Innovation-Led Environmental Sustainability in Vietnam—Towards a Green Future
Abstract
:1. Introduction
2. Environmental Performances in Vietnam
3. Literature Survey
3.1. Technological Innovation, Financial Innovation, and Energy Consumption
3.2. Research Gap in the Existing Literature and Ways to Address the Issue
3.3. Theoretical Development and Justification of the Study
4. Data and Methodology of the Study
4.1. Model Specification
4.2. Empirical Model Justification
4.3. Estimation Strategy
5. Empirical Model Estimation and Interpretation
6. Discussion
7. Conclusions and Policy Suggestions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- García, M.A.; Farías, E.B.; Mendoza, Y.F. Environmental Education Based on the Analysis of the Social Recovery Mechanisms Implemented Post-COVID. Rev. Gestão Soc. Ambient. 2023, 17, e03492. [Google Scholar] [CrossRef]
- Cui, L.; Weng, S.; Nadeem, A.M.; Rafique, M.Z.; Shahzad, U. Exploring the role of renewable energy, urbanization and structural change for environmental sustainability: Comparative analysis for practical implications. Renew. Energy 2022, 184, 215–224. [Google Scholar] [CrossRef]
- Arslan, H.M.; Khan, I.; Latif, M.I.; Komal, B.; Chen, S. Understanding the dynamics of natural resources rents, environmental sustainability, and sustainable economic growth: New insights from China. Environ. Sci. Pollut. Res. 2022, 29, 58746–58761. [Google Scholar] [CrossRef]
- Opoku, E.E.O.; Dogah, K.E.; Aluko, O.A. The contribution of human development towards environmental sustainability. Energy Econ. 2022, 106, 105782. [Google Scholar] [CrossRef]
- Liu, Y.; Sohail, M.T.; Khan, A.; Majeed, M.T. Environmental benefit of clean energy consumption: Can BRICS economies achieve environmental sustainability through human capital? Environ. Sci. Pollut. Res. 2022, 29, 6766–6776. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Adebayo, T.S.; Yue, X.-G.; Umut, A. The role of renewable energy consumption and financial development in environmental sustainability: Implications for the Nordic Countries. Int. J. Sustain. Dev. World Ecol. 2023, 30, 21–36. [Google Scholar] [CrossRef]
- Qamruzzaman, M.; Karim, S.; Kor, S. Does environmental degradation matter for poverty? Clarifying the nexus between FDI, environmental degradation, renewable energy, education, and poverty in Morocco and Tunisia. Environ. Sci. Pollut. Res. 2023, 30, 52872–52894. [Google Scholar] [CrossRef]
- Kartal, M.T.; Samour, A.; Adebayo, T.S.; Kılıç Depren, S. Do nuclear energy and renewable energy surge environmental quality in the United States? New insights from novel bootstrap Fourier Granger causality in quantiles approach. Prog. Nucl. Energy 2023, 155, 104509. [Google Scholar] [CrossRef]
- Karim, S.; Qamruzzaman, M.; Jahan, I. Nexus between Government Debt, Globalization, FDI, Renewable Energy, and Institutional Quality in Bangladesh. Int. J. Energy Econ. Policy 2023, 13, 443–456. [Google Scholar] [CrossRef]
- Yu, M.; Tsai, F.-S.; Jin, H.; Zhang, H. Digital finance and renewable energy consumption: Evidence from China. Financ. Innov. 2022, 8, 58. [Google Scholar] [CrossRef]
- Xiao, Z.; Qamruzzaman, M. Nexus between green investment and technological innovation in BRI nations: What is the role of environmental sustainability and domestic investment? Front. Environ. Sci. 2022, 10, 993264. [Google Scholar] [CrossRef]
- Jiakui, C.; Abbas, J.; Najam, H.; Liu, J.; Abbas, J. Green technological innovation, green finance, and financial development and their role in green total factor productivity: Empirical insights from China. J. Clean. Prod. 2023, 382, 135131. [Google Scholar] [CrossRef]
- Zhang, D.; Mohsin, M.; Taghizadeh-Hesary, F. Does green finance counteract the climate change mitigation: Asymmetric effect of renewable energy investment and R&D. Energy Econ. 2022, 113, 106183. [Google Scholar] [CrossRef]
- Wan, Y.; Sheng, N. Clarifying the relationship among green investment, clean energy consumption, carbon emissions, and economic growth: A provincial panel analysis of China. Environ. Sci. Pollut. Res. 2022, 29, 9038–9052. [Google Scholar] [CrossRef]
- Andriamahery, A.; Qamruzzaman, M. A Symmetry and Asymmetry Investigation of the Nexus Between Environmental Sustainability, Renewable Energy, Energy Innovation, and Trade: Evidence From Environmental Kuznets Curve Hypothesis in Selected MENA Countries. Front. Energy Res. 2022, 9, 778202. [Google Scholar] [CrossRef]
- Yi, S.; Raghutla, C.; Chittedi, K.R.; Fareed, Z. How economic policy uncertainty and financial development contribute to renewable energy consumption? The importance of economic globalization. Renew. Energy 2023, 202, 1357–1367. [Google Scholar] [CrossRef]
- Wang, F.; Wu, M. How does trade policy uncertainty affect China’s economy and energy? J. Environ. Manag. 2023, 330, 117198. [Google Scholar] [CrossRef] [PubMed]
- Hordofa, T.T.; Vu, H.M.; Maneengam, A.; Mughal, N.; Cong, P.T.; Liying, S. Does eco-innovation and green investment limit the CO2 emissions in China? Econ. Res. Ekon. Istraživanja 2023, 36, 634–649. [Google Scholar] [CrossRef]
- Fricke, E.C.; Ordonez, A.; Rogers, H.S.; Svenning, J.-C. The effects of defaunation on plants’ capacity to track climate change. Science 2022, 375, 210–214. [Google Scholar] [CrossRef] [PubMed]
- Cheng, M.; McCarl, B.; Fei, C. Climate Change and Livestock Production: A Literature Review. Atmosphere 2022, 13, 140. [Google Scholar] [CrossRef]
- Beillouin, D.; Cardinael, R.; Berre, D.; Boyer, A.; Corbeels, M.; Fallot, A.; Feder, F.; Demenois, J. A global overview of studies about land management, land-use change, and climate change effects on soil organic carbon. Glob. Chang. Biol. 2022, 28, 1690–1702. [Google Scholar] [CrossRef] [PubMed]
- Dale, V.H. The relationship between land-use change and climate change. Ecol. Appl. 1997, 7, 753–769. [Google Scholar] [CrossRef]
- Short, F.T.; Neckles, H.A. The effects of global climate change on seagrasses. Aquat. Bot. 1999, 63, 169–196. [Google Scholar] [CrossRef]
- Tol, R.S.J. The Economic Effects of Climate Change. J. Econ. Perspect. 2009, 23, 29–51. [Google Scholar] [CrossRef] [Green Version]
- Rej, S.; Bandyopadhyay, A.; Das, N.; Hossain, M.E.; Islam, M.S.; Bera, P.; Yeediballi, T. The asymmetric influence of environmental-related technological innovation on climate change mitigation: What role do FDI and renewable energy play? Environ. Sci. Pollut. Res. 2023, 30, 14916–14931. [Google Scholar] [CrossRef]
- Khan, I.; Han, L.; Zhong, R.; Bibi, R.; Khan, H. Income inequality, economic growth, renewable energy usage, and environmental degradation in the Belt and Road initiative countries: Dynamic panel estimation. Environ. Sci. Pollut. Res. 2023, 30, 57142–57154. [Google Scholar] [CrossRef]
- Ju, S.; Andriamahery, A.; Qamruzzaman, M.; Kor, S. Effects of financial development, FDI and good governance on environmental degradation in the Arab nation: Dose technological innovation matters? Front. Environ. Sci. 2023, 11, 1094976. [Google Scholar] [CrossRef]
- Huo, W.; Zaman, B.U.; Zulfiqar, M.; Kocak, E.; Shehzad, K. How do environmental technologies affect environmental degradation? Analyzing the direct and indirect impact of financial innovations and economic globalization. Environ. Technol. Innov. 2023, 29, 102973. [Google Scholar] [CrossRef]
- Ayad, H.; Sari-Hassoun, S.E.; Usman, M.; Ahmad, P. The impact of economic uncertainty, economic growth and energy consumption on environmental degradation in MENA countries: Fresh insights from multiple thresholds NARDL approach. Environ. Sci. Pollut. Res. 2023, 30, 1806–1824. [Google Scholar] [CrossRef]
- Udeagha, M.C.; Ngepah, N. Does trade openness mitigate the environmental degradation in South Africa? Environ. Sci. Pollut. Res. 2022, 29, 19352–19377. [Google Scholar] [CrossRef]
- Qamruzzaman, M. Does globalization augment environmental degradation through the channel energy and FDI? Evidence from BRI initiatives. World J. Adv. Res. Rev. 2022, 15, 037–054. [Google Scholar] [CrossRef]
- Musah, M.; Owusu-Akomeah, M.; Kumah, E.A.; Mensah, I.A.; Nyeadi, J.D.; Murshed, M.; Alfred, M. Green investments, financial development, and environmental quality in Ghana: Evidence from the novel dynamic ARDL simulations approach. Environ. Sci. Pollut. Res. 2022, 29, 31972–32001. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Khan, M.A.; Haider, A.; Uddin, M. Financial Development and Environmental Degradation: Promoting Low-Carbon Competitiveness in E7 Economies’ Industries. Int. J. Environ. Res. Public Health 2022, 19, 16336. [Google Scholar] [CrossRef]
- Aldieri, L.; Carlucci, F.; Vinci, C.P.; Yigitcanlar, T. Environmental innovation, knowledge spillovers and policy implications: A systematic review of the economic effects literature. J. Clean. Prod. 2019, 239, 118051. [Google Scholar] [CrossRef]
- Ekins, P. Eco-innovation for environmental sustainability: Concepts, progress and policies. Int. Econ. Econ. Policy 2010, 7, 267–290. [Google Scholar] [CrossRef]
- Mongo, M.; Belaïd, F.; Ramdani, B. The effects of environmental innovations on CO2 emissions: Empirical evidence from Europe. Environ. Sci. Policy 2021, 118, 1–9. [Google Scholar] [CrossRef]
- Saudi, M.H.M.; Sinaga, O.; Roespinoedji, D.; Ghani, E.K. The impact of technological innovation on energy intensity: Evidence from Indonesia. Int. J. Energy Econ. Policy 2019, 9, 11. [Google Scholar] [CrossRef] [Green Version]
- Sohag, K.; Begum, R.A.; Abdullah, S.M.S.; Jaafar, M. Dynamics of energy use, technological innovation, economic growth and trade openness in Malaysia. Energy 2015, 90, 1497–1507. [Google Scholar] [CrossRef]
- Wang, X.; Luo, Y. Has technological innovation capability addressed environmental pollution from the dual perspective of FDI quantity and quality? Evidence from China. J. Clean. Prod. 2020, 258, 120941. [Google Scholar] [CrossRef]
- Zhang, M.; Li, B.; Yin, S. Is technological innovation effective for energy saving and carbon emissions reduction? Evidence from China. IEEE Access 2020, 8, 83524–83537. [Google Scholar] [CrossRef]
- Sharif, A.; Kocak, S.; Khan, H.H.A.; Uzuner, G.; Tiwari, S. Demystifying the links between green technology innovation, economic growth, and environmental tax in ASEAN-6 countries: The dynamic role of green energy and green investment. Gondwana Res. 2023, 115, 98–106. [Google Scholar] [CrossRef]
- Liu, Z.; Lan, J.; Chien, F.; Sadiq, M.; Nawaz, M.A. Role of tourism development in environmental degradation: A step towards emission reduction. J. Environ. Manag. 2022, 303, 114078. [Google Scholar] [CrossRef] [PubMed]
- Ng, C.-F.; Yii, K.-J.; Lau, L.-S.; Go, Y.-H. Unemployment rate, clean energy, and ecological footprint in OECD countries. Environ. Sci. Pollut. Res. 2023, 30, 42863–42872. [Google Scholar] [CrossRef] [PubMed]
- Zhan, Y.; Wang, Y.; Zhong, Y. Effects of green finance and financial innovation on environmental quality: New empirical evidence from China. Econ. Res. Ekon. Istraživanja 2023, 36, 2164034. [Google Scholar] [CrossRef]
- Chen, S.; Chen, B. Energy efficiency and sustainability of complex biogas systems: A 3-level emergetic evaluation. Appl. Energy 2014, 115, 151–163. [Google Scholar] [CrossRef]
- Bilal, A.; Li, X.; Zhu, N.; Sharma, R.; Jahanger, A. Green Technology Innovation, Globalization, and CO2 Emissions: Recent Insights from the OBOR Economies. Sustainability 2022, 14, 236. [Google Scholar] [CrossRef]
- Ottonelli, J.; Lazaro, L.L.B.; Andrade, J.C.S.; Abram, S. Do solar photovoltaic clean development mechanism projects contribute to sustainable development in Latin America? Prospects for the Paris Agreement. Energy Policy 2023, 174, 113428. [Google Scholar] [CrossRef]
- Cheng, C.; Ren, X.; Dong, K.; Dong, X.; Wang, Z. How does technological innovation mitigate CO2 emissions in OECD countries? Heterogeneous analysis using panel quantile regression. J. Environ. Manag. 2021, 280, 111818. [Google Scholar] [CrossRef]
- Lin, B.; Zhu, J. Determinants of renewable energy technological innovation in China under CO2 emissions constraint. J. Environ. Manag. 2019, 247, 662–671. [Google Scholar] [CrossRef]
- Yii, K.-J.; Geetha, C. The Nexus between Technology Innovation and CO2 Emissions in Malaysia: Evidence from Granger Causality Test. Energy Procedia 2017, 105, 3118–3124. [Google Scholar] [CrossRef]
- Zhao, J.; Shahbaz, M.; Dong, X.; Dong, K. How does financial risk affect global CO2 emissions? The role of technological innovation. Technol. Forecast. Soc. Chang. 2021, 168, 120751. [Google Scholar] [CrossRef]
- Chen, Y.; Lee, C.-C. Does technological innovation reduce CO2 emissions? Cross-country evidence. J. Clean. Prod. 2020, 263, 121550. [Google Scholar] [CrossRef]
- Adebayo, T.S.; Oladipupo, S.D.; Adeshola, I.; Rjoub, H. Wavelet analysis of impact of renewable energy consumption and technological innovation on CO2 emissions: Evidence from Portugal. Environ. Sci. Pollut. Res. 2022, 29, 23887–23904. [Google Scholar] [CrossRef] [PubMed]
- Wen, Q.; Chen, Y.; Hong, J.; Chen, Y.; Ni, D.; Shen, Q. Spillover effect of technological innovation on CO2 emissions in China’s construction industry. Build. Environ. 2020, 171, 106653. [Google Scholar] [CrossRef]
- Akadiri, S.S.; Adebayo, T.S.; Nakorji, M.; Mwakapwa, W.; Inusa, E.M.; Izuchukwu, O.-O. Impacts of globalization and energy consumption on environmental degradation: What is the way forward to achieving environmental sustainability targets in Nigeria? Environ. Sci. Pollut. Res. 2022, 29, 60426–60439. [Google Scholar] [CrossRef]
- Adebayo, T.S.; Genç, S.Y.; Castanho, R.A.; Kirikkaleli, D. Do Public–Private Partnership Investment in Energy and Technological Innovation Matter for Environmental Sustainability in the East Asia and Pacific Region? An Application of a Frequency Domain Causality Test. Sustainability 2021, 13, 3039. [Google Scholar] [CrossRef]
- Fan, H.; Hossain, M.I. Technological innovation, trade openness, CO2 emission and economic growth: Comparative analysis between China and India. Int. J. Energy Econ. Policy 2018, 8, 240. [Google Scholar]
- Godil, D.I.; Yu, Z.; Sharif, A.; Usman, R.; Khan, S.A.R. Investigate the role of technology innovation and renewable energy in reducing transport sector CO2 emission in China: A path toward sustainable development. Sustain. Dev. 2021, 29, 694–707. [Google Scholar] [CrossRef]
- Lin, B.; Zhu, J. The role of renewable energy technological innovation on climate change: Empirical evidence from China. Sci. Total Environ. 2019, 659, 1505–1512. [Google Scholar] [CrossRef]
- Ali, W.; Abdullah, A.; Azam, M. The dynamic linkage between technological innovation and carbon dioxide emissions in Malaysia: An autoregressive distributed lagged bound approach. Int. J. Energy Econ. Policy 2016, 6, 389–400. [Google Scholar]
- De Stefano, M.C.; Montes-Sancho, M.J.; Busch, T. A natural resource-based view of climate change: Innovation challenges in the automobile industry. J. Clean. Prod. 2016, 139, 1436–1448. [Google Scholar] [CrossRef]
- Chishti, M.Z.; Sinha, A. Do the shocks in technological and financial innovation influence the environmental quality? Evidence from BRICS economies. Technol. Soc. 2022, 68, 101828. [Google Scholar] [CrossRef]
- Luo, Z. Green Finance and Sustainability: Environmentally-Aware Business Models and Technologies: Environmentally-Aware Business Models and Technologies; IGI Global: Hershey, PA, USA, 2011. [Google Scholar]
- Filho, W.L.; Emblen-Perry, K.; Molthan-Hill, P.; Mifsud, M.; Verhoef, L.; Azeiteiro, U.M.; Bacelar-Nicolau, P.; de Sousa, L.O.; Castro, P.; Beynaghi, A.; et al. Implementing Innovation on Environmental Sustainability at Universities Around the World. Sustainability 2019, 11, 3807. [Google Scholar] [CrossRef] [Green Version]
- Horsch, A.; Richter, S. Climate Change Driving Financial Innovation: The Case of Green Bonds. J. Struct. Financ. 2017, 23, 79–90. [Google Scholar] [CrossRef]
- Silvestre, B.S.; Ţîrcă, D.M. Innovations for sustainable development: Moving toward a sustainable future. J. Clean. Prod. 2019, 208, 325–332. [Google Scholar] [CrossRef]
- Umar, M.; Ji, X.; Kirikkaleli, D.; Xu, Q. COP21 Roadmap: Do innovation, financial development, and transportation infrastructure matter for environmental sustainability in China? J. Environ. Manag. 2020, 271, 111026. [Google Scholar] [CrossRef] [PubMed]
- Ernst, J.; Theimer, S. Evaluating the effects of environmental education programming on connectedness to nature. Environ. Educ. Res. 2011, 17, 577–598. [Google Scholar] [CrossRef]
- Littledyke, M.; Manolas, E. Education for sustainability pedagogy: Ideological and epistemological barriers and drivers. World Trends Educ. Sustain. Dev. 2011, 77–104. [Google Scholar]
- Thomas, R.L. The Right to Quality Education for Refugee Children Through Social Inclusion. J. Hum. Rights Soc. Work 2016, 1, 193–201. [Google Scholar] [CrossRef] [Green Version]
- Petersen, L.; Robert, L.; Yang, X.J.; Tilbury, D.M. Situational awareness, drivers trust in automated driving systems and secondary task performance. arXiv 2019, arXiv:1903.05251. [Google Scholar]
- Stevenson, K.T.; Peterson, M.N.; Bondell, H.D.; Moore, S.E.; Carrier, S.J. Overcoming skepticism with education: Interacting influences of worldview and climate change knowledge on perceived climate change risk among adolescents. Clim. Chang. 2014, 126, 293–304. [Google Scholar] [CrossRef]
- Rickinson, M. Researching and understanding environmental learning: Hopes for the next 10 years. Environ. Educ. Res. 2006, 12, 445–457. [Google Scholar] [CrossRef]
- Hungerford, H.R.; Volk, T.L. Changing learner behavior through environmental education. J. Environ. Educ. 1990, 21, 8–21. [Google Scholar] [CrossRef]
- Kopnina, H.; Meijers, F. Education for sustainable development (ESD). Int. J. Sustain. High. Educ. 2014, 15, 188–207. [Google Scholar] [CrossRef]
- Kopnina, H. Revisiting Education for Sustainable Development (ESD): Examining Anthropocentric Bias Through the Transition of Environmental Education to ESD. Sustain. Dev. 2014, 22, 73–83. [Google Scholar] [CrossRef]
- Zhou, R.; Lee, N. The Reception of Education for Sustainable Development (ESD) in China: A Historical Review. Sustainability 2022, 14, 4333. [Google Scholar] [CrossRef]
- Oe, H.; Yamaoka, Y.; Ochiai, H. A Qualitative Assessment of Community Learning Initiatives for Environmental Awareness and Behaviour Change: Applying UNESCO Education for Sustainable Development (ESD) Framework. Int. J. Environ. Res. Public Health 2022, 19, 3528. [Google Scholar] [CrossRef]
- Williams, C.C.; Chawla, L. Environmental identity formation in nonformal environmental education programs. Environ. Educ. Res. 2016, 22, 978–1001. [Google Scholar] [CrossRef]
- Liu, N.; Hong, C.; Sohail, M.T. Does financial inclusion and education limit CO2 emissions in China? A new perspective. Environ. Sci. Pollut. Res. 2022, 29, 18452–18459. [Google Scholar] [CrossRef]
- Li, X.; Ullah, S. Caring for the environment: How CO2 emissions respond to human capital in BRICS economies? Environ. Sci. Pollut. Res. 2022, 29, 18036–18046. [Google Scholar] [CrossRef]
- Zaman, Q.u.; Wang, Z.; Zaman, S.; Rasool, S.F. Investigating the nexus between education expenditure, female employers, renewable energy consumption and CO2 emission: Evidence from China. J. Clean. Prod. 2021, 312, 127824. [Google Scholar] [CrossRef]
- Eyuboglu, K.; Uzar, U. A new perspective to environmental degradation: The linkages between higher education and CO2 emissions. Environ. Sci. Pollut. Res. 2021, 28, 482–493. [Google Scholar] [CrossRef] [PubMed]
- Sarwar, S.; Streimikiene, D.; Waheed, R.; Mighri, Z. Revisiting the empirical relationship among the main targets of sustainable development: Growth, education, health and carbon emissions. Sustain. Dev. 2021, 29, 419–440. [Google Scholar] [CrossRef]
- Umaroh, R. Does education reduce CO2 emmisions? Empirical evidence of the environmental Kuznets curve in Indonesia. J. Rev. Glob. Econ. 2019, 8, 662–671. [Google Scholar] [CrossRef]
- Zafar, M.W.; Saleem, M.M.; Destek, M.A.; Caglar, A.E. The dynamic linkage between remittances, export diversification, education, renewable energy consumption, economic growth, and CO2 emissions in top remittance-receiving countries. Sustain. Dev. 2022, 30, 165–175. [Google Scholar] [CrossRef]
- Zhu, T.-T.; Peng, H.-R.; Zhang, Y.-J.; Liu, J.-Y. Does higher education development facilitate carbon emissions reduction in China. Appl. Econ. 2021, 53, 5490–5502. [Google Scholar] [CrossRef]
- Alkhateeb, T.T.Y.; Mahmood, H.; Altamimi, N.N.; Furqan, M. Role of education and economic growth on the CO2 emissions in Saudi Arabia. Entrep. Sustain. 2020, 8, 195–209. [Google Scholar] [CrossRef]
- Porter, M.E.; van der Linde, C. Toward a New Conception of the Environment-Competitiveness Relationship. J. Econ. Perspect. 1995, 9, 97–118. [Google Scholar] [CrossRef] [Green Version]
- Sovacool, B.K. How long will it take? Conceptualizing the temporal dynamics of energy transitions. Energy Res. Soc. Sci. 2016, 13, 202–215. [Google Scholar] [CrossRef] [Green Version]
- van der Heijden, J. Voluntary environmental governance arrangements. Environ. Politics 2012, 21, 486–509. [Google Scholar] [CrossRef]
- Loorbach, D.; Wijsman, K. Business transition management: Exploring a new role for business in sustainability transitions. J. Clean. Prod. 2013, 45, 20–28. [Google Scholar] [CrossRef]
- Barth, M.; Rieckmann, M. Academic staff development as a catalyst for curriculum change towards education for sustainable development: An output perspective. J. Clean. Prod. 2012, 26, 28–36. [Google Scholar] [CrossRef] [Green Version]
- Moon, H.-C.; Parc, J.; Yim, S.H.; Park, N. An Extension of Porter and Kramer’s Creating Shared Value (CSV): Reorienting Strategies and Seeking International Cooperation. J. Int. Area Stud. 2011, 18, 49–64. [Google Scholar]
- Xinmin, W.; Hui, P.; Hafeez, M.; Aziz, B.; Akbar, M.W.; Mirza, M.A. The nexus of environmental degradation and technology innovation and adoption: An experience from dragon. Air Qual. Atmos. Health 2020, 13, 1119–1126. [Google Scholar] [CrossRef]
- Lin, J.; Qamruzzaman, M. The impact of environmental disclosure and the quality of financial disclosure and IT adoption on firm performance: Does corporate governance ensure sustainability? Front. Environ. Sci. 2023, 11, 1002357. [Google Scholar] [CrossRef]
- Creutzig, F.; Agoston, P.; Goldschmidt, J.C.; Luderer, G.; Nemet, G.; Pietzcker, R.C. The underestimated potential of solar energy to mitigate climate change. Nat. Energy 2017, 2, 17140. [Google Scholar] [CrossRef]
- Hertwich, E.G.; Gibon, T.; Bouman, E.A.; Arvesen, A.; Suh, S.; Heath, G.A.; Bergesen, J.D.; Ramirez, A.; Vega, M.I.; Shi, L. Integrated life-cycle assessment of electricity-supply scenarios confirms global environmental benefit of low-carbon technologies. Proc. Natl. Acad. Sci. USA 2015, 112, 6277–6282. [Google Scholar] [CrossRef]
- Dickey, D.A.; Fuller, W.A. Distribution of the Estimators for Autoregressive Time Series with a Unit Root. J. Am. Stat. Assoc. 1979, 74, 427–431. [Google Scholar] [CrossRef]
- Phillips, P.C.; Perron, P. Testing for a unit root in time series regression. Biometrika 1988, 75, 335–346. [Google Scholar] [CrossRef]
- Ng, S.; Perron, P. LAG length selection and the construction of unit root tests with good size and power. Econometrica 2001, 69, 1519–1554. [Google Scholar] [CrossRef] [Green Version]
- Kwiatkowski, D.; Phillips, P.; Schmidt, P.; Shin, Y. Testing the null hypothesis of stationarity against the alternative of a unit root: How sure are we that economic time series have a unit root? J. Econom. 1992, 54, 159–178. [Google Scholar]
- Narayan, P.K.; Popp, S. A new unit root test with two structural breaks in level and slope at unknown time. J. Appl. Stat. 2010, 37, 1425–1438. [Google Scholar] [CrossRef]
- Bayer, C.; Hanck, C. Combining non-cointegration tests. J. Time Ser. Anal. 2013, 34, 83–95. [Google Scholar] [CrossRef]
- Engle, R.F.; Granger, C.W. Co-integration and error correction: Representation, estimation, and testing. Econom. J. Econom. Soc. 1987, 55, 251–276. [Google Scholar] [CrossRef]
- Johansen, S. Likelihood-Based Inference in Cointegrated Vector Autoregressive Models; Oxford University Press: Oxford, UK, 1995. [Google Scholar]
- Peter Boswijk, H. Testing for an unstable root in conditional and structural error correction models. J. Econom. 1994, 63, 37–60. [Google Scholar] [CrossRef]
- Banerjee, A.; Dolado, J.; Mestre, R. Error-correction mechanism tests for cointegration in a single-equation framework. J. Time Ser. Anal. 1998, 19, 267–283. [Google Scholar]
- McNown, R.; Sam, C.Y.; Goh, S.K. Bootstrapping the autoregressive distributed lag test for cointegration. Appl. Econ. 2018, 50, 1509–1521. [Google Scholar] [CrossRef]
- Pesaran, M.H.; Shin, Y.; Smith, R.J. Bounds testing approaches to the analysis of level relationships. J. Appl. Econom. 2001, 16, 289–326. [Google Scholar] [CrossRef]
- Qamruzzaman, M.; Jianguo, W. Investigation of the asymmetric relationship between financial innovation, banking sector development, and economic growth. Quant. Financ. Econ. 2018, 2, 952–980. [Google Scholar] [CrossRef]
- Shahbaz, M.; Nasir, M.A.; Roubaud, D. Environmental degradation in France: The effects of FDI, financial development, and energy innovations. Energy Econ. 2018, 74, 843–857. [Google Scholar] [CrossRef] [Green Version]
- Shin, Y.; Yu, B.; Greenwood-Nimmo, M. Modelling asymmetric cointegration and dynamic multipliers in a nonlinear ARDL framework. In Festschrift in Honor of Peter Schmidt; Springer: New York, NY, USA, 2014; pp. 281–314. [Google Scholar]
- Elliott, G.; Rothenberg, T.J.; Stock, J. Efficient Tests for an Autoregressive Unit Root. Econometrica 1996, 64, 813–836. [Google Scholar] [CrossRef] [Green Version]
- Makki, S.S.; Somwaru, A. Impact of foreign direct investment and trade on economic growth: Evidence from developing countries. Am. J. Agric. Econ. 2004, 86, 795–801. [Google Scholar]
- Narayan, P.K. Reformulating Critical Values for the Bounds F-Statistics Approach to Cointegration: An Application to the Tourism Demand Model for Fiji; Monash University: Melbourne, Australia, 2004; pp. 1–40. [Google Scholar]
- Goh, S.K.; Sam, C.Y.; McNown, R. Re-examining foreign direct investment, exports, and economic growth in asian economies using a bootstrap ARDL test for cointegration. J. Asian Econ. 2017, 51, 12–22. [Google Scholar] [CrossRef]
- Nepal, R.; Paija, N.; Tyagi, B.; Harvie, C. Energy security, economic growth and environmental sustainability in India: Does FDI and trade openness play a role? J. Environ. Manag. 2021, 281, 111886. [Google Scholar] [CrossRef]
- Chien, F.; Ajaz, T.; Andlib, Z.; Chau, K.Y.; Ahmad, P.; Sharif, A. The role of technology innovation, renewable energy and globalization in reducing environmental degradation in Pakistan: A step towards sustainable environment. Renew. Energy 2021, 177, 308–317. [Google Scholar] [CrossRef]
- Hakimi, A.; Hamdi, H. Trade liberalization, FDI inflows, environmental quality and economic growth: A comparative analysis between Tunisia and Morocco. Renew. Sustain. Energy Rev. 2016, 58, 1445–1456. [Google Scholar] [CrossRef] [Green Version]
- Su, Y.; Gao, X. Revealing the effectiveness of green technological progress and financial innovation on green economic growth: The role of environmental regulation. Environ. Sci. Pollut. Res. 2022, 29, 72991–73000. [Google Scholar] [CrossRef]
- Shayanmehr, S.; Radmehr, R.; Ali, E.B.; Ofori, E.K.; Adebayo, T.S.; Gyamfi, B.A. How do environmental tax and renewable energy contribute to ecological sustainability? New evidence from top renewable energy countries. Int. J. Sustain. Dev. World Ecol. 2023, 1–21. [Google Scholar] [CrossRef]
- Fakher, H.A.; Ahmed, Z.; Acheampong, A.O.; Nathaniel, S.P. Renewable energy, nonrenewable energy, and environmental quality nexus: An investigation of the N-shaped Environmental Kuznets Curve based on six environmental indicators. Energy 2023, 263, 125660. [Google Scholar] [CrossRef]
- Zhou, X.; Jia, M.; Altuntaş, M.; Kirikkaleli, D.; Hussain, M. Transition to renewable energy and environmental technologies: The role of economic policy uncertainty in top five polluted economies. J. Environ. Manag. 2022, 313, 115019. [Google Scholar] [CrossRef]
- Kirikkaleli, D.; Sofuoğlu, E.; Ojekemi, O. Does patents on environmental technologies matter for the ecological footprint in the USA? Evidence from the novel Fourier ARDL approach. Geosci. Front. 2023, 14, 101564. [Google Scholar] [CrossRef]
- Hassan, A.S. Modeling the linkage between coal mining and ecological footprint in South Africa: Does technological innovation matter? Miner. Econ. 2023, 36, 123–138. [Google Scholar] [CrossRef]
- Ahmad, M.; Jiang, P.; Majeed, A.; Umar, M.; Khan, Z.; Muhammad, S. The dynamic impact of natural resources, technological innovations and economic growth on ecological footprint: An advanced panel data estimation. Resour. Policy 2020, 69, 101817. [Google Scholar] [CrossRef]
- Kihombo, S.; Ahmed, Z.; Chen, S.; Adebayo, T.S.; Kirikkaleli, D. Linking financial development, economic growth, and ecological footprint: What is the role of technological innovation? Environ. Sci. Pollut. Res. 2021, 28, 61235–61245. [Google Scholar] [CrossRef] [PubMed]
- Yasmeen, R.; Zhaohui, C.; Hassan Shah, W.U.; Kamal, M.A.; Khan, A. Exploring the role of biomass energy consumption, ecological footprint through FDI and technological innovation in B&R economies: A simultaneous equation approach. Energy 2022, 244, 122703. [Google Scholar] [CrossRef]
- Allen, F. Trends in Financial Innovation and their Welfare Impact: An Overview. Eur. Financ. Manag. 2012, 18, 493–514. [Google Scholar] [CrossRef]
- Tamazian, A.; Chousa, J.P.; Vadlamannati, K.C. Does higher economic and financial development lead to environmental degradation: Evidence from BRIC countries. Energy Policy 2009, 37, 246–253. [Google Scholar] [CrossRef]
- Adams, S.; Klobodu, E.K.M. Financial development and environmental degradation: Does political regime matter? J. Clean. Prod. 2018, 197, 1472–1479. [Google Scholar] [CrossRef]
- Li, R.; Wang, X.; Wang, Q. Does renewable energy reduce ecological footprint at the expense of economic growth? An empirical analysis of 120 countries. J. Clean. Prod. 2022, 346, 131207. [Google Scholar] [CrossRef]
- Sahoo, M.; Sethi, N. The intermittent effects of renewable energy on ecological footprint: Evidence from developing countries. Environ. Sci. Pollut. Res. 2021, 28, 56401–56417. [Google Scholar] [CrossRef]
- Ansari, M.A.; Haider, S.; Masood, T. Do renewable energy and globalization enhance ecological footprint: An analysis of top renewable energy countries? Environ. Sci. Pollut. Res. 2021, 28, 6719–6732. [Google Scholar] [CrossRef]
- Ahmad, N.; Youjin, L.; Žiković, S.; Belyaeva, Z. The effects of technological innovation on sustainable development and environmental degradation: Evidence from China. Technol. Soc. 2023, 72, 102184. [Google Scholar] [CrossRef]
- Adebayo, T.S.; Kirikkaleli, D. Impact of renewable energy consumption, globalization, and technological innovation on environmental degradation in Japan: Application of wavelet tools. Environ. Dev. Sustain. 2021, 23, 16057–16082. [Google Scholar] [CrossRef]
- Qamruzzaman, M.; Kler, R. Do Clean Energy and Financial Innovation Induce SME Performance? Clarifying the Nexus between Financial Innovation, Technological Innovation, Clean Energy, Environmental Degradation, and SMEs Performance in Bangladesh. Int. J. Energy Econ. Policy 2023, 13, 313–324. [Google Scholar] [CrossRef]
- Bo, L.; Yunbao, X.; Chengbo, D.; Chao, T.; Guangde, Z.; Usman, A. Financial deepening, financial innovation, and education as new determinants of green growth in China. Environ. Sci. Pollut. Res. 2023, 30, 23568–23577. [Google Scholar] [CrossRef]
- Liang, Z.; Qamruzzaman, M. An Asymmetric Investigation of the Nexus Between Economic Policy Uncertainty, Knowledge Spillover, Climate Change, and Green Economy: Evidence From BRIC Nations. Front. Environ. Sci. 2022, 9, 682. [Google Scholar] [CrossRef]
- Gyimah, J.; Yao, X.; Tachega, M.A.; Hayford, I.S.; Opoku-Mensah, E. Renewable energy consumption and economic growth: New evidence from Ghana. Energy 2022, 248, 123559. [Google Scholar] [CrossRef]
- Khobai, H. Renewable energy consumption, poverty alleviation and economic growth nexus in South Africa: ARDL bounds test approach. Int. J. Energy Econ. Policy 2021, 11, 450–459. [Google Scholar] [CrossRef]
- Alola, A.A.; Alola, U.V.; Akadiri, S.S. Renewable energy consumption in Coastline Mediterranean Countries: Impact of environmental degradation and housing policy. Environ. Sci. Pollut. Res. 2019, 26, 25789–25801. [Google Scholar] [CrossRef]
- Shafiei, S.; Salim, R.A. Non-renewable and renewable energy consumption and CO2 emissions in OECD countries: A comparative analysis. Energy Policy 2014, 66, 547–556. [Google Scholar] [CrossRef] [Green Version]
- Schroeder, P.M.; Chapman, R.B. Renewable energy leapfrogging in China’s urban development? Current status and outlook. Sustain. Cities Soc. 2014, 11, 31–39. [Google Scholar] [CrossRef]
- Liu, J.; Feng, T.; Yang, X. The energy requirements and carbon dioxide emissions of tourism industry of Western China: A case of Chengdu city. Renew. Sustain. Energy Rev. 2011, 15, 2887–2894. [Google Scholar] [CrossRef]
- Tran, T.A. Effect of ship loading on marine diesel engine fuel consumption for bulk carriers based on the fuzzy clustering method. Ocean Eng. 2020, 207, 107383. [Google Scholar] [CrossRef]
- Bekun, F.V.; Gyamfi, B.A.; Onifade, S.T.; Agboola, M.O. Beyond the environmental Kuznets Curve in E7 economies: Accounting for the combined impacts of institutional quality and renewables. J. Clean. Prod. 2021, 314, 127924. [Google Scholar] [CrossRef]
- Lyman, S.N.; Mansfield, M.L.; Tran, H.N.Q.; Evans, J.D.; Jones, C.; O’Neil, T.; Bowers, R.; Smith, A.; Keslar, C. Emissions of organic compounds from produced water ponds I: Characteristics and speciation. Sci. Total Environ. 2018, 619, 896–905. [Google Scholar] [CrossRef] [Green Version]
- Mahbub, T.; Ahammad, M.F.; Tarba, S.Y.; Mallick, S.M.Y. Factors encouraging foreign direct investment (FDI) in the wind and solar energy sector in an emerging country. Energy Strategy Rev. 2022, 41, 100865. [Google Scholar] [CrossRef]
- Akpanke, T.A.; Deka, A.; Ozdeser, H.; Seraj, M. Does foreign direct investment promote renewable energy use? An insight from West African countries. Renew. Energy Focus 2023, 44, 124–131. [Google Scholar] [CrossRef]
- Wei, X.; Mohsin, M.; Zhang, Q. Role of foreign direct investment and economic growth in renewable energy development. Renew. Energy 2022, 192, 828–837. [Google Scholar] [CrossRef]
- Rehman, F.U.; Noman, A.A. China’s outward foreign direct investment and bilateral export sophistication: A cross countries panel data analysis. China Financ. Rev. Int. 2022, 12, 180–197. [Google Scholar] [CrossRef]
- Pantelopoulos, G. Foreign direct investment vs. Foreign portfolio investment with respect to human capital: The impact of education on the host OECD Countries. Appl. Econ. Lett. 2022, 30, 2060–2068. [Google Scholar] [CrossRef]
- Sun, Y.; Guan, W.; Razzaq, A.; Shahzad, M.; An, N.B. Transition towards ecological sustainability through fiscal decentralization, renewable energy and green investment in OECD countries. Renew. Energy 2022, 190, 385–395. [Google Scholar] [CrossRef]
- Jan, A.; Xin-gang, Z.; Babar, S.F.; Khan, M.K. Role of financial development, foreign direct investment inflow, innovation in environmental degradation in Pakistan with dynamic ARDL simulation model. Environ. Sci. Pollut. Res. 2023, 30, 49381–49396. [Google Scholar] [CrossRef] [PubMed]
At Level | First Difference | ||||||||
---|---|---|---|---|---|---|---|---|---|
Variable | ADF | GF-DLS | PP | KPSS | Variables | ADF | GF-DLS | PP | KPSS |
Panel A: Conventional Unit root test | |||||||||
CO2 | −2.4042 | −2.0385 | −1.2126 | 0.8732 *** | CO | −6.9243 *** | −5.6579 *** | −8.5408 *** | 0.0198 |
EF | −0.3624 | −0.7061 | −1.1837 | 0.6456 *** | EF | −8.3393 *** | −8.9472 *** | −8.4434 *** | 0.0208 |
TI | −1.7684 | −1.1311 | −0.6687 | 0.8498 *** | TI | −7.3656 *** | −7.6597 *** | −9.2171 *** | 0.0192 |
FI | −1.8437 | −1.3705 | −1.4588 | 0.7882 *** | FI | −8.2728 *** | −9.2303 *** | −9.396 *** | 0.0205 |
CE | −0.3216 | −0.2554 | −0.8351 | 0.6297 *** | CE | −7.633 *** | −6.38 *** | −8.5678 *** | 0.0186 |
EDU | −1.9264 | −1.4848 | −0.6059 | 0.6295 *** | EDU | −7.7712 *** | −8.9789 *** | −7.4112 *** | 0.0185 |
FDI | −1.4267 | −2.5233 | −2.0226 | 0.5654 *** | FDI | −5.7839 *** | −7.5467 *** | −7.6817 *** | 0.0213 |
Panel B: Ng-Perron unit root test | |||||||||
MZa | MZt | MSB | MPT | Variables | MZa | MZt | MSB | MPT | |
CO2 | −1.8987 | −0.9589 | 0.3689 | 7.5523 | CO2 | −18.858 | −4.1192 | 0.136 | 4.6012 |
EF | −2.6426 | −1.1105 | 0.2823 | 8.3441 | EF | −20.754 | −4.1986 | 0.1511 | 3.1897 |
TI | −2.3965 | −1.0219 | 0.2412 | 7.4968 | TI | −24.497 | −3.8082 | 0.1566 | 3.4917 |
FI | −2.5726 | −1.4121 | 0.3382 | 8.361 | FI | −19.875 | −5.4378 | 0.1456 | 3.4817 |
CE | −1.9617 | −1.5745 | 0.2465 | 8.2786 | CE | −18.974 | −4.1651 | 0.1597 | 4.772 |
EDU | −1.7421 | −0.7019 | 0.2958 | 7.7555 | EDU | −19.32 | −5.1594 | 0.1462 | 4.0747 |
FDI | −2.0269 | −1.2859 | 0.2471 | 7.928 | FDI | −25.265 | −5.4774 | 0.1298 | 5.1464 |
Panel C: Results of Narayan unit root test with a structural break | |||||||||
Model 1 | Model 2 | ||||||||
T-statistic | Time Break | T-statistic | Time Break | ||||||
CO2 | −2.7686 | 1998:2002 | −2.9543 | 2000:2015 | |||||
EF | −2.7098 | 2004:2000 | −2.0563 | 2000:2015 | |||||
TI | −2.8683 | 2007:2010 | −2.6312 | 2006:2001 | |||||
FI | −3.223 | 1999:2015 | −2.5651 | 2004:2006 | |||||
CE | −3.0864 | 2009:2019 | −1.7008 | 2008:2005 | |||||
EDU | −2.4138 | 2004:2010 | −2.577 | 2008:2008 | |||||
FDI | −3.1011 | 1998:2016 | −3.0351 | 1997:2000 | |||||
First difference | |||||||||
CO2‛ | −8.4734 *** | 1997:2017 | −5.6586 *** | 2000:2015 | |||||
EF‛ | −5.8691 *** | 1995:2017 | −6.4499 *** | 1997:2004 | |||||
TI‛ | −4.621 *** | 2002:2004 | −7.1044 *** | 2001:2010 | |||||
FI‛ | −5.788 *** | 2000:2014 | −7.0295 *** | 1998:2001 | |||||
CE‛ | −5.6249 *** | 1996:2006 | −9.2601 *** | 2009:2001 | |||||
EDU‛ | −7.7578 *** | 1997:2000 | −9.3632 *** | 2003:2007 | |||||
FDI‛ | −5.1831 *** | 2009:2002 | −6.6623 *** | 2001:2010 |
Panel A: Bayer–Hanck Combined Cointegration without Structural Break | ||
---|---|---|
Test | Model 1 | Model 2 |
EG-JOH | 14.815 | 24.118 |
EG-JOH-BO-BDM | 14.476 | 39.585 |
Panel B: Maki Cointegration with Structural Break | ||
Model 1 | Model 2 | |
Level shift with trend | −9.0286 [1991:2004:2016] | −7.1868 [2002:2008:2012] |
Regime shifts | −13.0048 [1992:2003:2007] | −10.3548 [1990:2009:2012] |
Regime shifts with trend | −16.3914 [1996:2008:2015] | −10.8395 [1996:2003:2007] |
Long-Run Cointegration | Foverall | tDV | FIDV | |||
---|---|---|---|---|---|---|
ARDL | 9.783 *** | −7.062 *** | 6.364 *** | |||
NARDL | 11.305 *** | −6.004 *** | 7.459 *** | |||
Critical value | 1% | 5% | 10% | |||
I(0) | I(1) | I(0) | I(1) | I(0) | I(1) | |
Pesaran, Shin, and Smith [82] | 5.095 | 6.77 | 3.673 | 5.002 | 3.087 | 4.277 |
Narayan [96] | −3.96 | −5.13 | −3.41 | −4.52 | −3.13 | −4.21 |
Sam, McNown, and Goh [92] | 3.58 | 5.91 | 2.46 | 4.18 | 2 | 3.47 |
Symmetric | Asymmetric | ||||||
---|---|---|---|---|---|---|---|
Model: ED|TI, FI, CE, EDU, FDI | Model: ED|TI+, TI−, FI+, FI−, CE+, CE−, EDU, FDI | ||||||
Panel A: Long-run coefficients | |||||||
TI | −0.2181 *** | 0.0293 | −7.4432 | TI+ | −0.0993 ** | 0.0397 | −2.5015 |
FI | −0.1013 *** | 0.0164 | −6.142 | TI | −0.5893 *** | 0.0354 | −16.6289 |
REC | −0.2307 *** | 0.0151 | −15.2305 | FI | −0.0587 *** | 0.0032 | −18.2241 |
EDU | −0.0723 *** | 0.0107 | −6.7231 | FI | −0.0367 *** | 0.0071 | −5.155 |
FDI | −0.1091 *** | 0.0082 | −13.2723 | CE | −0.0303 *** | 0.0027 | −10.9461 |
CE | −0.0236 *** | 0.0028 | −8.2996 | ||||
FDI | −0.1023 *** | 0.0096 | −10.6223 | ||||
EDU | −0.0738 *** | 0.0068 | −10.7417 | ||||
Panel B: Short-run coefficients | |||||||
∆ED(−1) * | −0.0567 * | 0.0406 | −1.3947 | TI | 0.0014 * | 0.0007 | 1.8072 |
∆TI | −0.0123 | 0.0186 | 0.6641 | TI | −0.0236 *** | 0.0028 | −8.2996 |
∆FI | −0.0157 *** | 0.0011 | −14.2168 | FI | −0.0005 | 0.0007 | −0.6464 |
∆REC | 0.0013 * | 0.0008 | 1.5942 | FI | 0.0171 ** | 0.0035 | 4.8695 |
∆EDU | 0.0019 | 0.0048 | 0.4022 | CE | −0.0111 * | 0.0039 | −2.8461 |
C | 8.7781 *** | 1.7521 | 5.0098 | CE | −0.0616 *** | 0.0096 | −6.4166 |
EDU | −0.0186 ** | 0.0052 | −3.5357 | ||||
FDI | −0.0001 | 0.0013 | −0.1105 | ||||
COINTEQ * | −0.3567 *** | 0.0057 | −61.6115 | −0.2993 *** | 0.0281 | −13.122 | |
Symmetry test and diagnostic test | |||||||
11.591 | |||||||
5.223 | |||||||
7.909 | |||||||
9.085 | |||||||
10.128 | |||||||
5.781 | |||||||
0.798 | 0.854 | ||||||
0.812 | 0.656 | ||||||
0.637 | 0.64 | ||||||
0.509 | 0.841 |
Model: EF|TI, FI, CE, EDU, FDI | Model: EF|TI+, TI−, FI+, FI−, CE+, CE−, EDU, FDI | ||||||
---|---|---|---|---|---|---|---|
Panel A: Long-run coefficients | |||||||
TI | −0.0748 | 0.0054 | −13.8098 | TI+ | −0.1776 | 0.0081 | −22.0202 |
FI | −0.1036 | 0.0039 | −26.2759 | TI− | −0.1544 | 0.0059 | −26.0597 |
REC | −0.1156 | 0.0056 | −20.2997 | FI+ | −0.1442 | 0.0091 | −15.76162 |
EDU | −0.1397 | 0.0108 | −12.8747 | FI− | −0.0297 | 0.0051 | −5.9348 |
FDI | REC+ | −0.0853 | 0.0075 | −11.3479 | |||
REC− | −0.0389 | 0.0081 | −4.8474 | ||||
FDI | −0.0385 | 0.0091 | −4.1922 | ||||
EDU | −0.0304 | 0.0031 | −9.678526 | ||||
Panel B: Short-run coefficients | |||||||
▲TI | −0.0491 | 0.0081 | −6.0493 | ▲TI+ | −0.0289 | 0.0088 | −3.284 |
▲FI | −0.0257 | 0.0034 | −7.5588 | ▲TI− | −0.0458 | 0.0082 | −5.5853 |
▲CE | −0.0207 | 0.0099 | −2.0909 | ▲FI+ | −0.0387 | 0.0059 | −6.5593 |
▲EDU | 0.0431 | 0.0043 | 10.0232 | ▲FI− | −0.0496 | 0.0021 | −23.619 |
▲FDI | ▲CE+ | −0.0275 | 0.0035 | −7.8571 | |||
▲CE− | −0.0432 | 0.005 | −8.64 | ||||
▲FDI | 0.0581 | 0.0034 | 17.0882 | ||||
▲EDU | 0.0693 | 0.0116 | 5.9741 | ||||
ect. | −0.55294 | 0.1568 | −3.52638 | −0.37258 | 0.003941 | −94.5384 | |
Panel C: Symmetry and residual diagnostic test | |||||||
11.833 | |||||||
7.29 | |||||||
11.616 | |||||||
8.7 | |||||||
4.262 | |||||||
3.719 | |||||||
0.669 | 0.706 | ||||||
0.553 | 0.722 | ||||||
0.836 | 0.803 | ||||||
0.571 | 0.734 |
0 | ED | TI | FI | CE | EDU | FDI | Causalities |
---|---|---|---|---|---|---|---|
Panel A: ED measured by carbon emission | |||||||
CO2 | 13.416 *** | 5.033 * | 6.462 ** | 3.643 | 6.953 ** | FI CO2; CE→CO2; FDI→CO2; CO2←→TI; FI→TI; EDU←→TI; FDI→TI; FI→CE; CO2→EDU; FI→EDU; FDI→EDU; CE→FDI | |
TI | 6.761 ** | 6.074 ** | 3.817 | 6.867 ** | 4.25 * | ||
FI | 2.054 | 3.068 | 1.443 | 0.376 | 0.822 | ||
CE | 0.529 | 3.781 | 5.744 * | 2.362 | 0.951 | ||
EDU | 5.467 * | 5.582 * | 5.645 * | 2.387 | 4.146 * | ||
FDI | 2.69 | 2.274 | 3.302 | 5.385 * | 0.726 | ||
Panel B: ED measured by ecological footprint | |||||||
ED | 4.811 * | 5.033 * | 4.469 * | 0.335 | 4.806 * | TI←→EF; FI→EF; CE←→EF; FDI←→EF; CE→TI; EDU←→TI; FDI→TI; TI→FI; FDI→FI; EDU←→CE; FDI←→CE; EF→EDU; FDI←→EDU; | |
TI | 6.73 ** | 0.214 | 6.776 ** | 5.949 * | 4.791 * | ||
FI | 3.881 | 6.715 ** | 0.994 | 0.877 | 6.284 ** | ||
CE | 5.476 * | 3.645 | 1.901 | 5.374 * | 4.802 * | ||
EDU | 5.376 * | 4.115 * | 3.067 | 5.032 * | 4.993 * | ||
FDI | 5.69 * | 3.103 | 1.788 | 7.073 ** | 6.219 ** |
ES | TI+ | TI− | FI+ | FI− | CE+ | CE− | FDI | EDU | |
---|---|---|---|---|---|---|---|---|---|
Panel A: Environmental sustainability measured by CO2 | |||||||||
ES | - | 6.7419 *** | 7.5826 *** | 0.9108 | 5.9693 ** | 1.9211 | 4.5703 * | 4.8128 * | 4.775 * |
TI+ | 1.5359 | - | 5.5661 ** | 0.8671 | 6.1808 *** | 7.3993 *** | 6.2088 *** | 6.1815 *** | 5.1796 ** |
TI− | 6.6827 *** | 0.7579 | - | 5.7994 ** | 4.3911 * | 5.7573 ** | 7.1613 *** | 3.8852 * | 6.5962 *** |
FI+ | 0.5176 | 1.155 | 5.2989 ** | - | 1.9533 | 1.4042 | 2.4339 | 7.936 *** | 6.8531 *** |
FI− | 2.2181 | 4.3001 * | 4.751 * | 3.2006 | - | 3.5745 * | 3.7951 * | 0.9144 | 0.2465 |
CE+ | 4.3988 * | 5.853 ** | 3.4373 | 3.0796 | 0.329 | - | 5.9535 ** | 3.3949 | 1.8804 |
CE− | 0.6903 | 6.7378 *** | 0.9427 | 5.7528 ** | 1.5598 | 6.5467 *** | - | 3.3682 | 2.5663 |
FDI | 5.3506 ** | 7.7819 *** | 2.4717 | 3.536 * | 0.1567 | 7.443 *** | 3.0037 | - | 4.959 * |
EDU | 7.3585 *** | 4.8307 * | 7.7313 *** | 5.3544 ** | 1.7294 | 0.7644 | 5.7838 ** | 2.536 | - |
Panel B: Environmental sustainability measured by ecological footprint | |||||||||
ES | - | 6.9932 *** | 7.6963 *** | 5.6839 ** | 5.4891 ** | 6.7035 *** | 3.5618 * | 3.8231 * | 7.0076 *** |
TI+ | 4.8353 * | - | 3.7531 * | 3.9801 * | 0.8566 | 7.2144 *** | 5.0529 ** | 5.0638 ** | 0.6783 |
TI− | 4.7022 * | 5.9307 ** | - | 2.7987 | 6.2543 *** | 2.6806 | 0.1269 | 2.1163 | 4.5456 * |
FI+ | 0.0837 | 7.591 *** | 2.9073 | - | 7.4715 *** | 0.0772 | 3.9781 * | 2.1207 | 0.2533 |
FI− | 5.9561 ** | 1.3467 | 5.0376 ** | 5.0204 ** | - | 0.8501 | 3.3874 | 4.6272 * | 4.2668 * |
CE+ | 1.6464 | 1.6238 | 7.3523 *** | 6.9675 *** | 6.4949 *** | - | 6.5234 *** | 3.0099 | 1.6781 |
CE− | 3.1237 | 3.8114 * | 6.9168 *** | 2.3026 | 5.73 ** | 5.8903 ** | - | 5.3828 ** | 7.6026 *** |
FDI | 1.1724 | 7.68 *** | 4.5903 * | 4.945 * | 3.3448 | 6.4386 *** | 7.3131 *** | - | 4.1768 * |
EDU | 0.002 | 0.4166 | 2.4919 | 1.8251 | 5.0028 ** | 0.9098 | 1.6334 | 6.3893 *** | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Q.; Qamruzzaman, M. Innovation-Led Environmental Sustainability in Vietnam—Towards a Green Future. Sustainability 2023, 15, 12109. https://doi.org/10.3390/su151612109
Li Q, Qamruzzaman M. Innovation-Led Environmental Sustainability in Vietnam—Towards a Green Future. Sustainability. 2023; 15(16):12109. https://doi.org/10.3390/su151612109
Chicago/Turabian StyleLi, Qianyi, and Md Qamruzzaman. 2023. "Innovation-Led Environmental Sustainability in Vietnam—Towards a Green Future" Sustainability 15, no. 16: 12109. https://doi.org/10.3390/su151612109