Vehicle Environmental Efficiency Evaluation in Different Regions in China: A Combination of the Life Cycle Analysis (LCA) and Two-Stage Data Envelopment Analysis (DEA) Methods
Abstract
:1. Introduction
2. Literature Review
2.1. LCA Environmental Efficiency Evaluation of Vehicles
2.2. LCA+DEA, a Comprehensive Evaluation Model
3. Material and Methods
3.1. Research Scope
3.2. WTT: Energy Extraction, Processing and Transportation
3.2.1. Crude Oil and Fossil Products
3.2.2. Provincial Electricity
Power Production and Loss in Provinces
Inter-Provincial Transport
3.3. TTW: Vehicle Operation
3.3.1. Vehicle Performance
3.3.2. The Impact of Temperature
3.3.3. The Impact of Congestion
3.4. Two-Stage SBM-DEA Model
4. Results and Discussion
4.1. Provincial WTT-Stage Vehicle Environmental Efficiency
4.2. Provincial TTW-Stage Vehicle Environmental Efficiency
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Onat, N.C.; Abdella, G.M.; Kucukvar, M.; Kutty, A.A.; Al-Nuaimi, M.; Kumbaroğlu, G.; Bulu, M. How eco-efficient are electric vehicles across Europe? A regionalized life cycle assessment-based eco-efficiency analysis. Sustain. Dev. 2021, 29, 941–956. [Google Scholar] [CrossRef]
- Nimesh, V.; Kumari, R.; Soni, N.; Goswami, A.K.; Reddy, V.M. Implication viability assessment of electric vehicles for different regions: An approach of life cycle assessment considering exergy analysis and battery degradation. Energy Convers. Manag. 2021, 237, 114104. [Google Scholar] [CrossRef]
- De Santis, M.; Silvestri, L.; Forcina, A. Promoting electric vehicle demand in Europe: Design of innovative electricity consumption simulator and subsidy strategies based on well-to-wheel analysis. Energy Convers. Manag. 2022, 270, 116279. [Google Scholar] [CrossRef]
- Shafique, M.; Luo, X. Environmental life cycle assessment of battery electric vehicles from the current and future energy mix perspective. J. Environ. Manag. 2022, 303, 114050. [Google Scholar] [CrossRef]
- Mamghaderi, M.; Mamkhezri, J.; Khezri, M. Assessing the environmental efficiency of OECD countries through the lens of ecological footprint indices. J. Environ. Manag. 2023, 338, 117796. [Google Scholar] [CrossRef]
- Gan, Y.; Lu, Z.; He, X.; Wang, M.; Amer, A.A. Cradle-to-Grave Lifecycle Analysis of Greenhouse Gas Emissions of Light-Duty Passenger Vehicles in China: Towards a Carbon-Neutral Future. Sustainability 2023, 15, 2627. [Google Scholar] [CrossRef]
- Pang, Q.; Qiu, M.; Zhang, L.; Chiu, Y.-H. Congestion effects of energy and capital in China’s carbon emission reduction: Evidence from provincial levels. Energy 2023, 274, 127344. [Google Scholar] [CrossRef]
- Wang, L.; Yu, Y.; Huang, K.; Zhang, Z.; Li, X. The inharmonious mechanism of CO2, NOx, SO2, and PM2.5 electric vehicle emission reductions in Northern China. J. Environ. Manag. 2020, 274, 111236. [Google Scholar] [CrossRef]
- Zahoor, A.; Yu, Y.; Zhang, H.; Nihed, B.; Afrane, S.; Peng, S.; Sápi, A.; Lin, C.J.; Mao, G. Can the new energy vehicles (NEVs) and power battery industry help China to meet the carbon neutrality goal before 2060? J. Environ. Manag. 2023, 336, 117663. [Google Scholar] [CrossRef]
- Gan, Y.; Lu, Z.; He, X.; Hao, C.; Wang, Y.; Cai, H.; Wang, M.; Elgowainy, A.; Przesmitzki, S.; Bouchard, J. Provincial Greenhouse Gas Emissions of Gasoline and Plug-in Electric Vehicles in China: Comparison from the Consumption-Based Electricity Perspective. Environ. Sci. Technol. 2021, 55, 6944–6956. [Google Scholar] [CrossRef]
- Wu, D.; Guo, F.; Field, F.R.; De Kleine, R.; Kim, H.C.; Wallington, T.J.; Kirchain, R.E. Regional Heterogeneity in the Emissions Benefits of Electrified and Lightweighted Light-Duty Vehicles. Environ. Sci. Technol. 2019, 53, 10560–10570. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vukajlović, N.; Milićević, D.; Dumnić, B.; Popadić, B. Comparative analysis of the supercapacitor influence on lithium battery cycle life in electric vehicle energy storage. J. Energy Storage 2020, 31, 101603. [Google Scholar] [CrossRef]
- Zhang, Z.; Sun, X.; Ding, N.; Yang, J. Life cycle environmental assessment of charging infrastructure for electric vehicles in China. J. Clean. Prod. 2019, 227, 932–941. [Google Scholar] [CrossRef]
- Cristóbal, J.; Limleamthong, P.; Manfredi, S.; Guillén-Gosálbez, G. Methodology for combined use of data envelopment analysis and life cycle assessment applied to food waste management. J. Clean. Prod. 2016, 135, 158–168. [Google Scholar] [CrossRef]
- Lozano, S.; Iribarren, D.; Moreira, M.T.; Feijoo, G. The link between operational efficiency and environmental impacts: A joint application of Life Cycle Assessment and Data Envelopment Analysis. Sci. Total. Environ. 2009, 407, 1744–1754. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Xu, D. Assessing the eco-efficiency of complex forestry enterprises using LCA/time-series DEA methodology. Ecol. Indic. 2022, 142, 109166. [Google Scholar] [CrossRef]
- Angulo-Meza, L.; González-Araya, M.; Iriarte, A.; Rebolledo-Leiva, R.; de Mello, J.C.S. A multiobjective DEA model to assess the eco-efficiency of agricultural practices within the CF+DEA method. Comput. Electron. Agric. 2019, 161, 151–161. [Google Scholar] [CrossRef]
- Mirmozaffari, M.; Shadkam, E.; Khalili, S.M.; Yazdani, M. Developing a Novel Integrated Generalised Data Envelopment Analysis (DEA) to Evaluate Hospitals Providing Stroke Care Services. Bioengineering 2021, 8, 207. [Google Scholar] [CrossRef]
- Chen, F.; Liu, J.; Liu, X.; Zhang, H. Static and Dynamic Evaluation of Financing Efficiency in Enterprises’ Low-Carbon Supply Chain: PCA–DEA–Malmquist Model Method. Sustainability 2023, 15, 2510. [Google Scholar] [CrossRef]
- Hsieh, J.-C.; Lu, C.-C.; Li, Y.; Chiu, Y.-H.; Xu, Y.-S. Environmental Assessment of European Union Countries. Energies 2019, 12, 295. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Tang, J.; Choi, G. A two-stage eco-efficiency evaluation of China’s industrial sectors: A dynamic network data envelopment analysis (DNDEA) approach. Process. Saf. Environ. Prot. 2021, 148, 879–892. [Google Scholar] [CrossRef]
- Zhang, T.; Nakagawa, K.; Matsumoto, K. Evaluating solar photovoltaic power efficiency based on economic dimensions for 26 countries using a three-stage data envelopment analysis. Appl. Energy 2023, 335, 120714. [Google Scholar] [CrossRef]
- Leu, J.-D.; Tsai, W.-H.; Fan, M.-N.; Chuang, S. Benchmarking Sustainable Manufacturing: A DEA-Based Method and Application. Energies 2020, 13, 5962. [Google Scholar] [CrossRef]
- Álvarez-Rodríguez, C.; Martín-Gamboa, M.; Iribarren, D. Combined use of Data Envelopment Analysis and Life Cycle Assessment for operational and environmental benchmarking in the service sector: A case study of grocery stores. Sci. Total. Environ. 2019, 667, 799–808. [Google Scholar] [CrossRef]
- Martín-Gamboa, M.; Iribarren, D.; García-Gusano, D.; Dufour, J. A review of life-cycle approaches coupled with data envelopment analysis within multi-criteria decision analysis for sustainability assessment of energy systems. J. Clean. Prod. 2017, 150, 164–174. [Google Scholar] [CrossRef]
- Burchart-Korol, D.; Jursova, S.; Folęga, P.; Korol, J.; Pustejovska, P.; Blaut, A. Environmental life cycle assessment of electric vehicles in Poland and the Czech Republic. J. Clean. Prod. 2018, 202, 476–487. [Google Scholar] [CrossRef]
- Wang, N.; Tang, G. A Review on Environmental Efficiency Evaluation of New Energy Vehicles Using Life Cycle Analysis. Sustainability 2022, 14, 3371. [Google Scholar] [CrossRef]
- Wu, H.; Hu, Y.; Yu, Y.; Huang, K.; Wang, L. The environmental footprint of electric vehicle battery packs during the production and use phases with different functional units. Int. J. Life Cycle Assess. 2021, 26, 97–113. [Google Scholar] [CrossRef]
- Shanmugam, K.; Gadhamshetty, V.; Yadav, P.; Athanassiadis, D.; Tysklind, M.; Upadhyayula, V.K.K. Advanced High-Strength Steel and Carbon Fiber Reinforced Polymer Composite Body in White for Passenger Cars: Environmental Performance and Sustainable Return on Investment under Different Propulsion Modes. ACS Sustain. Chem. Eng. 2019, 7, 4951–4963. [Google Scholar] [CrossRef]
- Peters, J.F.; Baumann, M.; Zimmermann, B.; Braun, J.; Weil, M. The environmental impact of Li-Ion batteries and the role of key parameters—A review. Renew. Sustain. Energy Rev. 2017, 67, 491–506. [Google Scholar] [CrossRef]
- Machedon-Pisu, M.; Borza, P.N. Are Personal Electric Vehicles Sustainable? A Hybrid E-Bike Case Study. Sustainability 2020, 12, 32. [Google Scholar] [CrossRef] [Green Version]
- Hua, Y.; Liu, X.; Zhou, S.; Huang, Y.; Ling, H.; Yang, S. Toward Sustainable Reuse of Retired Lithium-ion Batteries from Electric Vehicles. Resour. Conserv. Recycl. 2021, 168, 105249. [Google Scholar] [CrossRef]
- Wang, S.; Yu, J. A comparative life cycle assessment on lithium-ion battery: Case study on electric vehicle battery in China considering battery evolution. Waste Manag. Res. J. Sustain. Circ. Econ. 2021, 39, 156–164. [Google Scholar] [CrossRef] [PubMed]
- Hendrickson, T.P.; Kavvada, O.; Shah, N.; Sathre, R.; Scown, C.D. Life-cycle implications and supply chain logistics of electric vehicle battery recycling in California. Environ. Res. Lett. 2015, 10, 014011. [Google Scholar] [CrossRef]
- Schaubroeck, S.; Schaubroeck, T.; Baustert, P.; Gibon, T.; Benetto, E. When to replace a product to decrease environmental impact?—A consequential LCA framework and case study on car replacement. Int. J. Life Cycle Assess. 2020, 25, 1500–1521. [Google Scholar] [CrossRef]
- Faria, R.; Marques, P.; Moura, P.; Freire, F.; Delgado, J.; de Almeida, A.T. Impact of the electricity mix and use profile in the life-cycle assessment of electric vehicles. Renew. Sustain. Energy Rev. 2013, 24, 271–287. [Google Scholar] [CrossRef]
- Rupp, M.; Handschuh, N.; Rieke, C.; Kuperjans, I. Contribution of country-specific electricity mix and charging time to environmental impact of battery electric vehicles: A case study of electric buses in Germany. Appl. Energy 2019, 237, 618–634. [Google Scholar] [CrossRef]
- Lee, D.-Y.; Elgowainy, A.; Kotz, A.; Vijayagopal, R.; Marcinkoski, J. Life-cycle implications of hydrogen fuel cell electric vehicle technology for medium- and heavy-duty trucks. J. Power Sources 2018, 393, 217–229. [Google Scholar] [CrossRef]
- Liu, X.; Elgowainy, A.; Vijayagopal, R.; Wang, M. Well-to-Wheels Analysis of Zero-Emission Plug-In Battery Electric Vehicle Technology for Medium- and Heavy-Duty Trucks. Environ. Sci. Technol. 2021, 55, 538–546. [Google Scholar] [CrossRef]
- Asamer, J.; Graser, A.; Heilmann, B.; Ruthmair, M. Sensitivity analysis for energy demand estimation of electric vehicles. Transp. Res. Part D Transp. Environ. 2016, 46, 182–199. [Google Scholar] [CrossRef]
- Jradi, S.; Chameeva, T.B.; Delhomme, B.; Jaegler, A. Tracking carbon footprint in French vineyards: A DEA performance assessment. J. Clean. Prod. 2018, 192, 43–54. [Google Scholar] [CrossRef]
- Pishgar-Komleh, S.H.; Żyłowski, T.; Rozakis, S.; Kozyra, J. Efficiency under different methods for incorporating undesirable outputs in an LCA+DEA framework: A case study of winter wheat production in Poland. J. Environ. Manag. 2020, 260, 110138. [Google Scholar] [CrossRef]
- Rebolledo-Leiva, R.; Angulo-Meza, L.; Iriarte, A.; González-Araya, M.C.; Vásquez-Ibarra, L. Comparing two CF+DEA methods for assessing eco-efficiency from theoretical and practical points of view. Sci. Total. Environ. 2019, 659, 1266–1282. [Google Scholar] [CrossRef] [PubMed]
- Vázquez-Rowe, I.; Iribarren, D.; Hospido, A.; Moreira, M.T.; Feijoo, G. Computation of Operational and Environmental Benchmarks Within Selected Galician Fishing Fleets. J. Ind. Ecol. 2011, 15, 776–795. [Google Scholar] [CrossRef]
- Vásquez-Ibarra, L.; Rebolledo-Leiva, R.; Angulo-Meza, L.; González-Araya, M.C.; Iriarte, A. The joint use of life cycle assessment and data envelopment analysis methodologies for eco-efficiency assessment: A critical review, taxonomy and future research. Sci. Total. Environ. 2020, 738, 139538. [Google Scholar] [CrossRef]
- Cortés, A.; Feijoo, G.; Fernández, M.; Moreira, M.T. Pursuing the route to eco-efficiency in dairy production: The case of Galician area. J. Clean. Prod. 2021, 285, 124861. [Google Scholar] [CrossRef]
- Turner, I.; Heidari, D.; Pelletier, N. Environmental impact mitigation potential of increased resource use efficiency in industrial egg production systems. J. Clean. Prod. 2022, 354, 131743. [Google Scholar] [CrossRef]
- Torregrossa, D.; Marvuglia, A.; Leopold, U. A novel methodology based on LCA+DEA to detect eco-efficiency shifts in wastewater treatment plants. Ecol. Indic. 2018, 94, 7–15. [Google Scholar] [CrossRef]
- Song, A.; Huang, W.; Yang, X.; Tian, Y.; Juan, Y.; Xing, Q. Two-Stage Cooperative/Non-Cooperative Game DEA Model with Decision Preference: A Case of Chinese Industrial System. Big Data Res. 2022, 28, 100303. [Google Scholar] [CrossRef]
- Jin, X.; Zou, B.; Wang, C.; Rao, K.; Tang, X. Carbon Emission Allocation in a Chinese Province-Level Region Based on Two-Stage Network Structures. Sustainability 2019, 11, 1369. [Google Scholar] [CrossRef] [Green Version]
- Campitelli, A.; Schebek, L. How is the performance of waste management systems assessed globally? A systematic review. J. Clean. Prod. 2020, 272, 122986. [Google Scholar] [CrossRef]
- Liu, Y.; Qiao, J.; Xu, H.; Liu, J.; Chen, Y. Optimal Vehicle Size and Driving Condition for Extended-Range Electric Vehicles in China: A Life Cycle Perspective. PLoS ONE 2020, 15, e0241967. [Google Scholar] [CrossRef] [PubMed]
- Qiao, Q.; Zhao, F.; Liu, Z.; Hao, H.; He, X.; Przesmitzki, S.V.; Amer, A.A. Life Cycle Cost and GHG Emission Benefits of Electric Vehicles in China. Transp. Res. Part D Transp. Environ. 2020, 86, 102418. [Google Scholar] [CrossRef]
- Ren, L.; Zhou, S.; Ou, X. Life-Cycle Energy Consumption and Greenhouse-Gas Emissions of Hydrogen Supply Chains for Fuel-Cell Vehicles in China. Energy 2020, 209, 118482. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, G.; Li, T.; Wei, X. Comprehensive Evaluation of the Sustainable Development of Battery Electric Vehicles in China. Sustainability 2019, 11, 5635. [Google Scholar] [CrossRef] [Green Version]
- Zeng, D.; Dong, Y.; Cao, H.; Li, Y.; Wang, J.; Li, Z.; Hauschild, M.Z. Are the electric vehicles more sustainable than the conventional ones? Influences of the assumptions and modeling approaches in the case of typical cars in China. Resour. Conserv. Recycl. 2021, 167, 105210. [Google Scholar] [CrossRef]
- MHWS. ReCiPe 2016 v1.1. The Netherlands: National Institute of Public Health and the Environment. 2017. Available online: https://www.rivm.nl/en/life-cycle-assessment-lca/downloads (accessed on 5 May 2022).
- Masnadi, M.S.; El-Houjeiri, H.M.; Schunack, D.; Li, Y.; Roberts, S.O.; Przesmitzki, S.; Brandt, A.R.; Wang, M. Well-to-refinery emissions and net-energy analysis of China’s crude-oil supply. Nat. Energy 2018, 3, 220–226. [Google Scholar] [CrossRef]
- NBS. China Energy Statistical Yearbook 2021; China Statistics Press: Beijing, China, 2021; Available online: http://cnki.nbsti.net/CSYDMirror/area/yearbook/Single/N2021050066?z=D26 (accessed on 2 August 2022).
- International Energy Agency (IEA). World Energy Statistics and Balance 2019; International Energy Agency: Paris, France, 2019; Available online: https://www.iea.org/data-and-statistics/data-product/world-energy-statistics-and-balances (accessed on 5 May 2022).
- CEC. 2019 Statistical Compilation of the Electric Power Industry; China Statistics Press: Beijing, China, 2019. Available online: http://www.nea.gov.cn/ (accessed on 11 August 2022).
- NBS. 2019 China Electric Power Yearbook; China Electric Power Press: Beijing, China, 2019; Available online: https://ds.cnki.net/KNavi/yearbook/Detail/NUYY/YZGDL?NaviID=&NO= (accessed on 1 July 2021).
- Shen, W.; Han, W.; Wallington, T.J. Current and Future Greenhouse Gas Emissions Associated with Electricity Generation in China: Implications for Electric Vehicles. Environ. Sci. Technol. 2014, 48, 7069–7075. [Google Scholar] [CrossRef]
- Qu, S.; Liang, S.; Xu, M. CO2 Emissions Embodied in Interprovincial Electricity Transmissions in China. Environ. Sci. Technol. 2017, 51, 10893–10902. [Google Scholar] [CrossRef]
- MacLean, H.L.; Lave, L.B. Evaluating automobile fuel/propulsion system technologies. Prog. Energy Combust. Sci. 2003, 29, 1–69. [Google Scholar] [CrossRef]
- de Souza, L.L.; Lora, E.E.S.; Palacio, J.C.E.; Rocha, M.H.; Renó, M.L.G.; Venturini, O.J. Comparative environmental life cycle assessment of conventional vehicles with different fuel options, plug-in hybrid and electric vehicles for a sustainable transportation system in Brazil. J. Clean. Prod. 2018, 203, 444–468. [Google Scholar] [CrossRef]
- Nordelöf, A.; Messagie, M.; Tillman, A.-M.; Söderman, M.L.; Van Mierlo, J. Environmental impacts of hybrid, plug-in hybrid, and battery electric vehicles—What can we learn from life cycle assessment? Int. J. Life Cycle Assess. 2014, 19, 1866–1890. [Google Scholar] [CrossRef] [Green Version]
- Marmiroli, B.; Venditti, M.; Dotelli, G.; Spessa, E. The transport of goods in the urban environment: A comparative life cycle assessment of electric, compressed natural gas and diesel light-duty vehicles. Appl. Energy 2020, 260, 114236. [Google Scholar] [CrossRef]
- Paudel, A.M.; Kreutzmann, P. Design and performance analysis of a hybrid solar tricycle for a sustainable local commute. Renew. Sustain. Energy Rev. 2015, 41, 473–482. [Google Scholar] [CrossRef]
- Ruan, J.; Walker, P.D.; Watterson, P.A.; Zhang, N. The dynamic performance and economic benefit of a blended braking system in a multi-speed battery electric vehicle. Appl. Energy 2016, 183, 1240–1258. [Google Scholar] [CrossRef]
- Cai, L.; Lv, W.; Xiao, L.; Xu, Z. Total carbon emissions minimization in connected and automated vehicle routing problem with speed variables. Expert Syst. Appl. 2021, 165, 113910. [Google Scholar] [CrossRef]
- Desreveaux, A.; Bouscayrol, A.; Trigui, R.; Hittinger, E.; Castex, E.; Sirbu, G. Accurate energy consumption for comparison of climate change impact of thermal and electric vehicles. Energy 2023, 268, 126637. [Google Scholar] [CrossRef]
- Kamath, D.; Arsenault, R.; Kim, H.C.; Anctil, A. Economic and Environmental Feasibility of Second-Life Lithium-Ion Batteries as Fast-Charging Energy Storage. Environ. Sci. Technol. 2020, 54, 6878–6887. [Google Scholar] [CrossRef]
- Wang, W.; Bengler, K.; Jiang, X. Green Intelligent Transportation Systems; Springer: Singapore, 2019. [Google Scholar]
- Chen, Y.; Cook, W.D.; Li, N.; Zhu, J. Additive efficiency decomposition in two-stage DEA. Eur. J. Oper. Res. 2009, 196, 1170–1176. [Google Scholar] [CrossRef]
- Kao, C.; Hwang, S.-N. Efficiency decomposition in two-stage data envelopment analysis: An application to non-life insurance companies in Taiwan. Eur. J. Oper. Res. 2008, 185, 418–429. [Google Scholar] [CrossRef]
- Li, Y.; Chen, Y.; Liang, L.; Xie, J. DEA models for extended two-stage network structures. Omega 2012, 40, 611–618. [Google Scholar] [CrossRef]
- Tone, K. A slacks-based measure of efficiency in data envelopment analysis. Eur. J. Oper. Res. 2001, 130, 498–509. [Google Scholar] [CrossRef] [Green Version]
- Garcia, R.; Freire, F.; Clift, R. Effects on Greenhouse Gas Emissions of Introducing Electric Vehicles into an Electricity System with Large Storage Capacity. J. Ind. Ecol. 2018, 22, 288–299. [Google Scholar] [CrossRef]
Research Boundary | Research Features | Regional Comparison | Method Combination | |||
---|---|---|---|---|---|---|
Environment | Economic | Social | ||||
Liu et al., 2020 [52] | √ | Vehicle size and driving condition | ||||
Qiao et al., 2020 [53] | √ | √ | Country comparison | |||
Ren et al., 2020 [54] | √ | Hydrogen production and usage | ||||
Wang et al., 2021 [33] | √ | Battery production | ||||
Wang et al., 2019 [55] | √ | √ | √ | TOPSIS | Multicriteria decision-making | |
Gan et al., 2020 [10] | √ | Temperature and energy exchange | √ | |||
This study | √ | Region and time differences | √ | SBM-DEA |
Variety | Carbon Content (g C/MJ) | Low Heating Value (kJ/kg) | Density (g/cm3) |
---|---|---|---|
Raw coal | 25.8 | 20,908 | No change |
Cleaned coal | 26.7 | 26,344 | No change |
Crude oil | 20.1 | 41,816 | 0.859 |
Gasoline | 18.9 | 43,070 | 0.748 |
Diesel | 20.2 | 42,652 | 0.858 |
Kerosene | 19.6 | 43,070 | 0.793 |
Fuel oil | 21.1 | 41,816 | 0.878 |
Pet coke | 19.5 | No change | No change |
LPG | 17.2 | 50,179 | No change |
Coke | 29.4 | 28,435 | No change |
Coke oven gas | 13.6 | 16,726 | No change |
Coal tar | 22 | 33,453 | No change |
Petroleum coal | 26.6 | No change | No change |
Naphtha | 20 | No change | No change |
Refinery gas | 15.7 | 45,998 | No change |
Natural gas | 15.3 | 32,238 | No change |
Variety | Carbon Dioxide Emission | Unit |
---|---|---|
Raw coal | 2.687 | g CO2-eq/MJ |
Crude oil | 5.326 | g CO2-eq/MJ |
Gasoline | 21.510 | g CO2-eq/MJ |
Diesel | 14.694 | g CO2-eq/MJ |
Fuel oil | 9.782 | g CO2-eq/MJ |
LNG | 7.754 | g CO2-eq/MJ |
Pet coke | 10.310 | g CO2-eq/MJ |
Natural gas | 7.609 | g CO2-eq/MJ |
Kerosene | 8.623 | g CO2-eq/MJ |
Electricity | 747.2 | g CO2-eq/kWh |
Province | Thermal Power (108 kWh) | Hydro Power (108 kWh) | Wind Power (108 kWh) | Solar Power (108 kWh) | Nuclear Power (108 kWh) | Line Loss (%) |
---|---|---|---|---|---|---|
Beijing | 52,201.49 | 10.19 | 3.41 | 4.77 | 3483.54 | 6.15 |
Tianjin | 445.71 | 0.12 | 10.83 | 15.43 | 0.00 | 6.3 |
Hebei | 706.6 | 16.44 | 317.66 | 176.31 | 0.00 | 6.39 |
Shanxi | 2787.25 | 49.07 | 224.3 | 127.5 | 0.00 | 5.5 |
Neimenggu | 2960.8 | 58.07 | 665.8 | 162.8 | 0.00 | 3.71 |
Liaoning | 4608.41 | 43.58 | 183.09 | 42.23 | 0.00 | 5.67 |
Jilin | 1476.74 | 66.76 | 114.62 | 39.76 | 327.3 | 7.21 |
Heilongjiang | 725.24 | 27.71 | 139.95 | 32.44 | 0.00 | 8.7 |
Shanghai | 911.73 | 0.00 | 16.91 | 7.77 | 0.00 | 2.23 |
Jiangsu | 797.45 | 30.76 | 183.89 | 154.07 | 0.00 | 3.34 |
Zhejiang | 4468.81 | 256.58 | 32.61 | 118.99 | 328.89 | 3.79 |
Anhui | 2500.95 | 51.09 | 46.96 | 124.66 | 628.52 | 6.7 |
Fujian | 2663.97 | 442.35 | 87.27 | 15.94 | 0.00 | 3.65 |
Jiangxi | 1411.24 | 167.74 | 51.3 | 55.9 | 621.17 | 6.37 |
Shandong | 1100.96 | 5.23 | 224.99 | 166.9 | 0.00 | 5.53 |
Henan | 5292.91 | 145.06 | 87.99 | 101.75 | 207.2 | 7.55 |
Hubei | 2553.5 | 1356.98 | 73.83 | 56.76 | 0.00 | 6.63 |
Hunan | 1469.94 | 543.97 | 74.98 | 25.87 | 0.00 | 7.96 |
Guangdong | 914.6 | 391.01 | 71 | 53.4 | 0.00 | 3.87 |
Guangxi | 3433.89 | 593.41 | 61.33 | 13.49 | 1101.73 | 5.09 |
Hainan | 1006.51 | 17.27 | 4.75 | 14 | 171.53 | 6.02 |
Chongqing | 212.46 | 242.27 | 11.02 | 3.33 | 97.2 | 5.15 |
Sichuan | 554.93 | 3316.01 | 71.25 | 28.15 | 0.00 | 7.78 |
Guizhou | 508.47 | 769.36 | 78.05 | 19.6 | 0.00 | 4.69 |
Yunnan | 1339.53 | 2855.85 | 245.29 | 48.18 | 0.00 | 4.2 |
Shaanxi | 3.88 | 68.49 | 83.62 | 94.15 | 0.00 | 5.9 |
Gansu | 1860.45 | 154.98 | 228.11 | 118.44 | 0.00 | 6.3 |
Qinghai | 787.82 | 496.12 | 66.49 | 158.24 | 0.00 | 3.7 |
Ningxia | 107.37 | 554.04 | 185.55 | 114.69 | 0.00 | 3.5 |
Xinjiang | 1443.87 | 21.87 | 413.3 | 136 | 0.00 | 7.85 |
Province | Carbon Dioxide Emission (without Transmission) | Carbon Dioxide Emission (with Transmission) | Difference | Unit |
---|---|---|---|---|
Beijing | 161.3 | 206.5 | 45.2 | g CO2-eq/MJ |
Tianjin | 247.1 | 242.0 | −5.1 | g CO2-eq/MJ |
Hebei | 228.7 | 231.0 | 2.3 | g CO2-eq/MJ |
Shanxi | 241.3 | 240.4 | −0.9 | g CO2-eq/MJ |
Neimenggu | 237.1 | 236.7 | −0.4 | g CO2-eq/MJ |
Liaoning | 195.7 | 205.1 | 9.4 | g CO2-eq/MJ |
Jilin | 201.3 | 203.0 | 1.7 | g CO2-eq/MJ |
Heilongjiang | 212.9 | 212.9 | 0.0 | g CO2-eq/MJ |
Shanghai | 221.8 | 170.6 | −51.2 | g CO2-eq/MJ |
Jiangsu | 209.2 | 201.3 | −7.9 | g CO2-eq/MJ |
Zhejiang | 172.6 | 171.6 | −1.0 | g CO2-eq/MJ |
Anhui | 236.3 | 235.0 | −1.3 | g CO2-eq/MJ |
Fujian | 135.1 | 135.1 | 0.0. | g CO2-eq/MJ |
Jiangxi | 194.7 | 188.1 | −6.6 | g CO2-eq/MJ |
Shandong | 243.1 | 239.2 | −3.9 | g CO2-eq/MJ |
Henan | 244.9 | 238.5 | −6.4 | g CO2-eq/MJ |
Hubei | 129.0 | 133.1 | 4.1 | g CO2-eq/MJ |
Hunan | 143.5 | 149.2 | 5.7 | g CO2-eq/MJ |
Guangdong | 162.9 | 138.5 | −24.4 | g CO2-eq/MJ |
Guangxi | 125.7 | 124.0 | −1.7 | g CO2-eq/MJ |
Hainan | 142.6 | 143.6 | 1.0 | g CO2-eq/MJ |
Chongqing | 171.4 | 134.1 | −37.3 | g CO2-eq/MJ |
Sichuan | 26.5 | 31.6 | 5.1 | g CO2-eq/MJ |
Guizhou | 172.8 | 172.8 | 0.0 | g CO2-eq/MJ |
Yunnan | 18.4 | 18.36 | −0.04 | g CO2-eq/MJ |
Shaanxi | 234.2 | 223.6 | −10.6 | g CO2-eq/MJ |
Gansu | 134.6 | 129.2 | −5.4 | g CO2-eq/MJ |
Qinghai | 32.7 | 39.7 | 7.0 | g CO2-eq/MJ |
Ningxia | 223.3 | 209.2 | −14.1 | g CO2-eq/MJ |
Xinjiang | 227.6 | 227.2 | −0.4 | g CO2-eq/MJ |
Vehicle Model | Mass (kg) | Labeled FCR (L/100 km) | Labeled ECR (kW h/100 km) | TTW Consumption (MJ/km) |
---|---|---|---|---|
ICEV | 1444 | 6.7 | Unavailable | 2.68 |
HEV | 1518 | 4.3 | Unavailable | 1.72 |
EV | 1518 | Unavailable | 16.4 | 1.19 |
PHEV | 1694 | CS: 5.0 (62%) | CD: 21.5 (38%) | 2.39 |
Province | Gasoline (104 t) | Fuel Oil (104 t) | Natural Gas (108 m3) | LNG (108 m3) | ICE Emission (g CO2-eq/MJ) |
---|---|---|---|---|---|
Beijing | 67.36 | 0.015 | 2.81 | 16.19 | 22.197 |
Tianjin | 97.51 | 28.54 | 3.51 | 0.00 | 21.421 |
Hebei | 304.22 | 13.08 | 1.82 | 101.45 | 22.706 |
Shanxi | 231.38 | 0.00 | 9.96 | 0.00 | 22.808 |
Neimenggu | 133.96 | 0.02 | 9.99 | 27.33 | 21.552 |
Liaoning | 674.54 | 109.34 | 7.52 | 0.00 | 22.799 |
Jilin | 217.62 | 0.00 | 6.89 | 0.00 | 23.191 |
Heilongjiang | 79.01 | 0.00 | 6.56 | 2.20 | 21.723 |
Shanghai | 197.93 | 625.29 | 1.31 | 0.00 | 16.460 |
Jiangsu | 643.17 | 91.22 | 14.84 | 4.89 | 22.525 |
Zhejiang | 272.5 | 99.30 | 0.02 | 0.00 | 21.891 |
Anhui | 419.23 | 14.50 | 3.08 | 0.00 | 23.909 |
Fujian | 283.36 | 112.03 | 2.06 | 0.00 | 21.550 |
Jiangxi | 375.00 | 2.80 | 0.80 | 0.00 | 24.406 |
Shandong | 773.58 | 26.97 | 8.80 | 3.78 | 23.708 |
Henan | 693.24 | 1.08 | 9.42 | 0.00 | 23.905 |
Hubei | 489.84 | 105.99 | 5.20 | 0.00 | 22.466 |
Hunan | 477.35 | 67.20 | 3.25 | 0.00 | 23.101 |
Guangdong | 1056.91 | 205.72 | 1.49 | 0.00 | 22.914 |
Guangxi | 256.03 | 3.17 | 5.65 | 0.00 | 23.462 |
Hainan | 33.82 | 34.98 | 0.83 | 0.00 | 19.122 |
Chongqing | 246.10 | 11.55 | 6.99 | 10.28 | 22.852 |
Sichuan | 490.81 | 0.68 | 80.20 | 74.82 | 20.374 |
Guizhou | 245.50 | 0.00 | 3.42 | 4.53 | 23.825 |
Yunnan | 515.76 | 0.01 | 0.17 | 0.32 | 24.570 |
Shaanxi | 168.62 | 1.89 | 3.63 | 91.88 | 21.925 |
Gansu | 188.30 | 0.00 | 4.85 | 0.00 | 23.410 |
Qinghai | 84.78 | 0.00 | 5.52 | 0.00 | 22.190 |
Ningxia | 82.50 | 0.00 | 2.69 | 0.60 | 23.133 |
Xinjiang | 341.82 | 0.00 | 7.94 | 0.05 | 23.509 |
Model | Variables | B | Standard Error | Beta | t | Significance |
---|---|---|---|---|---|---|
Linear | Congestion index | −14.347 | 0.175 | −0.742 | −82.199 | 0.000 |
(Constant) | 63.223 | 0.356 | 177.596 | 0.000 | ||
Exponent | Congestion index | −0.484 | 0.004 | −0.845 | −117.367 | 0.000 |
(Constant) | 79.443 | 0.668 | 118.960 | 0.000 |
Model | R | R2 | Adjusted R2 | Error in Standard Estimation |
---|---|---|---|---|
Linear | 0.742 | 0.550 | 0.550 | 11.588 |
Exponent | 0.845 | 0.714 | 0.713 | 0.274 |
Model | Variables | B | Standard Error | Beta | t | Significance |
---|---|---|---|---|---|---|
Two stages | Speed | −0.123 | 0.016 | −0.992 | −7.476 | 0.000 |
Speed2 | 0.001 | 0.000 | 1.279 | 9.637 | 0.000 | |
(Constant) | 13.576 | 0.511 | 26.582 | 0.000 | ||
Three stages | Speed | −0.352 | 0.054 | −2.832 | −6.509 | 0.000 |
Speed2 | 0.006 | 0.001 | 5.798 | 5.644 | 0.000 | |
Speed3 | −2.393 × 10−5 | 0.000 | −2.763 | −4.435 | 0.000 | |
(Constant) | 16.879 | 0.900 | 18.750 | 0.000 |
Model | R | R2 | Adjusted R2 | Error in Standard Estimation |
---|---|---|---|---|
Two stages | 0.386 | 0.149 | 0.147 | 2.500 |
Three stages | 0.408 | 0.166 | 0.164 | 2.475 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, G.; Zhang, M.; Bu, F. Vehicle Environmental Efficiency Evaluation in Different Regions in China: A Combination of the Life Cycle Analysis (LCA) and Two-Stage Data Envelopment Analysis (DEA) Methods. Sustainability 2023, 15, 11984. https://doi.org/10.3390/su151511984
Tang G, Zhang M, Bu F. Vehicle Environmental Efficiency Evaluation in Different Regions in China: A Combination of the Life Cycle Analysis (LCA) and Two-Stage Data Envelopment Analysis (DEA) Methods. Sustainability. 2023; 15(15):11984. https://doi.org/10.3390/su151511984
Chicago/Turabian StyleTang, Guwen, Meng Zhang, and Fei Bu. 2023. "Vehicle Environmental Efficiency Evaluation in Different Regions in China: A Combination of the Life Cycle Analysis (LCA) and Two-Stage Data Envelopment Analysis (DEA) Methods" Sustainability 15, no. 15: 11984. https://doi.org/10.3390/su151511984
APA StyleTang, G., Zhang, M., & Bu, F. (2023). Vehicle Environmental Efficiency Evaluation in Different Regions in China: A Combination of the Life Cycle Analysis (LCA) and Two-Stage Data Envelopment Analysis (DEA) Methods. Sustainability, 15(15), 11984. https://doi.org/10.3390/su151511984