Multi-Objective Optimization of the Multimodal Routing Problem Using the Adaptive ε-Constraint Method and Modified TOPSIS with the D-CRITIC Method
Abstract
:1. Introduction
2. Problem Description
- Each transportation link can use only one mode of transport;
- The MTO cannot choose the transport routes until negotiations have been conducted with the customer, because the chosen route has to satisfy unpredictable customer conditions;
- The alternate routes are not explicitly defined;
- Only one job is carried out throughout the multimodal transportation network;
- The number of times a shipment of products must cross a node does not exceed one;
- All nodes, links, and terminals have sufficient capacity to handle a given transport or cargo operation.
Sets: | |
V | a set of nodes (terminals) i ∈ V, j ∈ V; |
E | a set of transportation links (i, j) ∈ E; |
M | a set of transportation modes m ∈ M. |
Parameters: | |
Transportation cost from terminals i to j via transportation mode m (Baht/ton); | |
Transshipment cost at terminal i (Baht/ton); | |
Transportation time from terminals i to j via transportation mode m (hours); | |
Service time at terminal i (hours); | |
CO2e emissions from terminals i to j via transportation mode m (kgCO2e); | |
CO2e emissions at terminal i (kgCO2e); | |
0 | Origin terminal; |
d | Destination terminal; |
Large number (σ = 999,999). | |
Decision Variables: | |
Binary decision variables: 1 = if the goods are transported from terminals i to j via transportation mode m and transshipped at terminal i; 0 = otherwise. |
3. Proposed Approach
3.1. Generating All Pareto Solutions
3.2. Determination of the Weight of Each Objective Function
3.3. Ranking Alternative Routes
4. Results
4.1. Single-Objective Optimization Results
4.2. Multi-Objective Optimization Results
4.3. Pareto Solution Ranking Results
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclatures
Abbreviation | |
AECM | Augmented ε-constraint method |
AHP | Analytic hierarchy process |
BWM | Best–worst method |
CILOS | Criterion Impact Loss |
CO2e | Carbon dioxide-equivalent |
COE | CO2 emissions |
CP | Compromise programming technique with different distance metrics |
CPU | Computational time |
CPU/NPS | Ratio of computational time to the number of Pareto solutions found |
CRITIC | CRITIC weight method |
D-CRITIC | Distance Correlation-based Criteria Importance Through Inter-criteria Correlation |
DEA | Data envelopment analysis |
DRSA | Dominance-based rough set approach |
ECM | ε-constraint method |
FCC | Fuzzy credibility chance constraint |
FGP-DIP | Fuzzy goal programming approach with different importance and priorities |
FUCOM | Full Consistency Method |
GA | Genetic algorithm |
GP | Goal programing model |
GRAS | Greedy randomized adaptive search procedure |
IDOCRIW | Integrated Determination of Objective CRIteria Weights |
IFGP | Interactive fuzzy goal programming approach |
ILS | Iterated local search |
LBWA | Level Based Weight Assessment |
LT | Linearization technique |
MACA | Multi-objective ant colony algorithm |
MADM | Multiple-attribute decision-making method |
MEREC | MEthod based on the Removal Effects of Criteria |
MODM | Multiple-objective decision-making method |
MOGA | Multi-objective genetic algorithm |
MOTGA | Multi-objective Taguchi genetic algorithm |
MRP | Multimodal routing problem |
MTO | Multimodal transport operator |
NNCM | Normalized normal constraint method |
NPS | The number of Pareto solutions found |
NSGA | Non-dominated sorting genetic algorithm |
PA | Proposed approach |
SAPEVO-M | Simple Aggregation of Preferences Expressed by Ordinal Vectors Group Decision Making |
SWARA | Step-wise weight assessment ratio analysis method |
TGO | Thailand Greenhouse Gas Management Organization |
TOPSIS | Technique for order of preference by similarity to ideal solution |
TOPSIS | Technique for order of preference by similarity to ideal solution modified method |
TSM | Tabu search methodology |
VIKOR | Vlse Kriterijumska Optimizacija I Kompromisno Resenje |
WFGP | Weighted additive fuzzy goal programming approach |
WMN | Weighting sum method with normalization |
WSM | Weighting sum method |
ZOGP | Zero-one goal programming |
Sets and Subscript | |
c | The criterion or objective function (c ∈ C, in this paper C = 3) |
E | The set of transportation links (i, j) ∈ E |
The set of solutions for objective p to generate the Pareto solution ( = 1, 2, …, ) | |
l | Lower bounds |
M | The set of transportation modes m ∈ M |
n | Iteration for search algorithm in adaptive ε-constraint method |
P | The set of objective functions p ∈ P |
q | The first objective functions (q = 1, q≠ p) |
r | The alternative route (r ∈ AR) |
u | Upper bounds |
V | The set of nodes (terminals) i ∈ V, j ∈ V |
X | The set of feasible solutions x ∈ X |
Parameters and variables | |
The mean objective function of criterion c | |
The best objective function of criterion c | |
The worst objective function of criterion c | |
The objective function f(x) of alternative route r with respect to criterion c | |
The normalized score of alternative route r with respect to criterion c | |
Alternative route with the highest normalized performance score in terms of criterion c | |
Alternative route with the minimum normalized performance score in terms of criterion c | |
The normalized performance ratings of alternative route r with respect to criterion c | |
Transportation cost from terminals i to j by transportation mode m (Baht/ton) | |
d | Destination terminal |
The conflicting relationships between criteria c and criteria c’ | |
The distance covariance between criteria c and criteria c’ | |
CO2e emissions at terminal i (kgCO2e) | |
fp(x) | The objective function value of objective function p |
fq(x) | The objective function value of objective function q |
f(x*) | The objective function value of new Pareto solution |
Projection of new Pareto solution for objective function p | |
Transshipment cost at terminal i (Baht/ton) | |
Ic | The information content contained in criterion c |
Kq(un) | The objective function in first stage of the two-stage mathematical programs |
L | List of rectangles |
ln | Lower bounds of iteration n |
CO2e emissions from terminals i to j by transportation mode m when i ≠ j (kgCO2e) | |
CO2e emissions from terminals i to j by transportation mode m (kgCO2e) | |
The overall performance score for each alternative route | |
Qp(un) | The objective function in the second stage of the two-stage mathematical programs |
Rn | Rectangle of iteration n |
Service time at terminal i (hours) | |
The standard deviation of criterion c | |
Transportation time from terminals i to j by transportation mode m when i ≠ j (hours) | |
Transportation time from terminals i to j by transportation mode m (hours) | |
un | Upper bounds of iteration n |
The upper bound of objective functions p for iteration n | |
The volume measure associated with all rectangles for iteration n | |
The objective weight of criterion c | |
The positive weighted Euclidean distance | |
The negative weighted Euclidean distance | |
Binary decision variables: 1 = if the goods are transported from terminals i to j by transportation mode m and transshipped at terminal i; 0 = otherwise | |
x* | The optimal solution of two-stage formulations Kq(un) and Qq(un) |
y | Corresponding objective vector |
Projection of corresponding objective vector | |
The lower vertex of a rectangle for dimension p | |
The upper vertex of a rectangle for dimension p | |
The optimal objective value of subproblem Kq(un). | |
0 | Origin terminal |
Positive ideal solutions | |
Negative ideal solutions | |
ε | ε-constraint value |
Large number (σ = 999,999) | |
The Pareto solutions list | |
References
- UNECE. Glossary for Transport Statistics, 5th ed.; Publications Office of the European Unio: Luxembourg, 2019; ISBN 978-92-76-06213-4. [Google Scholar]
- Crainic, T. International Series in Operations Research & Management Science. In Handbook of Transportation Science; Hall, R., Ed.; Springer U.S.: New York, NY, USA, 2003; pp. 451–516. ISBN 978-0-306-48058-4. [Google Scholar]
- Elbert, R.; Müller, J.P.; Rentschler, J. Tactical network planning and design in multimodal transportation—A systematic literature review. Res. Transp. Bus. Manag. 2020, 35, 100462. [Google Scholar] [CrossRef]
- Laurent, A.B.; Vallerand, S.; van der Meer, Y.; D’Amours, S. CarbonRoadMap: A multicriteria decision tool for multimodal transportation. Int. J. Sustain. Transp. 2020, 14, 205–214. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Low, J.M.W.; Tang, L.C. Analysis of intermodal freight from China to Indian Ocean: A goal programming approach. J. Transp. Geogr. 2011, 19, 515–527. [Google Scholar] [CrossRef]
- Verma, M.; Verter, V.; Zufferey, N. A bi-objective model for planning and managing rail-truck intermodal transportation of hazardous materials. Transp. Res. Part E Logist. Transp. Rev. 2012, 48, 132–149. [Google Scholar] [CrossRef]
- Kengpol, A.; Meethom, W.; Tuominen, M. The development of a decision support system in multimodal transportation routing within Greater Mekong sub-region countries. Int. J. Prod. Econ. 2012, 140, 691–701. [Google Scholar] [CrossRef]
- Demir, E.; Hrušovský, M.; Jammernegg, W.; Van Woensel, T.; Demir, E.; Hrušovský, M.; Jammernegg, W.; Van Woensel, T.; Sun, Y.; Lang, M.; et al. Best routes selection in multimodal networks using multi-objective genetic algorithm. Sustain. Artic. 2018, 9, 655–673. [Google Scholar]
- Kengpol, A.; Tuammee, S.; Tuominen, M. The development of a framework for route selection in multimodal transportation. Int. J. Logist. Manag. 2014, 25, 581–610. [Google Scholar] [CrossRef]
- Sun, Y.; Lang, M. Bi-objective optimization for multi-modal transportation routing planning problem based on pareto optimality. J. Ind. Eng. Manag. 2015, 8, 1195–1217. [Google Scholar] [CrossRef] [Green Version]
- Assadipour, G.; Ke, G.Y.; Verma, M. Planning and managing intermodal transportation of hazardous materials with capacity selection and congestion. Transp. Res. Part E Logist. Transp. Rev. 2015, 76, 45–57. [Google Scholar] [CrossRef]
- Resat, H.G.; Turkay, M. Design and operation of intermodal transportation network in the Marmara region of Turkey. Transp. Res. Part E Logist. Transp. Rev. 2015, 83, 16–33. [Google Scholar] [CrossRef]
- Baykasoğlu, A.; Subulan, K. A multi-objective sustainable load planning model for intermodal transportation networks with a real-life application. Transp. Res. Part E Logist. Transp. Rev. 2016, 95, 207–247. [Google Scholar] [CrossRef]
- Sun, Y.; Lang, M.; Wang, D. Bi-objective modelling for hazardous materials road–rail multimodal routing problem with railway schedule-based space–time constraints. Int. J. Environ. Res. Public Health 2016, 13, 762. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abbassi, A.; Elhilali, A.; Boukachour, J. Modelling and solving a bi-objective intermodal transport problem of agricultural products. Int. J. Ind. Eng. Comput. 2018, 9, 439–460. [Google Scholar] [CrossRef]
- Sun, Y.; Li, X.; Liang, X.; Zhang, C. A bi-objective fuzzy credibilistic chance-constrained programming approach for the hazardous materials road-rail multimodal routing problem under uncertainty and sustainability. Sustainability 2019, 11, 2577. [Google Scholar] [CrossRef] [Green Version]
- Demir, E.; Hrušovský, M.; Jammernegg, W.; Van Woensel, T.; Demir, E.; Hrušovský, M.; Jammernegg, W.; Van Woensel, T. Green intermodal freight transportation: Bi-objective modelling and analysis. Int. J. Prod. Res. 2019, 57, 6162–6180. [Google Scholar] [CrossRef] [Green Version]
- Chen, D.; Zhang, Y.; Gao, L.; Thompson, R.G. Optimizing Multimodal Transportation Routes Considering Container Use. Sustain. Artic. 2019, 11, 5320. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y. A Fuzzy Multi-Objective Routing Model for Managing Hazardous Materials Door-to-Door Transportation in the Road-Rail Multimodal Network with Uncertain Demand and Improved Service Level. IEEE Access 2020, 8, 172808–172828. [Google Scholar] [CrossRef]
- Liaqait, R.A.; Warsi, S.S.; Agha, M.H.; Zahid, T.; Becker, T. A multi-criteria decision framework for sustainable supplier selection and order allocation using multi-objective optimization and fuzzy approach. Eng. Optim. 2022, 54, 928–948. [Google Scholar] [CrossRef]
- Koohathongsumrit, N.; Meethom, W. An integrated approach of fuzzy risk assessment model and data envelopment analysis for route selection in multimodal transportation networks. Expert Syst. Appl. 2021, 171, 114342. [Google Scholar] [CrossRef]
- Zhu, C.; Zhu, X. Multi-Objective Path-Decision Model of Multimodal Transport Considering Uncertain Conditions and Carbon Emission Policies. Symmetry 2022, 14, 221. [Google Scholar] [CrossRef]
- Koohathongsumrit, N.; Meethom, W. Route selection in multimodal transportation networks: A hybrid multiple criteria decision-making approach. J. Ind. Prod. Eng. 2021, 38, 171–185. [Google Scholar] [CrossRef]
- Zhang, H.; Li, Y.; Zhang, Q.; Chen, D. Route Selection of Multimodal Transport Based on China Railway Transportation. J. Adv. Transp. 2021, 2021, 9984659. [Google Scholar] [CrossRef]
- Koohathongsumrit, N.; Chankham, W. A hybrid approach of fuzzy risk assessment-based incenter of centroid and MCDM methods for multimodal transportation route selection. Cogent Eng. 2022, 9, 110167. [Google Scholar] [CrossRef]
- Shao, C.; Wang, H.; Yu, M. Multi-Objective Optimization of Customer-Centered Intermodal Freight Routing Problem Based on the Combination of DRSA and NSGA-III. Sustainability 2022, 14, 2985. [Google Scholar] [CrossRef]
- Baykasoğlu, A.; Subulan, K.; Taşan, A.S.; Dudaklı, N. A review of fleet planning problems in single and multimodal transportation systems. Transp. A Transp. Sci. 2019, 15, 631–697. [Google Scholar] [CrossRef]
- Mesquita-Cunha, M.; Figueira, J.R.; Barbosa-Póvoa, A.P. New–constraint methods for multi-objective integer linear programming: A Pareto front representation approach. Eur. J. Oper. Res. 2023, 306, 286–307. [Google Scholar] [CrossRef]
- SteadieSeifi, M.; Dellaert, N.P.; Nuijten, W.; Van Woensel, T.; Raoufi, R. Multimodal freight transportation planning: A literature review. Eur. J. Oper. Res. 2014, 233, 1–15. [Google Scholar] [CrossRef]
- Deluka-Tibljaš, A.; Karleuša, B.; Dragičević, N.; Aleksandra Deluka-Tibljaš, Ü. Review of multicriteria-analysis methods application in decision making about transport infrastructure. Građevinar 2013, 65, 619–631. [Google Scholar] [CrossRef]
- Yannis, G.; Kopsacheili, A.; Dragomanovits, A.; Petraki, V. State-of-the-art review on multi-criteria decision-making in the transport sector. J. Traffic Transp. Eng. 2020, 7, 413–431. [Google Scholar] [CrossRef]
- Tirkolaee, E.B.; Abbasian, P.; Weber, G.-W. Sustainable fuzzy multi-trip location-routing problem for medical waste management during the COVID-19 outbreak. Sci. Total Environ. 2021, 756, 143607. [Google Scholar] [CrossRef]
- Lo, H.W.; Liaw, C.F.; Gul, M.; Lin, K.Y. Sustainable supplier evaluation and transportation planning in multi-level supply chain networks using multi-attribute- and multi-objective decision making. Comput. Ind. Eng. 2021, 162, 107756. [Google Scholar] [CrossRef]
- Aktar, M.S.; De, M.; Mazumder, S.K.; Maiti, M. Multi-objective green 4-dimensional transportation problems for damageable items through type-2 fuzzy random goal programming. Appl. Soft Comput. 2022, 130, 109681. [Google Scholar] [CrossRef]
- Chhibber, D.; Srivastava, P.K.; Bisht, D.C.S. Intuitionistic fuzzy TOPSIS for non-linear multi-objective transportation and manufacturing problem. Expert Syst. Appl. 2022, 210, 118357. [Google Scholar] [CrossRef]
- Goli, A.; Babaee Tirkolaee, E.; Golmohammadi, A.-M.; Atan, Z.; Weber, G.-W.; Ali, S.S. A robust optimization model to design an IoT-based sustainable supply chain network with flexibility. Cent. Eur. J. Oper. Res. 2023. [Google Scholar] [CrossRef]
- Babaei, A.; Khedmati, M.; Jokar, M.R.A.; Tirkolaee, E.B. An integrated decision support system to achieve sustainable development in transportation routes with traffic flow. Environ. Sci. Pollut. Res. 2023, 30, 60367–60382. [Google Scholar] [CrossRef]
- Tirkolaee, E.B.; Goli, A.; Mardani, A. A novel two-echelon hierarchical location-allocation-routing optimization for green energy-efficient logistics systems. Ann. Oper. Res. 2023, 324, 795–823. [Google Scholar] [CrossRef]
- Simić, V.; Milovanović, B.; Pantelić, S.; Pamučar, D.; Tirkolaee, E.B. Sustainable route selection of petroleum transportation using a type-2 neutrosophic number based ITARA-EDAS model. Inf. Sci. 2023, 622, 732–754. [Google Scholar] [CrossRef]
- Tirkolaee, E.B.; Goli, A.; Gütmen, S.; Weber, G.-W.; Szwedzka, K. A novel model for sustainable waste collection arc routing problem: Pareto-based algorithms. Ann. Oper. Res. 2023, 324, 189–214. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Roy, N.; Zhang, B. Multi-objective transportation route optimization for hazardous materials based on GIS. J. Loss Prev. Process Ind. 2023, 81, 104954. [Google Scholar] [CrossRef]
- Oudani, M. A combined multi-objective multi criteria approach for blockchain-based synchromodal transportation. Comput. Ind. Eng. 2023, 176, 108996. [Google Scholar] [CrossRef]
- Ayan, B.; Abacıoğlu, S.; Basilio, M.P. A Comprehensive Review of the Novel Weighting Methods for Multi-Criteria Decision-Making. Information 2023, 14, 285. [Google Scholar] [CrossRef]
- Krishnan, A.R.; Kasim, M.M.; Hamid, R.; Ghazali, M.F. A Modified CRITIC Method to Estimate the Objective Weights of Decision Criteria. Symmetry 2021, 13, 973. [Google Scholar] [CrossRef]
- Odu, G.O. Weighting methods for multi-criteria decision making technique. J. Appl. Sci. Environ. Manag. 2019, 23, 1449. [Google Scholar] [CrossRef] [Green Version]
- Ma, J.; Fan, Z.-P.; Huang, L.-H. A subjective and objective integrated approach to determine attribute weights. Eur. J. Oper. Res. 1999, 112, 397–404. [Google Scholar] [CrossRef]
- Mahmoody Vanolya, N.; Jelokhani-Niaraki, M. The use of subjective–objective weights in GIS-based multi-criteria decision analysis for flood hazard assessment: A case study in Mazandaran, Iran. GeoJournal 2021, 86, 379–398. [Google Scholar] [CrossRef]
- Krishnan, A.R.; Mat Kasim, M.; Hamid, R. An Alternate Unsupervised Technique Based on Distance Correlation and Shannon Entropy to Estimate λ0-Fuzzy Measure. Symmetry 2020, 12, 1708. [Google Scholar] [CrossRef]
- Jahan, A.; Mustapha, F.; Sapuan, S.M.; Ismail, M.Y.; Bahraminasab, M. A framework for weighting of criteria in ranking stage of material selection process. Int. J. Adv. Manuf. Technol. 2012, 58, 411–420. [Google Scholar] [CrossRef]
- Singh, M.; Pant, M. A review of selected weighing methods in MCDM with a case study. Int. J. Syst. Assur. Eng. Manag. 2021, 12, 126–144. [Google Scholar] [CrossRef]
- Rezaei, J. Best-worst multi-criteria decision-making method. Omega 2015, 53, 49–57. [Google Scholar] [CrossRef]
- Zavadskas, E.K.; Podvezko, V. Integrated Determination of Objective Criteria Weights in MCDM. Int. J. Inf. Technol. Decis. Mak. 2016, 15, 267–283. [Google Scholar] [CrossRef]
- Pamučar, D.; Stević, Ž.; Sremac, S. A New Model for Determining Weight Coefficients of Criteria in MCDM Models: Full Consistency Method (FUCOM). Symmetry 2018, 10, 393. [Google Scholar] [CrossRef] [Green Version]
- Žižović, M.; Pamučar, D. New model for determining criteria weights: Level Based Weight Assessment (LBWA) model. Decis. Mak. Appl. Manag. Eng. 2019, 2, 126–137. [Google Scholar] [CrossRef]
- Gomes, C.F.S.; dos Santos, M.; Teixeira, L.F.H.d.S.d.B.; Sanseverino, A.M.; Barcelos, M.R.d.S. SAPEVO-M: A Group Multicriteria Ordinal Ranking Method. Pesqui. Oper. 2020, 40, e226524. [Google Scholar] [CrossRef]
- Keshavarz-Ghorabaee, M.; Amiri, M.; Zavadskas, E.K.; Turskis, Z.; Antucheviciene, J. Determination of Objective Weights Using a New Method Based on the Removal Effects of Criteria (MEREC). Symmetry 2021, 13, 525. [Google Scholar] [CrossRef]
- Kirlik, G.; Sayın, S. A new algorithm for generating all nondominated solutions of multiobjective discrete optimization problems. Eur. J. Oper. Res. 2014, 232, 479–488. [Google Scholar] [CrossRef]
- Maneengam, A. A Bi-Objective Programming Model for Multimodal Transportation Routing Problem of Bulk Cargo Transportation. In Proceedings of the 2020 IEEE 7th International Conference on Industrial Engineering and Applications (ICIEA), Bangkok, Thailand, 16–21 April 2020; IEEE: Bangkok, Thailand, 2020; pp. 890–894. [Google Scholar]
- Thailand Greenhouse Gas Management Organization. Carbon Footprint of Product Guideline, 4th ed.; Thailand Greenhouse Gas Management Organization: Bangkok, Thailand, 2012; ISBN 978-974-286-819-2. [Google Scholar]
- TGO (Thailand Greenhouse Gas Management Organization). Update Emission Factor CFP. Available online: http://thaicarbonlabel.tgo.or.th/admin/uploadfiles/emission/ts_822ebb1ed5.pdf (accessed on 15 January 2019).
- Deng, H.; Yeh, C.-H.; Willis, R.J. Inter-company comparison using modified TOPSIS with objective weights. Comput. Oper. Res. 2000, 27, 963–973. [Google Scholar] [CrossRef]
- Laumanns, M.; Thiele, L.; Zitzler, E. An efficient, adaptive parameter variation scheme for metaheuristics based on the epsilon-constraint method. Eur. J. Oper. Res. 2006, 169, 932–942. [Google Scholar] [CrossRef]
- Bashir, B.; Karsu, Ö. Solution approaches for equitable multiobjective integer programming problems. Ann. Oper. Res. 2022, 311, 967–995. [Google Scholar] [CrossRef]
- Chankong, V.; Haimes, Y.Y. Multiobjective Decision Making: Theory and Methodology; North-Holland/Elsevier Science Publishing Company, Inc.: New York, NY, USA, 1983; ISBN 0444007105. [Google Scholar]
- Horst, R.; Tuy, H. Global Optimization: Deterministic Approaches; Springer Science & Business Media: New York, NY, USA, 2013. [Google Scholar]
- Diakoulaki, D.; Mavrotas, G.; Papayannakis, L. Determining objective weights in multiple criteria problems: The critic method. Comput. Oper. Res. 1995, 22, 763–770. [Google Scholar] [CrossRef]
- Pearson, K. Note on Regression and Inheritance in the Case of Two Parents. Proc. R. Soc. Lond. 1895, 58, 240–242. [Google Scholar]
- Székely, G.J.; Rizzo, M.L.; Bakirov, N.K. Measuring and testing dependence by correlation of distances. Ann. Stat. 2007, 35, 2769–2794. [Google Scholar] [CrossRef]
- Shen, C.; Priebe, C.E.; Vogelstein, J.T. From Distance Correlation to Multiscale Graph Correlation. J. Am. Stat. Assoc. 2020, 115, 280–291. [Google Scholar] [CrossRef]
- Chakraborty, S. TOPSIS and Modified TOPSIS: A comparative analysis. Decis. Anal. J. 2022, 2, 100021. [Google Scholar] [CrossRef]
Ref. | Objective Function | Solution Methodology | |||||
---|---|---|---|---|---|---|---|
Cost | Time | COE | Risk | Other | MADM | MODM | |
Yang et al. [5] | √ | √ | - | - | - | - | GP |
Verma et al. [6] | √ | - | - | √ | - | - | TSM |
Kengpol et al. [7] | √ | √ | - | √ | - | AHP | ZOGP |
Xiong and Wang [8] | √ | √ | - | - | - | - | MOTGA |
Kengpol et al. [9] | √ | √ | √ | √ | - | AHP | ZOGP |
Sun and Lang [10] | √ | √ | - | - | - | - | WMN |
Assadipour et al. [11] | √ | - | - | √ | - | - | MOGA |
Resat and Turkay [12] | √ | √ | - | - | - | - | AECM |
Baykasoğlu and Subulan [13] | √ | √ | √ | - | - | - | CP, FGP-DIP, WFGP, IFGP |
Sun et al. [14] | √ | - | - | √ | - | - | WMN |
Abbassi et al. [15] | √ | √ | - | - | - | - | NSGA improved by GRAS, ILS |
Sun et al. [16] | √ | - | - | √ | - | - | FCC, LT, WMN |
Demir et al. [17] | √ | - | √ | - | - | - | WM, WMN, ECM |
Chen et al. [18] | √ | √ | - | - | - | - | NNCM |
Sun et al. [19] | √ | - | - | √ | - | - | ECM |
Liaqait et al. [20] | √ | √ | √ | - | √ | Fuzzy AHP, Fuzzy TOPSIS, CRITIC, TOPSIS | AECM 2 |
Koohathongsumrit and Meethom [21] | √ | √ | - | √ | - | Fuzzy AHP, DEA | ZOGP |
Zhu and Zhu [22] | √ | √ | - | - | - | - | NSGA-II |
Koohathongsumrit and Meethom [23] | √ | √ | √ | √ | - | AHP, DEA, TOPSIS | - |
Zhang et al. [24] | √ | √ | √ | √ | √ | - | MACA |
Koohathongsumrit and Chankham [25] | √ | √ | - | √ | - | Fuzzy AHP, VIKOR | - |
Shao et al. [26] | √ | √ | - | - | √ | DRSA | NSGA-III |
This paper | √ | √ | √ | - | - | D-CRITIC, Modified TOPSIS | Adaptive ECM |
Alternatives/Criteria | Criteria1 1 | Criteria2 2 | Criteria3 3 |
---|---|---|---|
Alternative route no. 1 | a11 | a12 | a13 |
Alternative route no. 2 | a21 | a22 | a23 |
Alternative route AR | aR1 | aR2 | aR3 |
Objective Function | Min f2(x) | Min f3(x) | Max f2(x) | Max f3(x) | Lower Bound | Upper Bound |
---|---|---|---|---|---|---|
f2(x) | 64 | 74 | 150 | 150 | 64 | 150 |
f3(x) | 273,945.41 | 215,171.92 | 751,698.36 | 751,698.36 | 215,171.92 | 751,698.36 |
PS no. | Route | Total Cost (Baht/Ton) | Total Time (Days) | Total CO2e Emissions (kgCO2eq) | ECM 4 × 4 | ECM 6 × 6 | ECM 10 × 10 | PA |
---|---|---|---|---|---|---|---|---|
1 | 83 | 347.62 | 84 | 294,729.92 | √ | √ | √ | √ |
2 | 83 | 353.98 | 81 | 315,162.85 | √ | √ | √ | |
3 | 83 | 409.93 | 74 | 254,405.12 | √ | √ | ||
4 | 83 | 413.52 | 67 | 263,787.52 | √ | √ | ||
5 | 83 | 463.95 | 64 | 273,945.41 | √ | √ | √ | √ |
6 | 83 | 468.66 | 74 | 215,171.92 | √ | √ | √ | √ |
7 | 83 | 472.73 | 67 | 225,396.08 | √ | |||
The number of Pareto solutions found | 3 | 4 | 6 | 7 | ||||
Computational time (second) | 5.21 | 12.22 | 37.90 | 10.27 | ||||
CPU/NPS | 1.74 | 3.06 | 6.32 | 1.47 |
W1 | W2 | W3 |
---|---|---|
0.2970 | 0.3724 | 0.3307 |
PS no. | The Overall Performance Score | Rank |
---|---|---|
1 | 0.4117 | 6 |
2 | 0.3753 | 7 |
3 | 0.5501 | 4 |
4 | 0.5867 | 2 |
5 | 0.5671 | 3 |
6 | 0.4898 | 5 |
7 | 0.5929 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maneengam, A. Multi-Objective Optimization of the Multimodal Routing Problem Using the Adaptive ε-Constraint Method and Modified TOPSIS with the D-CRITIC Method. Sustainability 2023, 15, 12066. https://doi.org/10.3390/su151512066
Maneengam A. Multi-Objective Optimization of the Multimodal Routing Problem Using the Adaptive ε-Constraint Method and Modified TOPSIS with the D-CRITIC Method. Sustainability. 2023; 15(15):12066. https://doi.org/10.3390/su151512066
Chicago/Turabian StyleManeengam, Apichit. 2023. "Multi-Objective Optimization of the Multimodal Routing Problem Using the Adaptive ε-Constraint Method and Modified TOPSIS with the D-CRITIC Method" Sustainability 15, no. 15: 12066. https://doi.org/10.3390/su151512066
APA StyleManeengam, A. (2023). Multi-Objective Optimization of the Multimodal Routing Problem Using the Adaptive ε-Constraint Method and Modified TOPSIS with the D-CRITIC Method. Sustainability, 15(15), 12066. https://doi.org/10.3390/su151512066