Intercropping Perennial Fruit Trees and Annual Field Crops with Aromatic and Medicinal Plants (MAPs) in the Mediterranean Basin
Abstract
:1. Introduction
2. Methods
3. Past, Present and Future Impacts of Climate Change in the Mediterranean Basin
4. Intercropping with Aromatic and Medicinal Plants (MAPs) in the Mediterranean Basin
4.1. MAP Intercropping in Perennial Woody Nut and Fruit Crops
4.1.1. Deciduous Perennials (Almond, Pomegranate, Apple)
4.1.2. Deciduous Perennials (Grape)
4.1.3. Evergreen Perennials (Olive and Date Palm)
Evergreen Tree Crops | MAP Intercrops (Intercropping Type) | Country/ Agronomic Practices | Improved Land Use Efficiency (LUE); ↑ Cash Crop/MAP Yields; ↑ Economic Return; and ↑ Weed Control | Improved Soil Health ↑ Soil Organic C (SOC) + Org Matter/Minerals/Beneficial Organisms/C Sequestration ↓ Erosion, ↓ GHG | Fauna Bio-Control ↓ Pests/Pathogens/Disease Symptoms; ↑Natural Enemies (Parasitism, Predators) | Improved Quality of Cash/MAP Crop ↑ Nutritional/Functional Properties |
---|---|---|---|---|---|---|
Olive | Coriander (alley, various distances) [69] | Morocco (rainfed, no tillage) | Ns effect on Olive yield: ↑ shading and ↓ coriander yield | No information provided | No information provided | No information provided |
Olive | Anise and Chamomile (alley) [68] | Greece | Ns shading effect on MAP seed + oil yields: anise + chamomile | No information provided | No information provided | Shading ↑ or ↓ certain MAP oil components; no quality changes for both MAPs |
Olive | Mix: Saffron-Lavandin (alley) [70] | Spain (rainfed, no tillage) | No information provided | ↑ SOC stratification index: saffron–lavandin | No information provided | No information provided |
Olive | Saffron and Lavandin [71] | Spain (rainfed, no tillage) | No information provided | ↑ soil SOC stocks: saffron and lavandin, res. | No information provided | No information provided |
Olive | Lavandin, Lavender and Rosemary (alley) [72] | Spain (rainfed, no tillage) | No information provided | No information provided | ↑ Predator + parasitoid: lavandin, one orchard | No information provided |
Olive | Lemongrass, Sage and Thyme (row) [73] | Italy (irrigated, min–no tillage) | ↑ Weed control: lemongrass + sage. No effect on tree growth | No information provided | ↑ Pollinators + predators: lemongrass + sage + thyme | No information provided |
Date Palm | Fenugreek [75] | Egypt | ↑ Date yield, Ns fenugreek forage yield, ↑ LER and ↑ net profit | No information provided | No information provided | ↑ Date fruit weight, ↑ TSS, ↑ total sugars and ↓ tannins |
4.2. MAP Intercropping in Annual Field Crops
4.2.1. Cereal, Sugar and Non-Food Crops (Durum Wheat, Triticale, Maize, Sugar Beet and Cotton)
4.2.2. Legume Field Crops (Lentil, Soybean and Faba Bean)
5. Assessment of MAP Intercropping in the Mediterranean Basin for Perennial Fruit and Nut and Annual Field Crops
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Giorgi, F. Climate change Hot-Spots. Geophys. Res. Lett. 2006, 33, L08707. [Google Scholar] [CrossRef]
- Cramer, W.; Guiot, J.; Fader, M.; Garrabou, J.; Gattuso, J.-P.; Iglesias, A.; Lange, M.A.; Lionello, P.; Llasat, M.C.; Paz, S.; et al. Climate change and interconnected risks to sustainable development in the Mediterranean. Nat. Clim. Change 2018, 8, 972–980. [Google Scholar] [CrossRef] [Green Version]
- Alrteimei, H.A.; Ash’aari, Z.H.; Muharram, F.M. Last decade assessment of the impacts of regional climate change on crop yield variations in the Mediterranean region. Agriculture 2022, 12, 1787. [Google Scholar] [CrossRef]
- Michaelides, S.; Karacostas, T.; Sánchez, J.L.; Retalis, A.; Pytharoulis, I.; Homar, V.; Romero, R.; Zanis, P.; Giannakopoulos, C.; Bühl, J.; et al. Reviews and perspectives of high impact atmospheric processes in the Mediterranean. Atmos. Res. 2018, 208, 4–44. [Google Scholar] [CrossRef]
- Lange, M.A. Climate Change in the Mediterranean: Environmental Impacts and Extreme Events. IEMed Mediterranean Yearbook 2020. Available online: https://www.iemed.org/publication/climate-change-in-the-mediterranean-environmental-impacts-and-extreme-events/ (accessed on 6 July 2023).
- Antonelli, M.; Basile, L.; Gagliardi, F.; Isernia, P. The future of the Mediterranean agri-food systems: Trends and perspectives from a Delphi survey. Land Use Policy 2022, 120, 106263. [Google Scholar] [CrossRef]
- Fraga, H.; Moriondo, M.; Leolini, L.; Santos, J.A. Mediterranean olive orchards under climate change: A review of future impacts and adaptation strategies. Agronomy 2021, 11, 56. [Google Scholar] [CrossRef]
- Ferreira, C.S.S.; Seifollahi-Aghmiuni, S.; Destouni, G.; Ghajarnia, N.; Kalantari, Z. Soil degradation in the European Mediterranean region: Processes, status and consequences. Sci. Total Environ. 2022, 805, 150106. [Google Scholar] [CrossRef]
- Caselli, A.; Petacchi, R. Climate change and major pests of Mediterranean olive orchards: Are we ready to face the global heating? Insects 2021, 12, 802. [Google Scholar] [CrossRef]
- Martin-Gorriz, B.; Zabala, J.A.; Sánchez-Navarro, V.; Gallego-Elvira, B.; Martínez-García, V.; Alcon, F.; Maestre-Valero, J.F. Intercropping practices in Mediterranean mandarin orchards from an environmental and economic perspective. Agriculture 2022, 12, 574. [Google Scholar] [CrossRef]
- Ahmed, A.; Elbushra, A.; Elrasheed, M. Implications of climate change on agriculture and food security. In Cultivation for Climate Change Resilience; Taylor & Francis Group, LLC.: London, UK; Boca Raton, FL, USA; New York, NY, USA, 2023; pp. 2–27. [Google Scholar]
- Dutta, T.K.; Phani, V. The pervasive impact of global climate change on plant-nematode interaction continuum. Front. Plant Sci. 2023, 14, 1143889. [Google Scholar] [CrossRef]
- Sofo, A.; Palese, A.M.; Casacchia, T.; Dichio, B.; Xiloyannis, C. Sustainable fruit production in Mediterranean orchards subjected to drought stress. In Abiotic Stress Responses in Plants; Ahmad, P., Prasad, M., Eds.; Springer: New York, NY, USA, 2012; pp. 105–129. [Google Scholar] [CrossRef]
- Ames, G.K.; Dufour, R.; NCAT Agriculture Specialists ATTRA Specialists. Climate Change and Perennial Fruit and Nut Production: Investigating Resilience in Uncertain Times. Available online: https://attra.ncat.org/publication/climate-change-perennial-fruit-and-nut-production/ (accessed on 9 May 2023).
- Ponti, L.; Gutierrez, A.P.; Boggia, A.; Neteler, M. Analysis of grape production in the face of climate change. Climate 2018, 6, 20. [Google Scholar] [CrossRef] [Green Version]
- Santos, J.A.; Fraga, H.; Malheiro, A.C.; Moutinho-Pereira, J.; Dinis, L.-T.; Correia, C.; Moriondo, M.; Leolini, L.; Dibari, C.; Costafreda-Aumedes, S.; et al. A review of the potential climate change impacts and adaptation options for European viticulture. Appl. Sci. 2020, 10, 3092. [Google Scholar] [CrossRef]
- Medda, S.; Fadda, A.; Mulas, M. Influence of climate change on metabolism and biological characteristics in perennial woody fruit crops in the Mediterranean environment. Horticulturae 2022, 8, 273. [Google Scholar] [CrossRef]
- Almagro, M.; Diaz-Pereira, E.; Boix-Fayos, C.; Zornoza, R.; Sánchez-Navarro, V.; Re, P.; Fernández, C.; Martínez-Mena, M. The combination of crop diversification and no tillage enhances key soil quality parameters related to soil functioning without compromising crop yields in a low-input rainfed almond orchard under semiarid Mediterranean conditions. Agric. Ecosyst. Environ. 2023, 345, 108320. [Google Scholar] [CrossRef]
- Ray, D.; Gerber, J.; MacDonald, G.; West, P. Climate variation explains a third of global crop yield variability. Nat. Commun. 2015, 6, 5989. [Google Scholar] [CrossRef] [Green Version]
- Zampieri, M.; Toreti, A.; Ceglar, A.; Naumann, G.; Turco, M.; Tebaldi, C. Climate resilience of the top ten wheat producers in the Mediterranean and the Middle East. Reg. Environ. Change 2020, 20, 41. [Google Scholar] [CrossRef] [Green Version]
- Karkanis, A.; Ntatsi, G.; Lepse, L.; Fernández, J.A.; Vågen, I.M.; Rewald, B.; Alsiņa, I.; Kronberga, A.; Balliu, A.; Olle, M.; et al. Faba Bean cultivation–revealing novel managing practices for more sustainable and competitive European cropping systems. Front. Plant Sci. 2018, 2, 1115. [Google Scholar] [CrossRef]
- Skendžić, S.; Zovko, M.; Živković, I.P.; Lešić, V.; Lemić, D. The Impact of Climate Change on Agricultural Insect Pests. Insects 2021, 12, 440. [Google Scholar] [CrossRef]
- Pérez-Méndez, N.; Miguel-Rojas, C.; Jimenez-Berni, J.A.; Gomez-Candon, D.; Pérez-de-Luque, A.; Fereres, E.; Catala-Forner, M.; Villegas, D.; Sillero, J.C. Plant breeding and management strategies to minimize the impact of water scarcity and biotic stress in cereal crops under Mediterranean conditions. Agronomy 2022, 12, 75. [Google Scholar] [CrossRef]
- Rubiales, D.; Fondevilla, S.; Fernández-Aparicio, M. Development of pea breeding lines with resistance to Orobanche crenata Derived from pea landraces and wild Pisum spp. Agronomy 2021, 11, 36. [Google Scholar] [CrossRef]
- Gómez, J. Sustainability using cover crops in Mediterranean tree crops, olives and vines–challenges and current knowledge. Hung. Geogr. Bull. 2017, 66, 13–28. [Google Scholar] [CrossRef] [Green Version]
- Morugán-Coronado, A.; Linares Pérez, C.; Gómez-López, M.D.; Faz, Á.; Zornoza, R. The impact of intercropping, tillage and fertilizer type on soil and crop yield in fruit orchards under Mediterranean conditions: A meta-analysis of field studies. Agric. Syst. 2020, 178, 102736. [Google Scholar] [CrossRef]
- Swain, R.; Praveena, J.; Behera, M.; Rout, G.R. Instigating adaptation and mitigation strategies to combat impact of global climate change in fruit crops. In Cultivation for Climate Change Resilience; Taylor & Francis Group, LLC.: London, UK; Boca Raton, FL, USA; New York, NY, USA, 2023; pp. 28–67. [Google Scholar]
- Sabir, A.; Kucukbasmaci, A.; Taytak, M.; Bilgin, O.F.; Jawshle, A.I.M.; Mohammed, O.J.M.; Gayretli, Y. Sustainable viticulture practices on the face of climate change. Agric. Res. Technol. Open Access J. 2018, 17, 556033. [Google Scholar] [CrossRef]
- van Leeuwen, C.; Destrac-Irvine, A.; Dubernet, M.; Duchêne, E.; Gowdy, M.; Marguerit, E.; Pieri, P.; Parker, A.; de Rességuier, L.; Ollat, N. An update on the impact of climate change in viticulture and potential adaptations. Agronomy 2019, 9, 514. [Google Scholar] [CrossRef] [Green Version]
- Marin, D.; Armengol, J.; Carbonell-Bejarano, P.; Escalona, J.M.; Gramaje, D.; Hernandez-Montesa, E.; Intrigliolo, D.S.; Martínez Zapater, J.M.; Medrano, H.; Mirás-Arevalos, J.M.; et al. Challenges of viticulture adaptation to global change: Tackling the issue from the roots. Aust. J. Grape Wine Res. 2021, 27, 8–25. [Google Scholar] [CrossRef]
- Dinis, L.-T.; Bernardo, S.; Yang, C.; Fraga, H.; Malheiro, A.; Moutinho Pereira, J.; Santos, J. Mediterranean viticulture in the context of climate change. Ciência Téc. Vitiv. 2022, 37, 139–158. [Google Scholar] [CrossRef]
- Di Bene, C.; Dolores Gómez-López, M.; Francaviglia, R.; Farina, R.; Blasi, E.; Martínez-Granados, D.; Calatrava, J. Barriers and opportunities for sustainable farming practices and crop diversification strategies in Mediterranean cereal-based systems. Front. Environ. Sci. 2022, 10, 861225. [Google Scholar] [CrossRef]
- Morugán-Coronado, A.; Pérez-Rodríguez, P.; Insolia, E.; Soto-Gómez, D.; Fernández-Calviño, D.; Zornoza, R. The impact of crop diversification, tillage and fertilization type on soil total microbial, fungal and bacterial abundance: A worldwide meta-analysis of agricultural sites. Agric. Ecosyst. Environ. 2022, 329, 107867. [Google Scholar] [CrossRef]
- Lv, W.; Zhao, X.; Wu, P.; Lv, J.; He, H. A Scientometric analysis of worldwide intercropping research based on web of science database between 1992 and 2020. Sustainability 2021, 13, 2430. [Google Scholar] [CrossRef]
- Bybee-Finley, K.A.; Ryan, M.R. Advancing intercropping research and practices in industrialized agricultural landscapes. Agriculture 2018, 8, 80. [Google Scholar] [CrossRef] [Green Version]
- Maitra, S.; Hossain, A.; Brestic, M.; Skalicky, M.; Ondrisik, P.; Gitari, H.; Brahmachari, K.; Shankar, T.; Bhadra, P.; Palai, J.B.; et al. Intercropping—A low input agricultural strategy for food and environmental security. Agronomy 2021, 11, 343. [Google Scholar] [CrossRef]
- Huss, C.P.; Holmes, K.D.; Blubaugh, C.K. Benefits and risks of intercropping for crop resilience and pest management. J. Econ. Entomol. 2022, 115, 1350–1362. [Google Scholar] [CrossRef] [PubMed]
- Jodha, N.S. Intercropping in traditional farming systems. J. Dev. Stud. 1980, 16, 427–442. [Google Scholar] [CrossRef]
- Hugo, V.; Zuazo, D.; Rocío, C.; Pleguezuelo, R.; Ramón, J.; Martínez, F.; Raya, A.M.; Panadero, L.A.; Cárceles Rodríguez, B.; Concepción, M.; et al. Benefits of plant strips for sustainable mountain agriculture. Agron. Sustain. Dev. 2008, 28, 497–505. [Google Scholar] [CrossRef]
- Carrubba, A.; Scalenghe, R. Scent of Mare Nostrum- Medical and aromatic plants (MAPs) in Mediterranean soils. J. Sci. Food Agric. 2012, 92, 1150–1170. [Google Scholar] [CrossRef]
- Kleinwächter, M.; Selmar, D. New insights explain that drought stress enhances the quality of spice and medicinal plants: Potential applications. Agron. Sustain. Dev. 2015, 35, 121–131. [Google Scholar] [CrossRef] [Green Version]
- Golijan, J.; Markovic, D. The benefits of organic production of medicinal and aromatic plants in intercropping system. Acta Agric. Serb. 2018, 23, 61–76. [Google Scholar] [CrossRef]
- Karkanis, A.C.; Athanassiou, C.G. Natural insecticides from native plants of the Mediterranean Basin and their activity for the control of major insect pests in vegetable crops: Shifting from the past to the future. J. Pest. Sci. 2021, 94, 187–202. [Google Scholar] [CrossRef]
- Maurya, P.; Mazeed, A.; Kumar, D.; Ahmad, I.; Suryavanshi, P. Medicinal and aromatic plants as an emerging source of bioherbicides. Curr. Sci. 2022, 122, 258–266. [Google Scholar] [CrossRef]
- Greff, B.; Sáhó, A.; Lakatos, E.; Varga, L. Biocontrol activity of aromatic and medicinal plants and their bioactive components against soil-borne pathogens. Plants 2023, 12, 706. [Google Scholar] [CrossRef]
- Rawat, N.; Puni, L. Intercropping of medicinal and aromatic plants with vegetable crops–a review. MFP News 2009, 19, 14–18. [Google Scholar]
- Dikir, W. Role of intercropping some aromatic and medicinal plants with fruit vegetables crops, a Review. Glob. Acad. J. Agric. Biosci. 2022, 4, 22–30. [Google Scholar] [CrossRef]
- Rao, S.G.R.; Radhika, R.M. Prospects for sustainable cultivation of medicinal and aromatic plants in India. In Sustainable Uses and Prospects of Medicinal Plants; Kambizi, L., Bvenura, C., Eds.; Taylor & Francis Group, LLC.: Boca Raton, FL, USA, 2023; pp. 227–244. [Google Scholar]
- Joffre, R.; Rambal, S. Mediterranean Ecosystems. In Encyclopedia of Life Sciences; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2001; pp. 1–7. [Google Scholar] [CrossRef]
- Ulbrich, U.; Xoplaki, E.; Dobricic, S.; García-Herrera, R.; Lionello, P.; Adani, M.; Baldi, M.; Barriopedro, D.; Coccimiglio, P.; Dalu, G.; et al. Past and current climate changes in the Mediterranean region. In Regional Assessment of Climate Change in the Mediterranean. Volume 1: Air, Sea and Precipitation and Water; Navarra, A., Tubiana, L., Eds.; Springer Nature: London, UK, 2013; pp. 9–51. [Google Scholar] [CrossRef]
- New, M.; Hulme, M.; Jones, P. Representing twentieth-century space–time climate variability. Part II: Development of 1901–96 monthly grids of terrestrial surface climate. J. Clim. 2000, 13, 2217–2238. [Google Scholar] [CrossRef]
- Beck, H.; Zimmermann, N.; McVicar, T.; Vergopolan, N.; Berg, A.; Wood, E.F. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci. Data 2018, 5, 180214. [Google Scholar] [CrossRef] [Green Version]
- McKinsey Global Institute. A Mediterranean Basin without a Mediterranean Climate? A Case Study. 2020. Available online: https://www.mckinsey.com/capabilities/sustainability/our-insights/a-mediterranean-basin-without-a-mediterranean-climate (accessed on 6 July 2023).
- Fernandez, E.; Mojahid, H.; Fadón, E.; Rodrigo, J.; Ruiz, D.; Egea, J.A.; Ben, M.M.; Kodad, O.; El Yaacoubi, A.; Ghrab, M.; et al. Climate change impacts on winter chill in Mediterranean temperate fruit orchards. Reg. Environ. Change 2023, 23, 7. [Google Scholar] [CrossRef]
- World Population Review. 2023. Available online: https://worldpopulationreview.com/country-rankings/almond-production-by-country (accessed on 12 May 2023).
- Martínez-Mena, M.; Boix-Fayos, C.; Carrillo-López, E.; Díaz-Pereira, E.; Zornoza, R.; Sánchez-Navarro, V.; Acosta, J.A.; Martínez-Martínez, S.; Almagro, M. Short-term impact of crop diversification on soil carbon fluxes and balance in rainfed and irrigated woody cropping systems under semiarid Mediterranean conditions. Plant Soil 2021, 467, 499–514. [Google Scholar] [CrossRef]
- Sánchez-Navarro, V.; Shahrokh, V.; Martínez-Martínez, S.; Acosta, J.; Almagro, M.; Martínez-Mena, M.; Boix-Fayos, C.; Diaz-Pereira, E.; Zornoza, R. Perennial alley cropping contributes to decrease soil CO2 and N2O emissions and increase soil carbon sequestration in a Mediterranean almond orchard. Sci. Total Environ. 2022, 845, 157225. [Google Scholar] [CrossRef]
- Elmasry, S.; Abdelfatah, A.; Abdelkader, M. Response of productivity and competitive indices of pomegranate trees and sweet basil and rosemary to different intercropping systems. Int. J. Environ. 2019, 8, 1–11. [Google Scholar]
- Laffon, L.; Bischoff, A.; Gautier, H.; Gilles, F.; Gomez, L.; Lescourret, F.; Franck, P. Conservation biological control of codling moth (Cydia pomonella): Effects of two aromatic plants, basil (Ocimum basilicum) and French marigolds (Tagetes patula). Insects 2022, 13, 908. [Google Scholar] [CrossRef]
- FAOSTAT. Crops and Livestock Products. Countries–Select All; Regions–World + (Total); Elements–Production Quantity; Items–Grapes; Years–2020. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 30 April 2023).
- Dittrich, F.; Iserloh, T.; Treseler, C.-H.; Hüppi, R.; Ogan, S.; Seeger, M.; Thiele-Bruhn, S. Crop diversification in viticulture with aromatic plants: Effects of intercropping on grapevine productivity in a steep-slope vineyard in the Mosel area, Germany. Agriculture 2021, 11, 95. [Google Scholar] [CrossRef]
- Belal, B.; El Kenawy, M.; Ismail, S.; El-Hameed, A. Effect of intercropping of Thompson seedless grapevines with some medicinal plants on vine nutritional status, yield, berry quality and the microbiological activity of the soil. J. Plant Prod. 2017, 8, 495–501. [Google Scholar] [CrossRef] [Green Version]
- Mohsen, F.; Elashry, R.; Zyada, H.; El-akhrasy, R.M. Evaluation the effect of intercropping garlic with grapevines on productivity, phytoremediation, competitive indices and plant parasitic nematode community. J. Plant Prod. 2021, 12, 407–414. [Google Scholar] [CrossRef]
- Mota-Segantini, D.; Lombini, A.; Rodríguez Declet, A.; De Giorgio, R.; D’Onofrio, C.; Rombolà, A.D. Effects of intercropping medicinal and aromatic plants (MAPs) on grapevine cv. Sangiovese berry volatile compounds. Agroecol. Sustain. Food Syst. 2022, 46, 452–462. [Google Scholar] [CrossRef]
- Rodríguez-Declet, A.; Castro-Marín, A.; Lombini, A.; Sevindik, O.; Selli, S.; Chinnici, F.; Rombolà, A.D. Characterization of berry aromatic profile of cv. Trebbiano Romagnolo grapes and effects of intercropping with Salvia officinalis L. Agronomy 2022, 12, 344. [Google Scholar] [CrossRef]
- World Population Review. 2023. Available online: https://worldpopulationreview.com/country-rankings/olive-oil-production-by-country (accessed on 12 May 2023).
- Tziolas, E.; Ispikoudis, S.; Mantzanas, K.; Koutsoulis, D.; Pantera, A. Economic and environmental assessment of olive agroforestry practices in northern Greece. Agriculture 2022, 12, 851. [Google Scholar] [CrossRef]
- Katsoulis, G.I.; Kimbaris, A.C.; Anastasaki, E.; Damalas, C.A.; Kyriazopoulos, A.P. Chamomile and anise cultivation in olive agroforestry systems. Forests 2022, 13, 128. [Google Scholar] [CrossRef]
- Razouk, R.; Daoui, K.; Ramdani, R.; Chergaoui, A. Optimal distance between olive trees and annual crops in rainfed intercropping system in northern Morocco. JOCSR 2016, 1, 23–32. [Google Scholar]
- Aguilera-Huertas, J.; Lozano-García, B.; González-Rosado, M.; Parras-Alcántara, L. Effects of management and hillside position on soil organic carbon stratification in Mediterranean centenary olive grove. Agronomy 2021, 11, 650. [Google Scholar] [CrossRef]
- González-Rosado, M.; Parras-Alcántara, L.; Aguilera-Huertas, J.; Lozano-García, B. Crop diversification effects on soil aggregation and aggregate-associated carbon and nitrogen in short-term rainfed olive groves under semiarid Mediterranean conditions. Horticulturae 2022, 8, 618. [Google Scholar] [CrossRef]
- Moreno-Delafuente, A.; Antón, O.; Bienes, R.; Borrego, A.; Cuevas, A.; García-Díaz, A.; Sastre, B. Introduction of aromatic plants and beehives to enhance ecosystem services in traditional olive orchards. Acta Hortic. 2022, 1355, 55–62. [Google Scholar] [CrossRef]
- Las Casas, G.; Ciaccia, C.; Iovino, V.; Ferlito, F.; Torrisi, B.; Lodolini, E.M.; Giuffrida, A.; Catania, R.; Nicolosi, E.; Bella, S. Effects of different inter-row soil management and intra-row living mulch on spontaneous flora, beneficial insects, and growth of young olive trees in southern Italy. Plants 2022, 11, 545. [Google Scholar] [CrossRef]
- Statistica. 2023. Harvested Area of Dates Worldwide. Available online: htttps://www.statista.com/statistics/960426/harvested-area-of-dates-by-leading-country-worldwide/ (accessed on 15 April 2023).
- Nagwa, R.A.; Ahmed, F.F.; Hamad, A.S.A. Physiological studies on intercropping of some legumes on Sewy date palms. World Rural Observ. 2014, 6, 81–88. [Google Scholar]
- Mefleh, M. Cereals of the Mediterranean region: Their origin, breeding history and grain quality Traits. In Cereal-Based Foodstuffs: The Backbone of Mediterranean Cuisine; Boukid, F., Ed.; Springer: Cham, Switzerland, 2021; pp. 1–18. [Google Scholar] [CrossRef]
- Kakabouki, I.; Tataridas, A.; Mavroeidis, A.; Kousta, A.; Roussis, I.; Katsenios, N.; Efthimiadou, A.; Papastylianou, P. Introduction of alternative crops in the Mediterranean to satisfy EU Green Deal goals. A review. Agron. Sustain. Dev. 2021, 41, 71. [Google Scholar] [CrossRef]
- Martinelli, F.; Vollheyde, A.-L.; Cebrián-Piqueras, M.A.; von Haaren, C.; Lorenzetti, E.; Barberi, P.; Loreto, F.; Piergiovanni, A.R.; Totev, V.V.; Bedini, A.; et al. LEGU-MED: Developing biodiversity-based agriculture with legume cropping systems in the Mediterranean basin. Agronomy 2022, 12, 132. [Google Scholar] [CrossRef]
- Martineau-Côté, D.; Achouri, A.; Karboune, S.; L’Hocine, L. Faba Bean: An untapped source of quality plant proteins and bioactives. Nutrients 2022, 14, 1541. [Google Scholar] [CrossRef]
- Toukabri, W.; Ferchichi, N.; Hlel, D.; Jadlaoui, M.; Kheriji, O.; Zribi, F.; Taamalli, W.; Mhamdi, R.; Trabelsi, D. Improvements of durum wheat main crop in weed control, productivity and grain quality through the inclusion of fenugreek and clover as companion plants: Effect of N fertilization regime. Agronomy 2021, 11, 78. [Google Scholar] [CrossRef]
- Kchaou, R.; Benyoussef, S.; Jebari, S.; Harbaoui, K.; Berndtsson, R. Forage potential of cereal–legume mixtures as an adaptive climate change strategy under low input systems. Sustainability 2023, 15, 338. [Google Scholar] [CrossRef]
- Lamlom, M.M.; Hafez, Y.A.M. Evaluation of some maize cultivars under different intercropping patterns with basil. J. Product. Dev. 2018, 23, 253–259. [Google Scholar] [CrossRef] [Green Version]
- Badawy, S.; Shalaby, G. Effect of intercropping of sugarbeet with onion and garlic on insect infestation, sugar beet yield and economics. J. Plant Prod. 2015, 6, 903–914. [Google Scholar] [CrossRef]
- Khafagy, I.F.; Samy, M.A.; Hamza, A.M. Intercropping of some aromatic plants with sugar beet, its effects on the tortoise beetle Cassida vittata Vill. infestation, appearance predators and sugar beet yield. J. Plant Prot. Pathol. 2020, 11, 103–110. [Google Scholar] [CrossRef]
- Khafagy, I.F.; Abd El-Aty, H.S.; Ramadan, G.M. Impact of aromatic plants intercropped with sugar beet on infestation by cotton leafworm, sugar beet fly and associated predators. Egypt. J. Plant Prot. Res. Inst. 2022, 5, 40–46. [Google Scholar]
- Schader, C.; Zaller, J.G.; Köpke, U. Cotton-basil intercropping: Effects on pests, yields and economical parameters in an organic field in Fayoum, Egypt. Biol. Agric. Hortic. 2005, 23, 59–72. [Google Scholar] [CrossRef]
- Abdel-Monaim, M.F.; Abo-Elyousr, K.A.M. Effect of preceding and intercropping crops on suppression of lentil damping-off and root rot disease in New Valley–Egypt. Crop Prot. 2012, 32, 41–46. [Google Scholar] [CrossRef]
- Maffei, M.; Mucciarelli, M. Essential oil yield in peppermint/soybean strip intercropping. Field Crops Res. 2003, 84, 229–240. [Google Scholar] [CrossRef]
- Rizk, A.M. Effect of strip-management on the population of the aphid, aphis craccivora koch and its associated predators by intercropping faba bean, Vicia faba L. with coriander, Coriandrum sativum L. Egypt. J. Biol. Pest Control. 2011, 21, 81–87. [Google Scholar]
- El-Shamy, M.A.; Abd El-Aty, H.S. Effect of intercropping between garlic and faba bean on yield and infestation by some piercing-sucking insect pests. J. Plant Prot. Pathol. 2021, 12, 663–670. [Google Scholar] [CrossRef]
- Abdullah, S.; Fouad, H.A. Effect of intercropping agroecosystem on the population of black legume aphid, Aphis craccivora Koch and yield of faba bean crop. J. Entomol. Zool. 2016, 4, 1367–1371. [Google Scholar]
- Hassan, H.M.S.; Abou El-kasem, S.A.A.; El-kassas, M.S.A. Influence of intercropping system, water intervals and their interaction on growth, yield, and some competitive indices of broad bean and anise plants. Plant Arch. 2021, 21, 1240–1256. [Google Scholar] [CrossRef]
- Fernández-Aparicio, M.; Emeran, A.A.; Rubiales, D. Control of Orobanche crenata in legumes intercropped with fenugreek (Trigonella foenum-graecum). Crop Prot. 2008, 27, 653–659. [Google Scholar] [CrossRef]
- Zeid, M.; Komeil, D. Same-hill intercropping of different plant species with faba bean for control of Orobanche Crenata. Alex. Sci. Exch. 2019, 40, 228–238. [Google Scholar] [CrossRef]
- Abdel-Wahab, S.; Abdel-Wahab, E. Cropping systems of fenugreek with faba bean to reduce broomrape infestation. Legum. Res. 2021, 44, 579–592. [Google Scholar] [CrossRef]
- Ghalwash, A.; Gharib, H.; Khaffagy, A. Integrated broomrape (Orobanche crenata Forsk.) control in faba bean (Vicia faba L.) with nitrogen fertilizer, intercropping and herbicides. Egypt. J. Agron. 2012, 34, 301–319. [Google Scholar] [CrossRef] [Green Version]
- EL-Sherbeni, A.; Hamed, S.; Khaffagy, A.; ELkmash, R. Effect of cultivars, intercropping and glyphosate herbicide on broomrape (Orobanche crenata Forsk) and faba bean productivity. Arch. Agric. Sci. J. 2021, 4, 235–250. [Google Scholar] [CrossRef]
- El-Mehy, A.A.; El-Gendy, H.M.; Aioub, A.A.A.; Mahmoud, S.F.; Abdel-Gawad, S.; Elesawy, A.E.; Elnahal, A.S.M. Response of faba bean to intercropping, biological and chemical control against broomrape and root rot diseases. Saudi J. Biol. Sci. 2022, 29, 3482–3493. [Google Scholar] [CrossRef]
- Abbes, Z.; Trabelsi, I.; Kharrat, M.; Amri, M. Intercropping with fenugreek (Trigonella foenum-graecum) enhanced seed yield and reduced Orobanche foetida infestation in faba bean (Vicia faba). Biol. Agric. Hortic. 2019, 35, 238–247. [Google Scholar] [CrossRef]
- Mikić, A. Brief but alarming reminder about the need for reintroducing ‘Greek hay’ (Trigonella foenum-graecum L.) in Mediterranean agricultures. Genet. Resour. Crop. Evol. 2015, 62, 951–958. [Google Scholar] [CrossRef]
- Ayilara, M.; Abberton, M.; Oyatomi, O.; Odeyemi, O.; Babalola, O. Potentials of underutilized legumes in food security. Front. Soil Sci. 2022, 2, 1020193. [Google Scholar] [CrossRef]
- Kalamartzis, I.; Dordas, C.; Georgiou, P.; Menexes, G. The use of appropriate cultivar of basil (Ocimum basilicum) can increase water use efficiency under water stress. Agronomy 2020, 10, 70. [Google Scholar] [CrossRef] [Green Version]
- Kassahun, B. Unleashing the exploitation of coriander (Coriander sativum L.) for biological, industrial and pharmaceutical applications. Int. J. Agric. Sustain. 2020, 8, 552–564. [Google Scholar] [CrossRef]
- Hernández-López, I.; Ortiz-Solà, J.; Alamprese, C.; Barros, L.; Shelef, O.; Basheer, L.; Rivera, A.; Abadias, M.; Aguiló-Aguayo, I. Valorization of local legumes and nuts as key components of the Mediterranean diet. Foods 2022, 11, 3858. [Google Scholar] [CrossRef]
- Duru, S.; Hayran, S.; Gul, A. The analysis of competitiveness of Mediterranean countries in the world citrus trade. Mediterr. Agric. Sci. 2022, 35, 21–26. [Google Scholar] [CrossRef]
- Losada, M.R.M.; Domínguez, N.F.; Fernández Lorenzo, J.L.; Hernández, P.G.; Rigueiro Rodríguez, A. Lessons Learnt: Medicinal Plants in Silvoarable Systems Galicia, Spain. AGFORWARD (613520) Project. Available online: https://www.agforward.eu/documents/LessonsLearnt/WP4_ES_Medicinal_plants_lessons-learnt.pdf (accessed on 20 April 2023).
- Mantzanas, K.; Papanastasis, V.; Pantera, A.; Papadopoulos, A. Lessons Learnt. Silvoarable AGROFORESTRY Systems in Greece. AGFORWARD (613520) Project. Available online: https://www.agforward.eu/documents/LessonsLearnt/WP4%20GR_Silvoarable_lessons_learnt.pdf (accessed on 20 April 2023).
- Lithourgidis, A.S.; Dordas, C.A.; Damalas, C.A.; Vlachostergios, D. Annual intercrops: An alternative pathway for sustainable agriculture. Aust. J. Crop Sci. 2011, 5, 396–410. [Google Scholar]
- Chrysargyris, A.; Skaltsa, H.; Konstantopoulou, M. Medicinal and aromatic plants (MAPs): The connection between cultivation practices and biological properties. Agronomy 2022, 12, 3108. [Google Scholar] [CrossRef]
Deciduous Tree Crops | MAP Intercrops (Intercropping Type) | Country/ Agronomic Practices | Improved Land Use Efficiency (LUE); ↑ Cash Crop/MAP Yields; ↑ Economic Return; and ↑ Weed Control | Improved Soil Health ↑ Soil Organic C (SOC) + Org Matter/Minerals/Beneficial Organisms/C Sequestration ↓ Erosion, ↓ GHG | Bio-control ↓ Pests/Pathogens/Disease Symptoms; ↑ Natural Enemies (Parasitism and Predators) | Improved Quality of Cash/MAP Crop ↑ Nutritional/Functional Properties |
---|---|---|---|---|---|---|
Almond | Rosemary, Sage and Thyme (strip) [39] | Spain (rainfed, no tillage) | ↓ almond yield offset by ↑ MAP oil yield: thyme and rosemary, res. | ↓ erosion and nutrient losses: thyme, rosemary and sage, res. | No information provided | No information provided |
Almond | Caper and Thyme (alley) [18,56,57] | Spain (rainfed, no tillage) | ↑ LUE: ns almond yield, ↑ thyme oil [18,57] | ↑ soil H2O + stability + aggregation: thyme and caper, res.; ↑ SOC and avail. macro-nutrients: thyme and caper, res. [18] ↑ SOC: thyme only; ↓ CO2: thyme + caper [56,57]; ↑ soil C balance: thyme and caper, res. [56] | No information provided | No information provided |
Pomegranate | Basil and Rosemary (alley) [58] | Egypt (irrigated) | ↑ LUE (1:4 plant ratio): rosemary and basil, res.; ↑ pomegranate yield | No information provided | No information provided | ↑ Brix, anthocyanin content and ↓ abiotic injury of fruit ↑ volatile oils, volatile oil yield for both MAPs |
Apple | Basil and Marigold (row) [59] | France (peri-urban and irrigated) | No information provided | No information provided | ↑ parasitism of coddling moth, ns predators: basil only; ↓ pests + predators: marigold only. Ns for disease symptoms | No information provided |
Grape Crops | MAP Intercrops (Intercropping Type) | Country/ Agronomic Practices | Improved Land Use Efficiency (LUE); ↑ Cash Crop/MAP Yields; ↑ Economic Return; and ↑ Weed Control | Improved Soil Health ↑ Soil Organic C (SOC) + Org Matter/Minerals/Beneficial Organisms/C Sequestration ↓ Erosion, ↓ GHG | Fauna Bio-Control ↓ Pests/Pathogens/Disease Symptoms; ↑ Natural Enemies (Parasitism and Predators) | Improved Quality of Cash/MAP Crop ↑ Nutritional/Functional Properties |
---|---|---|---|---|---|---|
Thompson seedless grapevines | Anise, Black Cumin, Fenugreek and Parsley (row) [62] | Egypt (irrigated) | ↑ Grape yield: fenugreek, anise, parsley and cumin, res. ↑ economic return: fenugreek, cumin, parsley and cumin, res. | ↑ OM: fenugreek and anise ↑ N, P and K: fenugreek, anise, parsley and cumin, res. ↑ microbes: fenugreek, anise, parsley and cumin, res. | No information provided | ↑ sugars, Brix and acidity: fenugreek and anise, res. |
Flame seedless grapevines | Garlic (row) [63] | Egypt (irrigated) | Ns effect on grape and garlic yield; ↑ LUE and ↑ economic return | No information provided | ↓ Parasitic nematode infestation | Ns effect on Brix and anthocyanin of grape |
Sangiovese; Trebbiano Romagnolo | Basil-Lemon- Balm-Sage; (row) [64] Sage (row) [65] | Italy (no irrigation + fertilization) | Ns effect on grape yield [60] | No information provided | No information provided | ↑ Volatile organic compounds (VOCs) [60,61] |
Field Cereal, Sugar and Non-Food Crops | MAP Intercrops (Intercropping Type) | Country/ Agronomic Practices | Improved Land Use Efficiency (LUE); ↑ Cash Crop/MAP Yields; ↑ Economic Return; and ↑ Weed Control | Improved Soil Health ↑ Soil Organic C (SOC) + Org Matter/Minerals/Beneficial Organisms/C Sequestration ↓ Erosion, ↓ GHG | Fauna Bio-Control ↓ Pests/Pathogens/Disease Symptoms; ↑ Natural Enemies (Parasitism and Predators) | Improved Quality of Cash/MAP Crop ↑ Nutritional/Functional Properties |
---|---|---|---|---|---|---|
Durum wheat | Fenugreek and Fenugreek–clover mix (inter-row) [80] | Tunisia rainfed | ↑ Weed control: fenugreek–clover and fenugreek, res. ↑ Grain yield: fenugreek–clover and fenugreek, res. | ↑ Soil moisture: fenugreek mix and fenugreek, res. | No information provided | ↑ Grain quality (protein) fenugreek–clover and fenugreek, res. |
Triticale | Fenugreek and Vetch + mix [81] | Tunisia rainfed | ↑ LER, ↑ forage yield: vetch and fenugreek, res. | No information provided | No information provided | No information provided |
Maize | Sweet Basil (row) [82] | Egypt | ↑ LER (basil: maize 100:33) and ↑ gross income (basil: 100:25) | No information provided | No information provided | ↓ Volatile basil oil in intercropping compared to basil alone |
Sugar beet | Garlic (row, different distances) [83] | Egypt | ↓ Sugar beet yield and ↑ gross return both crops at 25 cm and 50 cm distance | No information provided | ↓ Tortoise beetle pest, cotton leaf worm and beet moth pests | Ns on sugar percentage and ↑ juice quality |
Sugar beet | Fennel, Coriander, Dill and Marjoram (row) [84,85] | Egypt no pesticide use | ↑ Sugar beet yield: fennel, dill, coriander and marjoram, res. [84] | No information provided | ↓ Tortoise beetle coriander, fennel, dill and marjoram, res. [84] ↓ Cotton leaf worm: fennel, dill, coriander and marjoram, res. ↓ Sugar beet fly pests: dill, fennel, coriander and marjoram, res. [84] Predators: all but specific for each MAP [85] | ↑ Sucrose: fennel, dill, coriander and marjoram, res. [84] |
Cotton | Sweet Basil (Row: low + high basil density; 60 and 90 cm) [86] | Egypt irrigated and no pesticide use | ↑ Cotton yield, ↑ LER: all except low density at 90 cm and ↑ gross income: low density at 60 cm is the best | No information provided | ↓ Pink bollworm: high basil density at 60 cm. ↓ Spiny bollworm: low basil density at 90 cm. ↑ Arthropod and spider predators: 60 cm and 90 cm, res. | No information provided |
Field Legume Crops | MAP Intercrops (Intercropping Type) | Country/ Agronomic Practices | Improved Land Use Efficiency (LUE); ↑ Cash Crop/MAP Yields; ↑ Economic Return; and ↑ Weed Control | Improved Soil Health ↓ Soil Organic C (SOC) + Org Matter/Minerals/Beneficial Organisms/C Sequestration↓ Erosion, ↓ GHG | Fauna Bio-Control ↓ Pests/Pathogens/Disease Symptoms; ↑Natural Enemies (Parasitism and Predators) | Improved Quality of Cash/MAP Crop ↑ Nutritional/Functional Properties |
---|---|---|---|---|---|---|
Lentil | Anise, Cumin and Garlic (row) [87] | Egypt | ↑ Lentil seed yield: garlic and anise, res. | No information provided | ↓ Dampening off and root rot: anise, garlic and cumin, res. | No information provided |
Soybean | Peppermint (row) [88] | Italy irrigated | No information provided | No information provided | No information provided | ↑ Leaf yield and ↑ essential oil components of peppermint |
Faba bean | Coriander (ridge row) [89] | Egypt no pesticide use | ↑ Bean yield | No information provided | ↓ Aphid numbers and ↑ ladybird and lacewing hoverfly predators | No information provided |
Faba bean | Garlic (2 varieties row) [90] | Egypt | ↑ Economic return: Balady garlic and Sids-40 garlic, res. | No information provided | ↓ Aphid, leafhopper and whitefly infestation: Balady garlic and Sids-40 garlic, res. | No Information provided |
Faba bean | Coriander and Fenugreek (ridge row, high + low density) [91] | Egypt no pesticide use | ↑ Bean yield: only fenugreek, low density only | No information provided | ↓ Aphid numbers: fenugreek and coriander, res. | No information provided |
Faba bean | Anise (row, different densities) [92] | Egypt irrigated | ↑ LUE: anise: faba bean, 1:1 and 1:2 | No information provided | No information provided | No information provided |
Faba bean | Fenugreek + mixes [93] | Egypt conducted in infested field | ↓ Broomrape parasite emerged shoots | No information provided | No information provided | No information provided |
Faba bean | Fenugreek (row) [94] | Egypt | Ns effects on broomrape infestation in farmer’s field: all intercrops | No information provided | No information provided | No information provided |
Faba bean | Fenugreek (row) [95] | Egypt different row width + density combinations | ↑ LER and ↑ economic return: 100% fenugreek, 100% faba bean in wide ridges and other combinations, res. ↓ Broomrape infestation: all combination treatments | ↑ Soil phenol content: all combination treatments | No information provided | No information provided |
Faba bean | Fenugreek (row) [96] | Egypt, +/-herbicide treatment | ↓ Broomrape parasite: herbicide + fenugreek and fenugreek alone, res. | No information provided | No information provided | No information provided |
Faba bean | Fenugreek, Garlic and Parsley (trap intercropping) [97] | Egypt comparisons made to herbicide applications | ↑ Faba bean biological yield: fenugreek and garlic, res. ↓ Broomrape infestation: garlic + fenugreek and parsley, res. | No information provided | No information provided | No information provided |
Faba Bean | Fenugreek and Garlic (row) [98] | Egypt fields naturally infested and comparison to herbicides | ↑ LER ↑ economic return: garlic + AMF and fenugreek + AMF ↓ Broomrape infestation: fenugreek + AMF and garlic + AMF, res. | No information provided | ↓ Dampening off and root rot: fenugreek + AMF and garlic + AMF, res. | No information provided |
Faba bean | Fenugreek (inter-row) [99] | Tunisia rainfed | ↑ Faba bean yield ↓ Broomrape parasite spikes | No information provided | No information provided | No information provided |
MAP Intercrop Common (Scientific) Name, Category | MAP Intercropped with: | Article Citations | Research Countries |
---|---|---|---|
Fenugreek (Trigonella foenum-graecum L.), Annual legume | Grape, Durum wheat, Triticale, Date palm and Faba bean | 12 [62,75,80,81,91,93,94,95,96,97,98,99] | Egypt and Tunisia |
Garlic (Allium sativum L.), Annual bush | Grape, Sugar beet, Lentil and Faba bean | 6 [63,83,87,90,97,98] | Egypt |
Coriander (Coriandrum sativum L.), Herbaceous annual herb | Olive, Sugar beet and Faba bean | 5 [69,84,85,89,91] | Egypt and Morocco |
Thyme (Thymus baeticus L. and T. hyemalis Lange), Evergreen perennial shrub | Almond and Olive | 5 [18,39,56,57,73] | Spain, Italy |
Sweet Basil (Ocimum basilicum L.), Herbaceous annual herb | Pomegranate, Apple, Grape Maize and Cotton | 5 [58,59,64,82,86] | Egypt, France and Italy |
Anise (Pimpinella anisum L.), Herbaceous annual herb | Grape, Olive, Lentil and Faba bean | 4 [62,68,87,92] | Egypt and Greece |
Sage (Salvia lavandulifolia L.), Evergreen perennial shrub | Almond, Grape and Olive | 4 [39,64,65,73] | Spain, Italy and Egypt |
Caper (Capparis spinosa L.), Evergreen perennial bush | Almond | 3 [18,56,57] | Spain |
Lavandin (Lavandula × intermedia Emeric ex Loisel.), Evergreen perennial shrub | Olive | 3 [70,71,72] | Spain |
Rosemary (Rosmarinus officinalis L.), Evergreen perennial shrub | Almond, Pomegranate and Olive | 3 [39,58,72] | Spain and Egypt |
Black cumin (Nigella sativa L.), Herbaceous annual herb | Grape and Lentil | 2 [62,87] | Egypt |
Dill (Anethum graveolens L.), Herbaceous annual herb | Sugar beet | 2 [84,85] | Egypt |
Fennel (Foeniculum vulgare L.), Deciduous perennial herb | Sugar beet | 2 [84,85] | Egypt |
Marjoram (Origanum majorana L.), Herbaceous annual herb | Sugar beet | 2 [84,85] | Egypt |
Parsley (Petroselinum sativum L.), Biennial herb | Grape and Faba bean | 2 [62,97] | Egypt |
Saffron (Crocus sativus L.), Deciduous perennial herb | Olive | 2 [70,71] | Spain |
Chamomile (Matricaria recutita L.), Herbaceous annual herb | Olive | 1 [68] | Greece |
Lavender (Lavandula angustifolia), Evergreen perennial shrub | Olive | 1 [72] | Spain |
Lemon balm (Melissa officinalis L.), bushy perennial herb | Grape | 1 [64] | Italy |
Lemongrass (Cymbopogon citratus L.), Evergreen perennial grass | Olive | 1 [73] | Italy |
Marigold (Tagetes patula L.), Annual bush | Apple | 1 [59] | France |
Peppermint (Mentha × piperita L.), Evergreen perennial herb | Soybean | 1 [88] | Italy |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marotti, I.; Whittaker, A.; Bağdat, R.B.; Akin, P.A.; Ergün, N.; Dinelli, G. Intercropping Perennial Fruit Trees and Annual Field Crops with Aromatic and Medicinal Plants (MAPs) in the Mediterranean Basin. Sustainability 2023, 15, 12054. https://doi.org/10.3390/su151512054
Marotti I, Whittaker A, Bağdat RB, Akin PA, Ergün N, Dinelli G. Intercropping Perennial Fruit Trees and Annual Field Crops with Aromatic and Medicinal Plants (MAPs) in the Mediterranean Basin. Sustainability. 2023; 15(15):12054. https://doi.org/10.3390/su151512054
Chicago/Turabian StyleMarotti, Ilaria, Anne Whittaker, Reyhan Bahtiyarca Bağdat, Pervin Ari Akin, Namuk Ergün, and Giovanni Dinelli. 2023. "Intercropping Perennial Fruit Trees and Annual Field Crops with Aromatic and Medicinal Plants (MAPs) in the Mediterranean Basin" Sustainability 15, no. 15: 12054. https://doi.org/10.3390/su151512054
APA StyleMarotti, I., Whittaker, A., Bağdat, R. B., Akin, P. A., Ergün, N., & Dinelli, G. (2023). Intercropping Perennial Fruit Trees and Annual Field Crops with Aromatic and Medicinal Plants (MAPs) in the Mediterranean Basin. Sustainability, 15(15), 12054. https://doi.org/10.3390/su151512054