Enhanced Onsite Treatment of Domestic Wastewater Using an Integrated Settler-Based Biofilm Reactor with Efficient Biogas Generation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.1.1. Process of Reactor Operation
2.1.2. Analytical Procedure and Instrument
2.1.3. Gas Chromatography (GC) for Biogas
2.1.4. Preparation of Sludge for FESEM
3. Results and Discussions
3.1. Overall Performance of ISBR
3.2. COD Mass Balance
3.3. Sludge Morphology of ISBR
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Venkatesh, B.; Velkennedy, R. Formulation of citizen science approach for monitoring Sustainable Development Goal 6: Clean water and sanitation for an Indian city. Sustain. Dev. 2023, 31, 56–66. [Google Scholar] [CrossRef]
- Ritchie, H.; Roser, M. Clean Water and Sanitation; OurWorldInData.org: Oxford, UK, 2021. [Google Scholar]
- Al Smadi, B.; Al Mhairat, T.; Moqbel, S. Assessment of the Pharmaceutical Waste Management System in Jordan: Regulations and System Characteristics. J. Hazard. Toxic Radioact. Waste 2023, 27, 05023001. [Google Scholar] [CrossRef]
- Murei, A.; Kamika, I.; Samie, A.; Momba, M.N.B. Assessment of the water sources for potential channels of faecal contamination within Vhembe District Municipality using sanitary inspections and hydrogen sulphide test. Sci. Rep. 2023, 13, 6250. [Google Scholar] [CrossRef] [PubMed]
- WHO; UNICEF. Progress on Drinking Water, Sanitation and Hygiene: 2017 Update and SDG Baselines; WHO: Geneva, Switzerland, 2017. [Google Scholar]
- Strande, L.; Brdjanovic, D. (Eds.) Faecal Sludge Management: Systems Approach for Implementation and Operation; IWA Publishing: London, UK, 2014. [Google Scholar]
- Prüss-Ustün, A.; Wolf, J.; Bartram, J.; Clasen, T.; Cumming, O.; Freeman, M.C.; Johnston, R. Burden of disease from inadequate water, sanitation and hygiene for selected adverse health outcomes: An updated analysis with a focus on low-and middle-income countries. Int. J. Hyg. Environ. Health 2019, 222, 765–777. [Google Scholar] [CrossRef]
- Conaway, K.; Lebu, S.; Heilferty, K.; Salzberg, A.; Manga, M. On-site sanitation system emptying practices and influential factors in Asian low-and middle-income countries: A Systematic Review. Hyg. Environ. Health Adv. 2023, 6, 100050. [Google Scholar] [CrossRef]
- Pussayanavin, T.; Koottatep, T.; Eamrat, R.; Polprasert, C. Enhanced sludge reduction in septic tanks by increasing temperature. J. Environ. Sci. Health-Part A Toxic/Hazard. Subst. Environ. Eng. 2015, 50, 81–89. [Google Scholar] [CrossRef]
- Lesteur, M.; Bellon-Maurel, V.; Gonzalez, C.; Latrille, E.; Roger, J.; Junqua, G.; Steyer, J.P. Alternative methods for determining anaerobic biodegradability: A review. Process Biochem. 2010, 45, 431–440. [Google Scholar] [CrossRef]
- Smith, A.; Stadler, L.; Love, N.; Skerlos, S.; Raskin, L. Perspectives on anaerobic membrane bioreactor treatment of domestic wastewater: A critical review. Bioresour. Technol. 2012, 122, 149–159. [Google Scholar] [CrossRef]
- Jinturkar, S.B.; Jasud, S.; Jadhav, A.; Biradar, I.N. Improvement of social, economic, and Basic Development in the Backward Village Under ‘UNNAT BHARAT ABHIYAAN. Int. Res. J. Eng. Technol. 2019, 6, 4. [Google Scholar]
- Singh, S.; Yadav, P.; Kumar, C.; Sharma, M.; Gaur, R. Performance of an Integrated Settler Based Anaerobic Biofilm Reactor as Onsite Sanitation System. IETE J. Res. 2021, 67, 603–610. [Google Scholar] [CrossRef]
- Singh, S.; Sharma, M.; Kumar, C.; Gaur, R. Effect of Filter Media on Performance of Biofilm Reactor for Treatment of Domestic Wastewater. J. Hazard. Toxic Radioact. Waste 2022, 26, 04022014. [Google Scholar] [CrossRef]
- Sharma, M.; Tyagi, V.; Singh, N.; Singh, S.; Kazmi, A. Sustainable technologies for on-site domestic wastewater treatment: A review with technical approach. Environ. Dev. Sustain. 2022, 24, 3039–3090. [Google Scholar] [CrossRef]
- Truelove, Y.; O’Reilly, K. Making India’s cleanest city: Sanitation, intersectionality, and infrastructural violence. Environ. Plan. E Nat. Space 2021, 4, 718–735. [Google Scholar] [CrossRef]
- Singh, S.; Yadav, P.; Kumar, C.; Sharma, M.; Gaur, R. Performance of pilot-scale plant: An integrated settler based anaerobic biofilm reactor for the treatment of domestic wastewater. In Proceedings of the 8th International Conference on Advancements in Engineering and Technology (ICAET-2020), Punjab, India, 20–21 March 2020; pp. 561–566. [Google Scholar]
- Kong, Z.; Li, L.; Kurihara, R.; Kubota, K.; Li, Y. Anaerobic treatment of N, N-dimethylformamide-containing wastewater by co-culturing two sources of inoculum. Water Res. 2018, 139, 228–239. [Google Scholar] [CrossRef]
- Li, L.; Qin, Y.; Kong, Z.; Wu, J.; Kubota, K.; Li, Y. Characterization of microbial community and main functional groups of prokaryotes in thermophilic anaerobic co-digestion of food waste and paper waste. Sci. Total Environ. 2019, 652, 709–717. [Google Scholar] [CrossRef] [PubMed]
- Tsushima, I.; Yoochatchaval, W.; Yoshida, H.; Araki, N.; Syutsubo, K. Microbial community structure and population dynamics of granules developed in expanded granular sludge bed (EGSB) reactors for the anaerobic treatment of low-strength wastewater at low temperature. J. Environ. Sci. Health-Part A Toxic/Hazard. Subst. Environ. Eng. 2010, 45, 754–766. [Google Scholar] [CrossRef] [PubMed]
- Lettinga, G. Challenge of psychrophilic anaerobic wastewater treatment. Trends Biotechnol. 2001, 19, 363–370. [Google Scholar] [CrossRef]
- Martin, I.; Pidou, M.; Soares, A.; Judd, S.; Jefferson, B. Modelling the energy demands of aerobic and anaerobic membrane bioreactors for wastewater treatment Modelling the energy demands of aerobic and anaerobic membrane bioreactors for wastewater treatment. Environ. Technol. 2011, 32, 921–932. [Google Scholar] [CrossRef]
- Tsegaye, D.; Khan, M.; Leta, S. Optimization of Operating Parameters for Two-Phase Anaerobic Digestion Treating Slaughterhouse Wastewater for Biogas Production: Focus on Hydrolytic–Acidogenic Phase. Sustainability 2023, 15, 5544. [Google Scholar] [CrossRef]
- Arras, W.; Hussain, A.; Hausler, R.; Guiot, S. Mesophilic, thermophilic and hyperthermophilic acidogenic fermentation of food waste in batch: Effect of inoculum source. Waste Manag. 2019, 87, 279–287. [Google Scholar] [CrossRef]
- Kong, Z.; Li, L.; Wang, T.; Rong, C.; Xue, Y.; Zhang, T.; Wu, J.; Li, Y.Y. New insights into the cultivation of N,N-dimethylformamide-degrading methanogenic consortium: A long-term investigation on the variation of prokaryotic community inoculated with activated sludge. Environ. Res. 2020, 182, 109060. [Google Scholar] [CrossRef]
- Aiyuk, S.; Forrez, I.; van Haandel, A.; Verstraete, W. Anaerobic and complementary treatment of domestic sewage in regions with hot climates—A review. Bioresour. Technol. 2006, 97, 2225–2241. [Google Scholar] [CrossRef]
- Noyola, A.; Morgan-Sagastume, J.; López-Hernández, J. Treatment of biogas produced in anaerobic reactors for domestic wastewater: Odor control and energy/resource recovery. Rev. Environ. Sci. Biotechnol. 2006, 5, 93–114. [Google Scholar] [CrossRef]
- Lim, K.; Evans, P.; Parameswaran, P. Long-term performance of a pilot-scale gas-sparged anaerobic membrane bioreactor under ambient temperatures for holistic wastewater treatment. Environ. Sci. Technol. 2019, 53, 7347–7354. [Google Scholar] [CrossRef]
- Yang, Y.; Zang, Y.; Hu, Y.; Wang, X.; Ngo, H. Upflow anaerobic dynamic membrane bioreactor (AnDMBR) for wastewater treatment at room temperature and short HRTs: Process characteristics and practical applicability. Chem. Eng. J. 2020, 383, 123186. [Google Scholar] [CrossRef]
- Schmitt, F.; Banu, R.; Yeom, I.; Do, K. Development of artificial neural networks to predict membrane fouling in an anoxic-aerobic membrane bioreactor treating domestic wastewater. Biochem. Eng. J. 2018, 133, 47–58. [Google Scholar] [CrossRef]
- Maleki, E.; Bokhary, A.; Leung, K.; Liao, B. Long-term performance of a submerged anaerobic membrane bioreactor treating malting wastewater at room temperature (23 ± 1 °C). J. Environ. Chem. Eng. 2019, 7, 103269. [Google Scholar] [CrossRef]
- Vincent, N.; Tong, J.; Yu, D.; Zhang, J.; Wei, Y. Membrane fouling characteristics of a side-stream tubular anaerobic membrane bioreactor (AnMBR) treating domestic wastewater. Processes 2018, 6, 3–17. [Google Scholar]
- Harb, M.; Xiong, Y.; Guest, J.; Amy, G.; Hong, P. Differences in microbial communities and performance between suspended and attached growth anaerobic membrane bioreactors treating synthetic municipal wastewater. Environ. Sci. Water Res. Technol. 2015, 1, 800–813. [Google Scholar] [CrossRef] [Green Version]
- Maleki, E. Psychrophilic anaerobic membrane bioreactor (AnMBR) for treating malting plant wastewater and energy recovery. J. Water Process Eng. 2020, 34, 101174. [Google Scholar] [CrossRef]
- Mei, X.; Wang, Z.; Miao, Y.; Wu, Z. A pilot-scale anaerobic membrane bioreactor under short hydraulic retention time for municipal wastewater treatment: Performance and microbial community identification. J. Water Reuse Desalination 2018, 8, 58–67. [Google Scholar] [CrossRef] [Green Version]
- Ahmed Mekawy, E.; Li, L.; Zhang, Y.; Wang, X. Microbial fuel cells: From fundamentals to applications. A review. J. Power Sources 2017, 356, 225–244. [Google Scholar]
- Dutta, A.; Mukherjee, S.K.; Hossain, S.T. Microbial Fuel Cell Assisted Wastewater Treatment: A Review on Current Trends. In Microbial Technologies in Industrial Wastewater Treatment; Springer: Berlin/Heidelberg, Germany, 2023; pp. 59–82. [Google Scholar]
- Tang, J.; Yang, H.; Pu, Y.; Hu, Y.; Qu, X.; Chen, S.; Wang, X.C.; Ngo, H.H.; Li, Y.; Abomohra, A. Bioenergy production from swine wastewater based on a combined process of anaerobic dynamic membrane reactor and microalgae cultivation: Feasibility and performance. Sci. Total Environ. 2023, 899, 165621. [Google Scholar] [CrossRef] [PubMed]
- Krishna, G.G.; Kumar, P.; Kumar, P. Treatment of low strength complex wastewater using an anaerobic baffled reactor (ABR). Bioresour. Technol. 2008, 99, 8193–8200. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Sharma, M.; Gaur, R. Hydraulic characteristics of integrated settler based biofilm reactor as onsite sanitation system. Int. J. Chem. React. Eng. 2021, 19, 1317–1325. [Google Scholar] [CrossRef]
- Ghosh, A.; Ray, A.; Goswami, A.; Ali, O.A.; Singh, P.K.; Pattnaik, R. Recent Development and Innovations in Integrated Biogas-Wastewater Treatment. In Biorefinery for Water and Wastewater Treatment; Springer International Publishing: Cham, Switzerland, 2023; pp. 271–297. [Google Scholar]
- Rey-Martínez, N.; Rodríguez-Alegre, R.; You, X.; Martínez-Lozano, S.; Borràs, E.; García-Montaño, J. Assessment of two-stage anaerobic digestion of blackwater and kitchen waste for reducing environmental impact of residential buildings. Sustain. Chem. Pharm. 2023, 33, 101090. [Google Scholar] [CrossRef]
- Singh, S.; Sharma, M.; Gaur, R. Effects of aqwise carrier media and brick media as filter materials on performance of biofilm reactor. Mater. Today Proc. 2022, 60, 782–787. [Google Scholar] [CrossRef]
- Federation, Water Environmental; Aph Association. Federation, Standard Methods for the Examination of Water and Wastewater; American Public Health Association (APHA): Washington, DC, USA, 2005. [Google Scholar]
- DiLallo, R.; Albertson, O.E. Volatile acids by direct titration. Water Pollut. Control. 2012, 33, 356–365. [Google Scholar]
- Manjunath, P.; Sairam, M.R. Purification and biochemical characterization of three major acidic proteins (BSP-A1, BSP-A2 and BSP-A3) from bovine seminal plasma. Biochem. J. 1987, 241, 685–692. [Google Scholar] [CrossRef]
- Peng, C.; Zhai, Y.; Hornung, A.; Wang, B.; Li, S.; Wang, T.; Li, C.; Zhu, Y. In-depth comparison of morphology, microstructure, and pathway of char derived from sewage sludge and relevant model compounds. Waste Manag. 2020, 102, 432–440. [Google Scholar] [CrossRef]
- Akunna, J.C.; Clark, M. Performance of a granular-bed anaerobic baffled reactor (GRABBR) treating whisky distillery wastewater. Bioresour. Technol. 2000, 74, 257–261. [Google Scholar] [CrossRef]
- Baloch, M.I.; Akunna, J.C. Granular bed baffled reactor (Grabbr): Solution to a two-phase anaerobic digestion system. J. Environ. Eng. 2003, 129, 1015–1021. [Google Scholar] [CrossRef]
- Wang, D.; He, D.; Liu, X.; Xu, Q.; Yang, Q.; Li, X.; Liu, Y.; Wang, Q.; Ni, B.-J.; Li, H. The underlying mechanism of calcium peroxide pretreatment enhancing methane production from anaerobic digestion of waste activated sludge. Water Res. 2019, 164, 114934. [Google Scholar] [CrossRef] [PubMed]
- Nowak, O.; Franz, A.; Svardal, K.; Müller, V.; Kühn, V. Parameter estimation for activated sludge models with the help of mass balances. Water Sci. Technol. 1999, 39, 113–120. [Google Scholar] [CrossRef]
- Goyal, N.K. Tracing Pollutional Parameters through a UASB Plant, MS Technology Dissertation; Indian Institute of Technology Roorkee: Roorkee, India, 2003. [Google Scholar]
- Amoohadi, V.; Pasalari, H.; Esrafili, A.; Gholami, M.; Farzadkia, M. A comparative study on polyaluminum chloride (PACl) and Moringa oleifera (MO) chemically enhanced primary treatment (CEPT) in enhanced biogas production: Anaerobic digestion performance and the Gompertz model. RSC Adv. 2023, 13, 17121–17129. [Google Scholar] [CrossRef]
- Otieno, E.O.; Kiplimo, R.; Mutwiwa, U. Optimization of anaerobic digestion parameters for biogas production from pineapple wastes co-digested with livestock wastes. Heliyon 2023, 9, e14041. [Google Scholar] [CrossRef]
- Lyu, Z.; Shao, N.; Akinyemi, T.; Whitman, W.B. Methanogenesis. Curr. Biol. 2018, 28, R727–R732. [Google Scholar] [CrossRef] [Green Version]
Parameters | Influent | Effluent | Removal Efficiency (%) |
---|---|---|---|
pH | 7.42 ± 0.43 | 7.51 ± 0.31 | - |
Temperature(°C) | 30 ± 50 | 30 ± 56 | - |
Alkalinity(mg/L as CaCO3) | 372 ± 38 | 380 ± 25 | - |
VFA (mg/L) | 16 ± 4 | 12 ± 3 | - |
TSS (mg/L) | 391.30 ± 67.09 | 24.36 ± 2.72 | 93.47 ± 1.76 |
BOD (mg/L) | 336.16 ± 40.13 | 28.93 ± 3.41 | 91.30 ± 1.27 |
COD (mg/L) | 639.39 ± 98.83 | 57.40 ± 4.08 | 90.78 ± 1.68 |
VSS (mg/L) | 285.71 ± 46.9 | - | - |
TC (MPN/100 mL) | 5.1 × 108 ± 1.2 × 108 | 4.2 × 107 ± 1.2 × 107 | 91.76 ± 1.5 |
FC (CFU/100 mL) | 8.1 × 107 ± 2.1 × 107 | 6.6 × 106 ± 1.2 × 106 | 91.85 ± 1.6 |
E-coli (CFU/100 mL) | 8.5 × 106 ± 1.0 × 106 | 1.4 × 105 ± 1.9 × 105 | 83.52 ± 3.1 |
Average ± standard deviation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, S.P.; Sharma, M.K.; Pandey, S.; Hasnain, S.M.M.; Alqahtani, F.M.; Alessa, F.M. Enhanced Onsite Treatment of Domestic Wastewater Using an Integrated Settler-Based Biofilm Reactor with Efficient Biogas Generation. Sustainability 2023, 15, 12220. https://doi.org/10.3390/su151612220
Singh SP, Sharma MK, Pandey S, Hasnain SMM, Alqahtani FM, Alessa FM. Enhanced Onsite Treatment of Domestic Wastewater Using an Integrated Settler-Based Biofilm Reactor with Efficient Biogas Generation. Sustainability. 2023; 15(16):12220. https://doi.org/10.3390/su151612220
Chicago/Turabian StyleSingh, Surya Pratap, Meena Kumari Sharma, Shatrudhan Pandey, S. M. Mozammil Hasnain, Fahad M. Alqahtani, and Faisal M. Alessa. 2023. "Enhanced Onsite Treatment of Domestic Wastewater Using an Integrated Settler-Based Biofilm Reactor with Efficient Biogas Generation" Sustainability 15, no. 16: 12220. https://doi.org/10.3390/su151612220
APA StyleSingh, S. P., Sharma, M. K., Pandey, S., Hasnain, S. M. M., Alqahtani, F. M., & Alessa, F. M. (2023). Enhanced Onsite Treatment of Domestic Wastewater Using an Integrated Settler-Based Biofilm Reactor with Efficient Biogas Generation. Sustainability, 15(16), 12220. https://doi.org/10.3390/su151612220