristics around the Bohai Sea area. Prog. Geophys. 2013, 4, 1729–1738. [Google Scholar]
- Chen, M.X. North China Geothermal; Science Press: Beijing, China, 1988; pp. 89–106. [Google Scholar]
- Gong, Y.L. Geothermal Structure and Thermal Evolution of the Bohai Bay Basin in Eastern China; China Atomic Energy Press: Beijing, China, 2011; pp. 1–18. [Google Scholar]
- Tianjin Bureau of Geology & Mineral Resources. Tianjin Geology Note; Geological Publishing House: Beijing, China, 1992; pp. 242–275. [Google Scholar]
- Gao, Z.W.; Xu, J.; Song, C.Q. Structural characters of the Cangdong fault in north China. Seismol. Geol. 2000, 4, 395–404. [Google Scholar]
- Chen, R.J.; Yang, Y.X.; Liu, Y.; Zhang, F.N.; Shen, Z.C. Study on reservoir of Dongying Formation in Banqiao sag. Sci. Technol. Consult. Her. 2007, 26, 5–6. [Google Scholar] [CrossRef]
- Jin, B.Z.; Sun, B.C.; Lin, L. Dongying Geothermal Resources Survey in Tanggu Area of Tianjin; Tianjin Geothermal Exploration and Development-Designing Institute: Tianjin, China, 2009; pp. 11–33. [Google Scholar]
- Chen, W.Q.; Tang, Y.X.; Tian, G.H.; Zhao, S.M.; Li, Y.Y.; Zeng, M.X.; Li, H. Investigation and Evaluation of Deep Geothermal Resources in Binhai New Area; Tianjin Geothermal Exploration and Development-Designing Institute: Tianjin, China, 2017; pp. 74–77. [Google Scholar]
- Yang, Y.J.; Zhang, Z.L.; Liu, J.L.; Jia, Z.; Mu, C.Y. Geothermal resource potential and exploitation countermeasure analysis of the Dongying Formation in Tanggu area. Geol. Surv. Res. 2010, 3, 216–220. [Google Scholar]
- Liu, E.T.; Yue, Y.F.; Huang, C.Y.; Zhou, Y.W.; Liao, Y.T.; Chen, S.; Shi, X.B.; Ren, P.G. The characteristics and mechanism of the subsidence of the Dongying Formation in Qikou sag. Geotecton. Metallog. 2010, 4, 563–572. [Google Scholar] [CrossRef]
- Chang, W.H.; Zhao, Y.G.; Lu, S. Features of sedimentary microfacies and electrofacies of meandering river deposits. Nat. Gas Ind. 2010, 2, 48–51. [Google Scholar]
- Yu, G.; He, S.; Wang, B.J.; Ni, J.E.; Liao, Y.T. Constraints by tectonic slope-break zones on sequences and depositional systems in the Banqiao Sag. Acta Pet. Sin. 2010, 5, 754–761. [Google Scholar] [CrossRef]
- Liao, Y.T.; Wang, H.; Wang, J.H.; Xiao, D.Q.; Huang, C.Y.; Xia, C.Y.; Liu, Y.B. The Paleogene Dongying formation incentral area of Huanghua Depression: Depositional characteristics and prediction of favorable exploration area. J. Palaeogeo Graphy 2009, 5, 561–572. [Google Scholar] [CrossRef]
- Bai, Y.F.; Wang, Z.S.; Wei, A.J.; Lu, X.J.; Zhang, B. Time and space distribution characteristics and material resource system of heavy minerals in Dongying formation of Huanghua Depression. Pet. Geol. Oilfield Dev. Daqing 2008, 2, 39–42. [Google Scholar]
- Liu, J.L.; Han, S.B.; Yang, F.T.; Yue, D.D. The hydraulic connection analysis of Dongying geothermal fluid using hydrochemical information and isotope data in Tianjin coastal regions. Water 2023, 15, 1235. [Google Scholar] [CrossRef]
- Chen, M.X.; Wang, J.Y.; Deng, X. China Geothermal Resources-Formation Characteristics and Potential Assessment; Science Press: Beijing, China, 1994; pp. 90–123. [Google Scholar]
- Zhao, S.M.; Gao, B.Z.; Li, X.M.; Li, H.J.; Hu, Y. Haracter and water-temperature conductivity of the Cangdong fault (Tianjin segment). Geol. Surv. Res. 2007, 2, 121–127. [Google Scholar] [CrossRef]
- GB/T 11615-2010; Geologic Exploration Standard of Geothermal Resources: Inspection and Quarantine of the People’s Republic of China. Standardization Administration of the People’s Republic of China: Beijing, China, 2010.
- Liu, J.L.; Wei, X.P.; Chen, W.Q.; Tian, G.H.; Qin, L.H.; Wang, L.L. Geothermal liquid enrichment conditions and exploration & production prospect division of Dongying geothermal resources in Tianjin Binhai New Area. J. Hebei Geo Univ. 2019, 2, 20–25. [Google Scholar]
- Liu, L.C.; Wang, J.S.; Zhang, N.; Guo, M.L. Suitability division for water source heat pumps in the central districts of Beijing. Hydrogeol. Eng. Geol. 2006, 6, 15–17. [Google Scholar] [CrossRef]
- Xu, M.J.; Jiang, Y.; Xie, Z.H.; Wang, X.J. Study on Division of the Appropriate Rank of Water Source Heat Pumps based on AHP in Beijing Plain. Anal. Study 2009, 1, 10–14. [Google Scholar]
- Liu, J.L.; Lin, L.; Chen, W.Q. Suitability zoning for groundwater source heat pump systems in Tianjin. J. Jilin Univ. Earth Sci. Ed. 2012, 12, 380–386. [Google Scholar]
- Guan, S.Y.; Long, Z.G.; Zhou, M. The Adaptive Parti tion of Groundwater Source Heat Pump System Application in Wuhan City. City Surv. 2009, 5, 143–146. [Google Scholar]
- Wang, J.Y.; Sun, Z.X. Magic Geothermal; Tsinghua University Press: Beijing, China, 2000; p. 18. [Google Scholar]
- Xu, S.G.; Guo, Y.S. Fundamentals of Geothermal Science; Science Press: Beijing, China, 2009; pp. 132–137. [Google Scholar]
- Zhou, N.L. Practice Book of Geothermal Resources Development and Utilization; Chinese Geological Science Press: Beijing, China, 2005; p. 73. [Google Scholar]
- Yan, J.H.; Wang, S.J.; Yao, Y.H. Evaluation and Development Practice of Geothermal Resources in Oil Region; Petroleum Industry Press: Beijing, China, 2022; pp. 19–20. [Google Scholar]
- DZ-T 0331-2020; Specification for Estimation and Evaluation of Geothermal Resources. Ministry of Natural Resources, the People’s Republic of China: Beijing, China, 2020.
- Cai, L. The Fuzzy Mathematics Methods of Determining Weight in Modeling and Simulation. Teach. Technol. 2004, 2, 23–25. [Google Scholar]
- Di, Y.H.; Wu, Y.L.; Jiang, H. Scheme Optimization of Geothermal Project Based on Grey Relational Analysis and Analytical Hierarchy Process. Refrig. Air Cond. 2013, 2, 164–169. [Google Scholar]
- Zhang, J.J. Fuzzy Analytical Hierarchy Process. Fuzzy Syst. Math. 2000, 2, 80–88. [Google Scholar]
- Deng, X.; Li, J.M.; Zeng, H.J.; Chen, J.Y.; Zhao, J.F. Research on Computation Methods of AHP Wight Vector and Its Applications. Math. Pract. Theory 2012, 7, 93–99. [Google Scholar]
- Wang, J.Y. The Belt and Road Initiative, Geothermal First. Sci. Technol. Rev. 2016, 21, 1. [Google Scholar]
Section | Buried Depth (m) | Thickness (m) | Porosity (%) | Permeability (×10−3 μm2) | Clay Content (%) |
Ed I | 1950.1~1963.1 | 13.0 | 27.51 | 625.25 | 23.27 |
1978~1984 | 6 | 26.64 | 480.03 | 21.21 | |
1989.4~1996.7 | 7.3 | 23.35 | 218.93 | 21.86 | |
Ed II | 2073.3~2090.1 | 16.8 | 31.41 | 908.16 | 14.54 |
2202.2~2207.6 | 5.4 | 31.02 | 812.55 | 12.54 | |
Ed III | 2213.0~2220.0 | 7 | 29.98 | 725.69 | 13.22 |
2249.7~2256.1 | 6.4 | 25.94 | 389.88 | 16.15 | |
2272.3~2278.8 | 6.5 | 26.04 | 406.29 | 13.19 | |
2284.3~2312.6 | 28.3 | 23.41 | 275.69 | 19.08 | |
2320.2~2324.9 | 4.7 | 26.41 | 421.98 | 12.89 |
Reservoir | Production Capacity of Single Well/m3/d | Production Volume of the Whole Area /104 m3/d | Maximum Water Level Depth/m | Minimum Water Level Depth/m | Recoverable Capacity/104 m3/a |
---|---|---|---|---|---|
Ed | 180 | 0.576 | 169.0957 | 124.5534 | 233.6 |
200 | 0.640 | 174.5346 | 128.3976 | ||
220 | 0.704 | 181.6459 | 134.9912 |
Reservoir | Production Capacity of Double Well/m3/d | Production Volume of the Whole Area /104 m3/d | Maximum Water Level Depth/m | Minimum Water Level Depth/m | Recoverable Capacity/104 m3/a |
---|---|---|---|---|---|
Ed | 250 | 0.800 | 167.0524 | 132.8215 | 315.36 |
270 | 0.864 | 175.1002 | 138.1144 | ||
290 | 0.928 | 181.4361 | 146.0035 |
Reservoir | Mining Model | Recoverable Capacity /104 m3/a | Specific Heat Capacity /kJ/m3·°C | Available Amount of Heat Energy/1013 kJ | Available Thermal Power/MW |
---|---|---|---|---|---|
Ed | single-well model | 233.6 | 4054.6 | 5.825 | 18.47 |
double-well model | 315.36 | 4054.6 | 7.864 | 24.93 |
Evaluation Indicators | Grading | Assignment | Evaluation Indicators | Grading | Assignment |
---|---|---|---|---|---|
Buried depth of geothermal reservoir (m) | <2000 | 8 | Thickness of geothermal reservoir (m) | <200 | 2 |
2000~2600 | 7 | 200~400 | 5 | ||
2600~3200 | 5 | 400~600 | 7 | ||
>3200 | 3 | >600 | 8 | ||
Temperature gradient of cap rock (°C/100 m) | <2.5 | 2 | Sedimentary characteristics | Delta front | 8 |
2.5~3.0 | 5 | Delta plain | 6 | ||
3.0~3.5 | 7 | Alluvial fan | 5 | ||
>3.5 | 9 | Shallow lake | 3 | ||
Porosity of geothermal reservoir (%) | <15 | 3 | Sand–mud ratio (%) | <10 | 2 |
15~20 | 6 | 10~20 | 4 | ||
20~25 | 7 | 20~30 | 6 | ||
>25 | 9 | >30 | 8 | ||
Recoverable potential (104 m3/a·m) | <4 | 3 | Salinity of geothermal fluid (mg/L) | <3000 | 8 |
4~6 | 6 | 3000~10,000 | 6 | ||
>6 | 8 | >10,000 | 4 |
1. Geothermal geology conditions Consistency ratio of judgment matrix: 0.0088 The weight of the overall goal: 1.0000 | ||||
Heat Storage Conditions | Fluid Occurrence Conditions | Develop and Utilize Potential | Wi | |
Heat storage conditions | 1.0000 | 0.3333 | 0.5000 | 0.1634 |
Fluid occurrence conditions | 3.0000 | 1.0000 | 2.0000 | 0.5396 |
Develop and utilize potential | 2.0000 | 0.5000 | 1.0000 | 0.2970 |
1.1 Heat storage conditions Consistency ratio of judgment matrix: 0.0176 The weight of the overall goal: 0.1634 | ||||
Buried depth | Buried thickness | Temperature gradient | Wi | |
Buried depth | 1.0000 | 0.2500 | 0.5000 | 0.1365 |
Buried thickness | 4.0000 | 1.0000 | 3.0000 | 0.6250 |
Temperature gradient | 2.0000 | 0.3333 | 1.0000 | 0.2385 |
1.2 Fluid occurrence conditions Consistency ratio of judgment matrix: 0.0088 The weight of the overall goal: 0.5396 | ||||
Sedimentary characteristics | Porosity | Sand–mud ratio | Wi | |
Sedimentary characteristics | 1.0000 | 2.0000 | 3.0000 | 0.5396 |
Porosity | 0.5000 | 1.0000 | 2.0000 | 0.2970 |
Sand–mud ratio | 0.3333 | 0.5000 | 1.0000 | 0.1634 |
1.3 Develop and utilize potential Consistency ratio of judgment matrix: 0.0000 The weight of the overall goal: 0.2970 | ||||
Recoverable potential | Recoverable potential | Wi | ||
Recoverable potential | 1.0000 | 9.0000 | 0.9000 | |
Fluid salinity | 0.1111 | 1.0000 | 0.1000 |
Evaluation Indicators | Weight |
---|---|
Buried depth of geothermal reservoir | 0.0223 |
Thickness of geothermal reservoir | 0.1021 |
Temperature gradient of cap rock | 0.0390 |
Sedimentary characteristics | 0.2912 |
Porosity of geothermal reservoir | 0.1602 |
Sand–mud ratio | 0.0882 |
Recoverable exploitation potential | 0.2673 |
Salinity of geothermal fluid | 0.0297 |
Zoning | Target Area Location | Distribution Area (km2) |
---|---|---|
Excellent prospect target area | Tianjin Lingang industrial zone–the northern area of Tianjin Nangang industrial zone | 314.33 |
General prospect target area | Caijiabao–Dongjiang port–Tanggu urban–Lingang industrial zone–Lvjuhe village | 745.77 |
Bad prospect target area | Dagang urban–Beidagang reservoir–Taiping town–Shajingzi village | 879.31 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Han, S.; Xiang, H.; Yue, D.; Yang, F. The Resource Potential and Zoning Evaluation for Deep Geothermal Resources of the Dongying Formation in Tianjin Binhai New Area. Sustainability 2023, 15, 12357. https://doi.org/10.3390/su151612357
Liu J, Han S, Xiang H, Yue D, Yang F. The Resource Potential and Zoning Evaluation for Deep Geothermal Resources of the Dongying Formation in Tianjin Binhai New Area. Sustainability. 2023; 15(16):12357. https://doi.org/10.3390/su151612357
Chicago/Turabian StyleLiu, Jiulong, Shuangbao Han, Hong Xiang, Dongdong Yue, and Fengtian Yang. 2023. "The Resource Potential and Zoning Evaluation for Deep Geothermal Resources of the Dongying Formation in Tianjin Binhai New Area" Sustainability 15, no. 16: 12357. https://doi.org/10.3390/su151612357
APA StyleLiu, J., Han, S., Xiang, H., Yue, D., & Yang, F. (2023). The Resource Potential and Zoning Evaluation for Deep Geothermal Resources of the Dongying Formation in Tianjin Binhai New Area. Sustainability, 15(16), 12357. https://doi.org/10.3390/su151612357