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Abstract: The efficiency of the same vehicle can vary in different regions, posing unique challenges
and implications for electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs) within a
country. However, most studies have regarded countries as single entities, and it is difficult to assess
differences in efficiency between similar entities by simply using the life cycle analysis (LCA) method.
To provide the specific environmental efficiency of vehicles in each region, in this study, we used
data from 100 cities in 30 provinces in China (4 provinces are not discussed due to a lack of data) and
constructed a new road congestion indicator that simulated different road conditions at different
times and in different regions. A more effective method, which consisted of LCA, two-stage data
envelopment analysis (DEA) and a slack-based model (SBM), was integrated to reflect the phases of
LCA more clearly. The results show that the well-to-wheel (WTW) emission range of internal combus-
tion engine vehicles (ICEVs) is 288.28–217.40 CO2-eq g/km, while it is 248.20–26.67 CO2-eq g/km
for EVs, which means the WTW carbon emissions of EVs are generally lower than those of ICEVs
(except in Heilongjiang Province). Furthermore, it was concluded that provinces with a high propor-
tion of hydropower and a high degree of power autonomy could adjust the proportion of thermal
power and inter-provincial power transmission to enhance environmental sustainability, and this
would not change provincial environmental efficiency. The analysis suggests that provinces should
consider both environmental protection and electricity sustainability when planning their own power
development, rather than only focusing on improving environmental efficiency.

Keywords: life cycle analysis (LCA); carbon emissions; data envelopment analysis (DEA); regional
differences; electric vehicle

1. Introduction

In order to limit carbon emissions from the global transportation system to 1.9 billion
tons by 2030, the use of electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs)
is gradually increasing, and they are replacing internal combustion engine vehicles (ICEVs),
serving as effective alternatives. However, in reality, EVs and PHEVs are not ideally
environmentally friendly vehicles, the resulting pollution can even exceed that caused
by mature ICEVs in some areas. For example, in the production stage, the lithium and
cobalt in lithium batteries and the rare earth permanent magnets in electric motors will
result in more pollution. In the energy generation stage, the high proportion of fossil
fuels used to power EVs causes them to produce more carbon emissions than ICEVs.
To evaluate carbon emissions and the environmental efficiency of EVs and PHEVs, the
life cycle analysis (LCA) method has been widely used by automobile manufacturers
to demonstrate the environmental efficiency and potential of their vehicles, including
the Chevrolet Volt (General Motors), the Audi Q5 and Q4 e-tron (Audi), and the BMW
iX3(BMW) and BYD e6(BYD).
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Some LCA results have shown that the environmental efficiency of EVs and PHEVs
varies between countries. For example, in Europe, Denmark, Germany, Italy, Portugal and
Spain demonstrate lower carbon emissions and higher environmental efficiency when EVs
and PHEVs are widely used, due to their greater utilization of clean energy from wind,
solar, nuclear and tidal power [1]. In Asia, it is feasible to implement EVs on a large scale in
China and India; this is not feasible in Indonesia due to high carbon emissions per unit of
electricity production [2].

Although previous studies have examined the environmental benefits of promoting
EVs in different countries, the results of environmental efficiency at the national level are
difficult to apply at the regional level because of energy exchange between regions and
more complex vehicle operating environments [3–7]. For example, Beijing’s local emissions
of carbon dioxide (CO2), nitrogen oxides (NOx) and PM2.5 can be easily reduced due
to Beijing’s energy dependence on Shaanxi and Neimenggu provinces [8]. In this case,
energy exchange between provinces causes the environmental efficiency of EVs to be very
different in each province. These differences in environment efficiency between regions
may be caused by a variety of factors, including diversified energy sources [1,9], climate
change [10,11], road conditions [12], charging infrastructure [13] and so on. The existing
conclusions at the national level are not sufficient to reflect the data and provide theoretical
support at the regional level.

However, using LCA alone to measure environmental efficiency in different regions
is not an ideal method, as evaluating differences in efficiency among similar entities is
not a strong point of LCA [14–16]. Combining data envelopment analysis (DEA) and
LCA into a unified framework is an innovative approach in sustainability assessment
that helps to overcome the limitations of the simple LCA framework and provides a
consistent framework for the quantitative benchmarking of performance indicators when
evaluating multiple similar entities [17,18]. DEA can be used to evaluate the environmental
efficiency of similar entities using a multiple-stage, multi-dimensional index and dynamic
time [19–23], and DEA can be organically combined with other evaluation methods to
make the evaluation models fit the practice [17,24]. The idea of using the LCA+DEA
model is to use the LCA model to collect the life cycle index of the product and evaluate
the existing life cycle results of it and use the DEA model to evaluate the efficiency of
the life cycle index and results. LCA provides basic data for the calculation of the DEA
model [24]. Nevertheless, there are challenges in using the LCA+DEA model, including
lack of identification in inefficiency factors, the necessity of updating the original DEA
model [16], and the accuracy of decision-making units (DMUs) [25], making it difficult to
evaluate environmental efficiency and identify problems.

In this study, we used an updated LCA+DEA model to evaluate the differences in
carbon emissions and environmental efficiency across 30 different provinces in China.
We also created an indicator that was able to simulate different road conditions to reflect
driving behavior across a vehicle’s life cycle. The main contributions of this paper are
as follows: (1) The two-stage slack-based model (SBM)-DEA method is combined with
the LCA model for evaluating the environmental efficiency of vehicles, which is more
consistent with the phase division of well-to-tank (WTT) and tank-to-wheel (TTW), in
order to cover the full range of indicators with the aim of evaluating the vehicle life cycle
as far as possible and to select key indicators for efficiency evaluation. (2) In addition, a
road congestion indicator is constructed to simulate different road conditions in different
regions, with the aim of describing the approximate driving conditions of vehicles in
different provinces throughout their life cycles. (3) An interesting conclusion is that it is
more important to maintain existing environmental efficiency than to continue to improve
it when environmental efficiency is already high enough.

The rest of this paper is structured as follows: Section 2 introduces the existing
research situation and the research gaps filled by this paper. In Section 3, LCA+DEA is
used to calculate and display the indicators and data used in the WTT and TTW stages.
Section 4 analyzes the LCA data and the causes of changes under two-stage SBM-DEA
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model optimization. In Section 5, the policies described in our research are summarized
and discussed.

2. Literature Review

In this study, LCA is utilized to evaluate the environmental efficiency of vehicles.
Additionally, indicators are constructed to evaluate both the spatial and temporal aspects of
vehicle operation. A more scientifically rigorous LCA+DEA model is then used to measure
environmental efficiency. In this section, the literature is reviewed with respect to the
following two aspects: (a) the research boundaries and regional and time impacts on LCA
evaluation of vehicle environmental efficiency; (b) the research and application status of
LCA+DEA.

2.1. LCA Environmental Efficiency Evaluation of Vehicles

LCA is a mature method that can be used to evaluate the differences in economic
benefits and environmental efficiency between hybrid electric vehicles (HEVs), PHEVs,
range-extending vehicles (REVs), EVs and ICEVs [2,26]. LCA studies evaluating the
environmental impacts of EVs typically consider the production, use and end-of-life
phases [9,27]. Advances in research have led to the inclusion of material composition
and system components in the environmental comparison between EVs and ICEVs. The
material composition and system components consist of a battery pack [28], an automotive
frame [29] and an intelligent system [30], among which the most relevant is the exploration
of battery materials. Studies have also examined the impact of battery energy density [31],
production process [12] and battery aging [32] on the LCA environmental evaluation of
EVs, which are also discussed. After considering the recycling stage in the LCA evalua-
tion of EVs, the research interest in LCA evaluation of environmental efficiency of EVs
increased gradually [33]. However, due to the lack of data and the difficulty in determin-
ing key indicators, the construction level of EV infrastructure [13], energy and material
transportation [27,34] and EV maintenance consumption [35] require further research.

With the advancement of LCA as the evaluation method for EVs, scholars have chosen
to evaluate the difference between the environmental efficiency of EVs and ICEVs more
scientifically in consideration of regional or time differences. The difference in regional
development affects energy and material supply, leading to differences in environmental
efficiency between EVs and ICEVs in different regions [1,26]. Although electricity can
be transported from other regions to alleviate pollution, this would increase the amount
of environmental pressure on those regions which provide electricity [8]. Time factors
can affect the environmental evaluation of EVs, as well as regional factors. Similar to
Denmark, Germany, Italy, Portugal, Spain and other regions with a high proportion of clean
energy [1], there is a large difference in the countries’ power composition between winter
and summer [36], where the loss of energy needs to be compensated by thermal power
plants to ensure sufficient energy and electricity for heating, as a result of the stability of
thermal power generation [37]. In addition, regional temperature characteristics mean that
EVs that are not able to withstand low temperatures need to consume more energy to ensure
normal running [38], thus reducing the environmental efficiency of EVs. The difference
between urban roads and highways is not only a key variable in LCA environmental
evaluation of ICEVs, but is also gradually appearing in the LCA environmental evaluation
of EVs [12,39]. This is because EVs perform differently on urban roads versus highways
compared to ICEVs [40]. It is more practical to evaluate environmental efficiency by taking
regional and time differences into consideration.

2.2. LCA+DEA, a Comprehensive Evaluation Model

To evaluate the environmental efficiency of similar products, processes and services,
DEA and LCA are used in combination, opening the DEA “black box” and filling in the
gaps intrinsic to LCA evaluation. Scholars combined LCA and DEA in order to produce a
comprehensive evaluation model, referred to as LCA+DEA [41–44]. The comprehensive
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LCA+DEA model has been widely used in the evaluation of environmental efficiency in
the planting industry [45], aquaculture industry [46] and for agricultural products [47].

Using the LCA+DEA model involves evaluating the overall environmental efficiency
of a product with LCA, and then selecting an appropriate DEA model and DMUs for effi-
ciency evaluation [24]. Currently, the DEA models selected for use in the LCA+DEA model
remain the relatively basic Banker–Charnes–Cooper model (BCC) [48], Charnes–Cooper–
Rhodes model (CCR) [16] and SBM [24]. Additionally, the multi-stage DEA model, which
aims to reflect the multi-stage attributes of the LCA model, has not been fully developed
and is not able to accurately describe the relationship between variables at each stage of
LCA. The two-stage DEA model uses simple or more complex DEA models to consider the
efficiency of the total system and two subsystems at the same time. This more logical model
more accurately reflects the evaluation relationship and logical connection between the two
processes and the whole process [49,50]. When the LCA system contains many subsystems,
it is more scientific to use the multi-stage DEA model, which contains the same number
of subsystem stages. Meanwhile, the research scope of the LCA+DEA model focuses on
agricultural products and is rarely applied to industrial products and services [51]. The
LCA+DEA model can be used to comprehensively evaluate the environmental efficiency of
products or services and optimize the overall environmental efficiency in order to obtain
an optimal solution; however, it also faces the problem that the DEA model is too simple.

To the best of our knowledge, this paper presents a novel application of the LCA+DEA
model for evaluating the environmental efficiency of EVs and ICEVs across different
regions for the first time. The first contribution is represented by the updating of the
DEA+LCA model, which replaces the original DEA model with a more rigorous two-
stage SBM model that reflects the multi-stage aspect of the LCA model. This update
resolves the issue associated with relying on a simple DEA model in the LCA+DEA model.
Another contribution is that we firstly consider and refine the influence of both regional
and time differences on environmental efficiency, and we then refine these differences into
a representative indicator. Table 1 summarizes the related literature and highlights the
unique contribution of this paper.

Table 1. Background summary of environmental efficiency evaluation of EVs using the LCA model.

Research Boundary
Research Features Regional

Comparison
Method

CombinationEnvironment Economic Social

Liu et al., 2020 [52]
√

Vehicle size and driving condition
Qiao et al., 2020 [53]

√ √
Country comparison

Ren et al., 2020 [54]
√

Hydrogen production and usage
Wang et al., 2021 [33]

√
Battery production

Wang et al., 2019 [55]
√ √ √

TOPSIS Multicriteria
decision-making

Gan et al., 2020 [10]
√

Temperature and energy exchange
√

This study
√

Region and time differences
√

SBM-DEA

TOPSIS—technique for order preference by similarity to ideal solution.

3. Material and Methods

On the basis of the literature review, in this study, a framework is constructed to
optimize the evaluation of the environmental efficiency of vehicles in different provinces,
and a new metric is constructed. The framework contains four types of academic effort:
(a) energy extraction, processing and transportation with updated data and more details;
(b) characterization of external temperature of vehicles during operation; (c) characteri-
zation of the driving conditions of vehicles during operation; (d) alternative models of
LCA and DEA for efficiency/inefficiency measurement.

3.1. Research Scope

We developed a research framework and flowchart (see Figure 1) that summarizes
this research concisely, so as to clearly state the scope, process and indicators designed
for this research. According to the flow chart in Figure 1, the whole WTW is divided
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into two stages: WTT and TTW. In the WTT stage, we mainly consider the energy pro-
duction of China’s provinces, especially the processes of crude oil, coal, natural gas and
electricity, and gradually analyze the environmental efficiency impacts brought by differ-
ent energy indicators according to the process shown in Figure 1. In the TTW stage, we
consider 4 kinds of vehicle and the temperature change and congestion conditions faced
by the vehicle during operation. The construction of temperature factors and congestion
factors makes the measurement of vehicle environmental efficiency more realistic. Specially,
vehicle production, maintenance and recovery stages are not considered at present.

Figure 1. Research boundaries and flowchart.

On the basis of GREET2021, in this study, data from reliable sources published in
Chinese journals and reports were utilized. GREET is an energy and materials extraction,
transport and use model developed by Argonne National Laboratory to measure carbon
and pollution emissions and technical efficiency, and constitutes a proven LCA environ-
mental assessment tool for fuels and related materials used in the United States [10,56]. In
particular, we determined the greenhouse gas coefficient of methane (CH4) to be 34 based
on Recipe2016 data [57], which differs from the value of 30 reported by Gan [10] and the
value of 25 reported by Masnadi [58]. The assumptions made for the calculation rested on
stable economic and social conditions over the next century, as well as the need for human
intervention to regulate the environment. Our findings are in agreement with the present
and upcoming environmental and social conditions faced by the provinces in China.

3.2. WTT: Energy Extraction, Processing and Transportation
3.2.1. Crude Oil and Fossil Products

Based on Chinese data from the China Energy Statistical Yearbook 2021 and the IEA
2019, we updated some basic energy data used in the GREET model. The updated data are
shown in Table 2. The data related to (Ecarbon) content and low heating value (Elow−heating)
are taken from the China Energy Statistical Yearbook 2021 [59] and the IEA 2019 data for
China [10,60]; we also changed the density (ρ) for crude oil, gasoline, diesel, kerosene and
fuel oil, making them consistent with the real-life situation.
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Table 2. China basic energy data (partial).

Variety Carbon Content
(g C/MJ)

Low Heating Value
(kJ/kg) Density (g/cm3)

Raw coal 25.8 20,908 No change
Cleaned coal 26.7 26,344 No change

Crude oil 20.1 41,816 0.859
Gasoline 18.9 43,070 0.748

Diesel 20.2 42,652 0.858
Kerosene 19.6 43,070 0.793
Fuel oil 21.1 41,816 0.878
Pet coke 19.5 No change No change

LPG 17.2 50,179 No change
Coke 29.4 28,435 No change

Coke oven gas 13.6 16,726 No change
Coal tar 22 33,453 No change

Petroleum coal 26.6 No change No change
Naphtha 20 No change No change

Refinery gas 15.7 45,998 No change
Natural gas 15.3 32,238 No change

LPG—liquefied petroleum gas.

On this basis, we further refined the extraction and transportation of crude oil,
gasoline, diesel, natural gas and coal in China. Taking crude oil as an example, China
imported 84% of its crude oil in 2021, as reported by the China Customs Administration.
The top crude oil exporters to China were Saudi Arabia (17.07%), Russia (15.52%), Iraq
(11.13%), Oman (8.73%) and Angola (7.63%). On the basis of Masnadi’s research on
carbon emissions of crude oil imports [58], we computed carbon emissions for each unit
of crude oil imported by China. It was calculated that the recovery rate of oil shipped to
China was 95.52% (in 2021). Additional materials used in processing petroleum include
crude oil (0.1517 MJ/MJ), residual oil (0.008 MJ/MJ), diesel oil (0.0524 MJ/MJ), gasoline
(0.0003 MJ/MJ), natural gas (0.6216 MJ/MJ), liquefied petroleum gas (0.0093 MJ/MJ)
and electricity (0.1567 MJ/MJ), and the crude oil is transported by pipeline (kJ/t-km)
and marine tankers (g fuel oil/kWh). We also took into account non-CO2 emissions,
which include on-site recovery and combustion of natural gas (0.85 g CO2-eq/MJ) and
oil extraction energy use (0.82 g CO2-eq/MJ). The detailed data can be consulted in
Supplementary Material S2, while the key information is provided in Table 3.

Table 3. China’s carbon emissions per unit of energy.

Variety Carbon Dioxide Emission Unit

Raw coal 2.687 g CO2-eq/MJ
Crude oil 5.326 g CO2-eq/MJ
Gasoline 21.510 g CO2-eq/MJ

Diesel 14.694 g CO2-eq/MJ
Fuel oil 9.782 g CO2-eq/MJ

LNG 7.754 g CO2-eq/MJ
Pet coke 10.310 g CO2-eq/MJ

Natural gas 7.609 g CO2-eq/MJ
Kerosene 8.623 g CO2-eq/MJ
Electricity 747.2 g CO2-eq/kWh

LNG—liquefied natural gas.

Table 3 shows carbon emissions per unit of energy in China after receiving part of
the localized data. These results do not include the regional characteristics broken down
by province; that is to say, in this study, the crude oil and fossil products consumed by
the petrochemical industry and automobile driving are uniform. We also assume that the
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electricity participating in the extraction, processing and transportation of crude oil and
fossil products does not possess regional characteristics.

3.2.2. Provincial Electricity
Power Production and Loss in Provinces

We integrated three primary sources of data, including the China Energy Statistical
Yearbook, 2021 [59], the China Power Industry Statistics, 2019 Compilation [61], and the
China Electric Power Yearbook, 2019 [62]. Integrating these three sources allows the
characterization of carbon emissions per unit of power production in different provinces,
while taking into account varying factors such as power production, provincial line loss
rate, plant power consumption rate, and inter-provincial electricity transportation. Taking
the electricity generation of Shaanxi as an example, the contributions of thermal power,
hydropower, wind power and solar power in 2019 were 84.84%, 7.07%, 3.81% and 4.29%,
respectively, and Shaanxi has no nuclear energy. With respect to Shaanxi’s thermal power,
coal-fired power plants accounted for 95.19%, gas-fired power plants accounted for 0.26%,
and fuel oil, garbage, biomass and other thermal power stations accounted for 4.55%.
At the same time, Shaanxi’s coal-fired power plants used 6.95% of the total electricity
consumed for power plant operation, while hydropower plants, wind plants and solar
power plants used 0.8%, 2.36% and 1.65%, respectively. The detailed data are provided in
Supplementary Material S2.

The key data regarding electricity production for each province in 2020 are summa-
rized in Table 4, including the power production and the line loss for power production,
which was replaced using GREET [59]. In this paper, we also account for varied line
loss rates produced by distinct power facilities in each province [61]. Additionally, the
plant’s electricity consumption in power production is also under consideration [61–63]. To
simplify data, we classified the plant electricity consumption rate of oil and garbage power
generation as the electricity consumption rate of the coal power plant, while the electricity
consumption rate of a biomass power plant was classified as the electricity consumption
rate of a natural gas power plant. Furthermore, the missing data for each province were
replaced with the national average.

Table 4. Total power production of each province.

Province Thermal Power
(108 kWh)

Hydro Power
(108 kWh)

Wind Power
(108 kWh)

Solar Power
(108 kWh)

Nuclear Power
(108 kWh) Line Loss (%)

Beijing 52,201.49 10.19 3.41 4.77 3483.54 6.15
Tianjin 445.71 0.12 10.83 15.43 0.00 6.3
Hebei 706.6 16.44 317.66 176.31 0.00 6.39
Shanxi 2787.25 49.07 224.3 127.5 0.00 5.5

Neimenggu 2960.8 58.07 665.8 162.8 0.00 3.71
Liaoning 4608.41 43.58 183.09 42.23 0.00 5.67

Jilin 1476.74 66.76 114.62 39.76 327.3 7.21
Heilongjiang 725.24 27.71 139.95 32.44 0.00 8.7

Shanghai 911.73 0.00 16.91 7.77 0.00 2.23
Jiangsu 797.45 30.76 183.89 154.07 0.00 3.34

Zhejiang 4468.81 256.58 32.61 118.99 328.89 3.79
Anhui 2500.95 51.09 46.96 124.66 628.52 6.7
Fujian 2663.97 442.35 87.27 15.94 0.00 3.65
Jiangxi 1411.24 167.74 51.3 55.9 621.17 6.37

Shandong 1100.96 5.23 224.99 166.9 0.00 5.53
Henan 5292.91 145.06 87.99 101.75 207.2 7.55
Hubei 2553.5 1356.98 73.83 56.76 0.00 6.63
Hunan 1469.94 543.97 74.98 25.87 0.00 7.96

Guangdong 914.6 391.01 71 53.4 0.00 3.87
Guangxi 3433.89 593.41 61.33 13.49 1101.73 5.09
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Table 4. Cont.

Province Thermal Power
(108 kWh)

Hydro Power
(108 kWh)

Wind Power
(108 kWh)

Solar Power
(108 kWh)

Nuclear Power
(108 kWh) Line Loss (%)

Hainan 1006.51 17.27 4.75 14 171.53 6.02
Chongqing 212.46 242.27 11.02 3.33 97.2 5.15

Sichuan 554.93 3316.01 71.25 28.15 0.00 7.78
Guizhou 508.47 769.36 78.05 19.6 0.00 4.69
Yunnan 1339.53 2855.85 245.29 48.18 0.00 4.2
Shaanxi 3.88 68.49 83.62 94.15 0.00 5.9
Gansu 1860.45 154.98 228.11 118.44 0.00 6.3

Qinghai 787.82 496.12 66.49 158.24 0.00 3.7
Ningxia 107.37 554.04 185.55 114.69 0.00 3.5
Xinjiang 1443.87 21.87 413.3 136 0.00 7.85

Inter-Provincial Transport

China’s power system infrastructure is well established, and inter-provincial power
transmission is widespread [64]. Accounting for inter-provincial power transportation
when calculating carbon emissions is consistent with the current situation. Based on
data compiled by the China Electricity Council in 2019 [61], we calculated the power
transmission among the provinces.

We divided North China, Central China, Southwest China and Northwest China
into provinces according to China’s regional division rules. Moreover, we expanded some
power transportation lines for inter-provincial transportation. Next, to determine the power
supply to each province in the region, we calculated the proportion of total power consump-
tion for each province. Finally, we calculated the actual unit electricity carbon emissions
in each province based on inter-provincial electricity transportation. For example, Hebei
transported 48.772294 billion kWh of electricity to North China in 2019, which includes
Beijing, Tianjin, Shandong, Shanxi and Neimenggu. The total electricity consumption in
North China is 1552.722 billion kWh, while that in Beijing is 111.4022 billion kWh. Hence,
Hebei transported 3.58157 billion kWh of electricity to Beijing. Finally, the amount of
electricity supplied by Hebei was calculated according to the line loss rate of Hebei, not the
power consumption of the province.

Table 5 shows the results of carbon emissions per unit of power in different regions
based on localized GREET data. The provinces that do not consider electricity transmission
have CO2 emissions in the second column, and the provinces that do consider electricity
transmission have CO2 emissions in the third column. The gap in CO2 emissions arises
when electricity transmission is taken into account (column 4), and considering power trans-
mission is more realistic. Detailed data can be found in Supplementary Materials S2 and S3.

Table 5. Unit electricity carbon emissions for each province.

Province Carbon Dioxide Emission
(without Transmission)

Carbon Dioxide Emission
(with Transmission) Difference Unit

Beijing 161.3 206.5 45.2 g CO2-eq/MJ
Tianjin 247.1 242.0 −5.1 g CO2-eq/MJ
Hebei 228.7 231.0 2.3 g CO2-eq/MJ
Shanxi 241.3 240.4 −0.9 g CO2-eq/MJ

Neimenggu 237.1 236.7 −0.4 g CO2-eq/MJ
Liaoning 195.7 205.1 9.4 g CO2-eq/MJ

Jilin 201.3 203.0 1.7 g CO2-eq/MJ
Heilongjiang 212.9 212.9 0.0 g CO2-eq/MJ

Shanghai 221.8 170.6 −51.2 g CO2-eq/MJ
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Table 5. Cont.

Province Carbon Dioxide Emission
(without Transmission)

Carbon Dioxide Emission
(with Transmission) Difference Unit

Jiangsu 209.2 201.3 −7.9 g CO2-eq/MJ
Zhejiang 172.6 171.6 −1.0 g CO2-eq/MJ

Anhui 236.3 235.0 −1.3 g CO2-eq/MJ
Fujian 135.1 135.1 0.0. g CO2-eq/MJ
Jiangxi 194.7 188.1 −6.6 g CO2-eq/MJ

Shandong 243.1 239.2 −3.9 g CO2-eq/MJ
Henan 244.9 238.5 −6.4 g CO2-eq/MJ
Hubei 129.0 133.1 4.1 g CO2-eq/MJ
Hunan 143.5 149.2 5.7 g CO2-eq/MJ

Guangdong 162.9 138.5 −24.4 g CO2-eq/MJ
Guangxi 125.7 124.0 −1.7 g CO2-eq/MJ
Hainan 142.6 143.6 1.0 g CO2-eq/MJ

Chongqing 171.4 134.1 −37.3 g CO2-eq/MJ
Sichuan 26.5 31.6 5.1 g CO2-eq/MJ
Guizhou 172.8 172.8 0.0 g CO2-eq/MJ
Yunnan 18.4 18.36 −0.04 g CO2-eq/MJ
Shaanxi 234.2 223.6 −10.6 g CO2-eq/MJ
Gansu 134.6 129.2 −5.4 g CO2-eq/MJ

Qinghai 32.7 39.7 7.0 g CO2-eq/MJ
Ningxia 223.3 209.2 −14.1 g CO2-eq/MJ
Xinjiang 227.6 227.2 −0.4 g CO2-eq/MJ

3.3. TTW: Vehicle Operation
3.3.1. Vehicle Performance

It is critical to use vehicles of the same size and performance, but with different
powertrains [10,65]. In this study, we adopted Gan’s authoritative research results on
Chinese vehicles with different power systems [10], as shown in Table 6, and energy
consumption data are ideal data without any interference. The models used in this study
were ordinary sedan models, while mini vehicles, SUVs and multi-purpose vehicles (MPVs)
were excluded. Specifically, the study examined the life-cycle ratio of the charge-sustaining
(CS) mode and the charge-depleting (CD) mode of PHEVs, referred to as the utility factor
(UF). This study also employed the simulation results of Gan, namely, the reported UF
value of 0.62, which means that in the entire life cycle of PHEVs, 62% of mileage is driven
by electric motors and 38% is driven by internal combustion engines [10].

Table 6. Average vehicle performance in China.

Vehicle Model Mass (kg) Labeled FCR
(L/100 km)

Labeled ECR
(kW h/100 km)

TTW Consumption
(MJ/km)

ICEV 1444 6.7 Unavailable 2.68
HEV 1518 4.3 Unavailable 1.72
EV 1518 Unavailable 16.4 1.19

PHEV 1694 CS: 5.0 (62%) CD: 21.5 (38%) 2.39

FCR—fuel consumption rate, ECR—electricity consumption rate.

Internal combustion engines do not rely solely on gasoline as their fuel source because
biomass gasoline and natural gas can also substitute for gasoline and offer greater ecological
advantages [66]. To emphasize the complexity of the energy sources of ICEVs, we selected
data for gasoline, fuel oil, natural gas and liquefied natural gas in the China Energy
Statistical Yearbook 2021 [59] from “transportation, storage and postal industry”. Diesel
and kerosene were not selected because they are more commonly used in large vehicles in
China. Taking Beijing as an example, Beijing consumed 673,600 tons of gasoline, 150 tons
of fuel oil, 281 million cubic meters of natural gas and 1619 billion cubic meters of liquefied
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natural gas in automobiles in 2019. According to the calculation of emission and calorific
value performed on the basis of the fuel production data and weighted average, the
emissions of ICEs in Beijing were 22.197 g CO2-eq/MJ. Table 7 shows the fuel sources
used by ordinary sedan models and carbon emissions per unit of energy use after fuel
combination, among which the average value for China is 22.419 g CO2-eq/MJ.

Table 7. Total vehicle energy consumption and weighted carbon emissions in each province.

Province Gasoline (104 t) Fuel Oil (104 t)
Natural Gas

(108 m3) LNG (108 m3)
ICE Emission
(g CO2-eq/MJ)

Beijing 67.36 0.015 2.81 16.19 22.197
Tianjin 97.51 28.54 3.51 0.00 21.421
Hebei 304.22 13.08 1.82 101.45 22.706
Shanxi 231.38 0.00 9.96 0.00 22.808

Neimenggu 133.96 0.02 9.99 27.33 21.552
Liaoning 674.54 109.34 7.52 0.00 22.799

Jilin 217.62 0.00 6.89 0.00 23.191
Heilongjiang 79.01 0.00 6.56 2.20 21.723

Shanghai 197.93 625.29 1.31 0.00 16.460
Jiangsu 643.17 91.22 14.84 4.89 22.525

Zhejiang 272.5 99.30 0.02 0.00 21.891
Anhui 419.23 14.50 3.08 0.00 23.909
Fujian 283.36 112.03 2.06 0.00 21.550
Jiangxi 375.00 2.80 0.80 0.00 24.406

Shandong 773.58 26.97 8.80 3.78 23.708
Henan 693.24 1.08 9.42 0.00 23.905
Hubei 489.84 105.99 5.20 0.00 22.466
Hunan 477.35 67.20 3.25 0.00 23.101

Guangdong 1056.91 205.72 1.49 0.00 22.914
Guangxi 256.03 3.17 5.65 0.00 23.462
Hainan 33.82 34.98 0.83 0.00 19.122

Chongqing 246.10 11.55 6.99 10.28 22.852
Sichuan 490.81 0.68 80.20 74.82 20.374
Guizhou 245.50 0.00 3.42 4.53 23.825
Yunnan 515.76 0.01 0.17 0.32 24.570
Shaanxi 168.62 1.89 3.63 91.88 21.925
Gansu 188.30 0.00 4.85 0.00 23.410

Qinghai 84.78 0.00 5.52 0.00 22.190
Ningxia 82.50 0.00 2.69 0.60 23.133
Xinjiang 341.82 0.00 7.94 0.05 23.509

3.3.2. The Impact of Temperature

Compared with ICEVs, EVs perform worse under extreme ambient temperature, re-
quiring more maintenance and higher energy consumption to ensure normal operation [11].
Moreover, China’s geographical location and provincial distribution determine that differ-
ent provinces have different climates and average temperatures. To simulate the different
climates in different provinces, Wu’s study on the relationship between temperature factor
and energy consumption in ICEVs, HEVs, PHEVs and EVs at the TTW stage was referenced
in this study [11]. We followed Wu’s research and used the 12-month average temperature
of each province in 2021 as the environment temperature (China State Statistics Bureau,
2021). The relationship between environmental temperature and energy consumption is
shown in Equation (1):

rT =


(T − 23.9) ∗ a1 + 1 T > 23.9 ◦C

1 15.5 ◦C ≤ T ≤ 23.9 ◦C
(15.5− T) ∗ a2 + 1 15.5 ◦C ≥ T

(1)
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where rT is the energy consumption rate, which is the temperature factor employed in this
work, T is the actual temperature that vehicle faces during its life cycle, in degrees Celsius, a1
is the high-temperature factor, with values of 0.0129, 0.0171, 0.0183 and 0.0210, respectively,
for ICEVs, HEVs, PHEVs and EVs, while conversely, a2 is the low-temperature factor, with
values of 0.0064, 0.0123, 0.0154 and 0.0242, respectively, for ICEVs, HEVs, PHEVs and EVs.
The specific temperature coefficients of each type of vehicle in each province are shown in
Figure 2, and the detailed data are shown in Table S1 of Supplementary Material S1.

Figure 2. Temperature coefficients of four types of vehicle in different regions.

3.3.3. The Impact of Congestion

Urban and rural roads exhibit considerable disparities in vehicle performance [39,67],
which are fundamentally a result of the conditions of the roads and other factors associated
with speed [68–70]. This section outlines the methodology utilized to replicate driving
conditions in distinct regions. This was achieved by analyzing statistical data on vehicle
operating behavior statistics, driving speed fitting, driving energy consumption estimation
and travel preference simulation. Subsequently, we computed the driving energy consump-
tion coefficients of four vehicle types in various provinces. This factor is designated as the
congestion factor, which captures regional and time differences.

First, we need to find the approximate speed of each car when it is traveling in different
provinces. The Baidu Congestion Index platform is a reliable data platform that detects
congestion and traffic speed of urban and expressway roads using real-time Baidu Map
data. To simulate vehicle operating behaviors in the face of different congestion and road
conditions in different provinces, we first took data in October 2021 as the benchmark,
counted the congestion index of 100 major congested cities every 5 min from Baidu’s
congestion index platform, and counted 57,600 congestion indexes on working days and
non-working days. Then, the congestion index and driving speed data of 6000 provincial
capitals were selected for curve fitting. The results are shown in Figure 3, and fitting
conditions are shown in Tables 8 and 9. These results show that the relationship between
congestion index and travel speed is closest to exponential function, whose R2 is 0.714. As
can be seen from the results, when the congestion index is 1, the average speed of driving
without congestion is 48.96 km/h. By using this function, the speed and the congestion of
vehicles in a certain area of a city at a certain time can be calculated. For specific congestion
data and replacement values, see Supporting Material S4 for details.
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Figure 3. Congestion index–speed fitting function.

Table 8. Congestion index–speed fitting results.

Model Variables B Standard Error Beta t Significance

Linear
Congestion index −14.347 0.175 −0.742 −82.199 0.000

(Constant) 63.223 0.356 177.596 0.000

Exponent Congestion index −0.484 0.004 −0.845 −117.367 0.000
(Constant) 79.443 0.668 118.960 0.000

Table 9. Congestion index–speed coefficient R.

Model R R2 Adjusted R2 Error in Standard Estimation

Linear 0.742 0.550 0.550 11.588
Exponent 0.845 0.714 0.713 0.274

The energy consumption of EVs and ICEVs depends on speed. EVs are better suited for
low-speed environments, while ICEVs are more suitable for high-speed environments [40].
Thus, it can be inferred that the energy consumption of EVs and ICEVs depends on speed.
To further estimate the driving energy consumption of vehicles, we discuss EVs separately
from ICEVs. The energy consumption curve of ICEVs can be fitted into a speed-related
sixth power curve [71], in which the energy consumption of ICEVs is the lowest when
speed is 63.78 km/h. This curve was used to simulate the energy consumption of ICEVs,
HEVs and CD mode in PHEVs. In contrast, according to Asamer’s research, the energy
consumption of EVs is better at low speed and can be reduced at ultra-high speed [40]. To
discover the relationship between the speed and energy consumption of EVs and draw a
comparison with ICEVs [71], we extracted the research data of Asamer [40] and conducted
curve fitting (see Figure 4). The fitting situation is shown in Tables 10 and 11. It can be seen
that the speed–energy consumption curve of EVs can be fitted into a speed-related cubic
curve for which the R2 is 0.166. Based on the function fitting results, the minimum energy
consumption of EVs occurs at a speed of 37.95 km/h. This curve was used to estimate the
energy consumption of CS mode in PHEVs and EVs. This gives an idea of the approximate
energy consumption of the vehicle at different speeds.
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Figure 4. EV speed–energy consumption fitting function.

Table 10. EV speed–energy consumption fitting results.

Model Variables B Standard Error Beta t Significance

Two stages
Speed −0.123 0.016 −0.992 −7.476 0.000
Speed2 0.001 0.000 1.279 9.637 0.000

(Constant) 13.576 0.511 26.582 0.000

Three stages

Speed −0.352 0.054 −2.832 −6.509 0.000
Speed2 0.006 0.001 5.798 5.644 0.000
Speed3 −2.393 × 10−5 0.000 −2.763 −4.435 0.000

(Constant) 16.879 0.900 18.750 0.000

Table 11. EV speed–energy consumption coefficient R.

Model R R2 Adjusted R2 Error in Standard Estimation

Two stages 0.386 0.149 0.147 2.500
Three stages 0.408 0.166 0.164 2.475

However, cars travel at different speeds at different times of the day because drivers
have driving preferences. It is important to consider that the drivers’ travel preferences
vary in each period; thus, the percentage of vehicle operation differs [72,73]. To simulate
drivers’ travel preferences in a certain period, we followed Wang’s study on the relationship
between speed and travel intensity [74]. Equation (2) represents the fitting function for
travel preference–speed:

Vs(ρs, γ) = V f ∗ exp
{
− 1

a [
ρs(1+γ)

ρm
]b
}

(2)

where Vs represents the actual speed, V f represents traffic converging to zero speed
harmonic mean, ρs is the average flow, ρm is the optimal flow, a and b are correlation
coefficients, and γ is the traffic standard deviation. According to the research of Wang, the
relationship between γ and ρs is γ = 2.14ρs − 29.317, and Wang chose the road of Qingdao
and congestion data as a case study (a = −0.6756, b = 0.069, ρm = −28, V f = 46.96). We
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update Vs in Equation (2) as V f = 97.12 and retain the values of a, b and ρm; the travel
preference–speed function across China is then as shown in Equation (3):

Vs(ρs) = 97.12 ∗ exp
{
− 1
−0.6756 [

ρs(2.14ρs−28.317)
−28 ]0.069

}
(3)

Through the above calculation, we get the driving speed and driving energy con-
sumption of the vehicle in a day, which can be expressed by the congestion coefficient. In
summary, the congestion coefficient of a city on a given day is the ratio of actual energy
consumption to the minimum energy consumption multiplied by travel preference for
each time period. Nevertheless, the data collected and the congestion coefficient obtained
are based on cities and the congestion coefficient of each province needs to be calculated
according to the weighting of car ownership in each city. We assume that non-congested
cities, which are not shown on the list of 100 major congested cities, have the lowest
congestion coefficients, corresponding to 1.111 for ICEVs, HEVs and the CD mode for
PHEVs and 1.008 for EVs and the CS mode for PHEVs on weekdays, and 1.103 for ICEVs,
HEVs and the CD mode for PHEVs and 1.004 for EVs and the CS mode for PHEVs on
non-weekdays. For details, see Supplementary Material S4. After calculation, the specific
congestion coefficients of each type of vehicle in each province are shown in Figure 5 and
Table S2 (see Supplementary Material S1) in greater details.

Figure 5. The congestion coefficients of four types of vehicle in different regions.

Figures 6 and 7 show the composition of the carbon emissions produced by ICEVs
and EVs, respectively, in Beijing during the WTW stage. In Figures 6 and 7, WTT and TTW
represent the basic carbon emissions of vehicles during the energy production stage and the
energy consumption stage, respectively, while carbon emissions affected by the temperature
coefficient and the congestion coefficient are not interdependent. Figures 6 and 7 show that
the additional carbon emissions produced by ICEVs as a result of congestion in Beijing are
much greater than the impact of congestion on EVs, while the climate in Beijing makes it
necessary for EVs to emit more carbon dioxide during their whole life cycle in order to
ensure normal operation.
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Figure 6. ICEV carbon emissions composition in Beijing.

Figure 7. EV carbon emissions composition in Beijing.

3.4. Two-Stage SBM-DEA Model

On the basis of the studies of the two-stage DEA model [75–77], we believe that the
WTT and TTW stages correspond to the two stages of DEA; Tone proposed the SBM model
to solve the issue of inaccurate radial optimization in the traditional CCR model [78]. Thus,
in this study, we construct a two-stage SBM-DEA model in which TTW serves as the
main model.

We assume that for each DMU (j = 1, 2, . . . , n), there are m1 input variables x1
u0

(u = 1, 2, . . . , m1) and k intermediate output variables zr0 (r = 1, 2, . . . , k), where the output
variable of WTT is also the input variable of TTW. The SBM model of a DMU in the WTT
stage is shown in Equations (4) to (8):

Min ρ1 = T1 − 1
m1

m1
∑

u=1

S1
u

x1
u0

(4)

T1 + 1
k

k
∑

r=1

τ1
r

zr0
= 1 (5)

n
∑

j=1
Λ1

j x1
uj + S1

u = T1x1
u0 u = 1, 2, . . . , m1 (6)
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n
∑

j=1
Λ1

j zrj − τ1
r = T1zr0 r = 1, 2, . . . , k (7)

T1, Λ1
j , S1

u, τ1
r ≥ 0 (8)

where ρ1 is the WTT stage efficiency of the DMU, T1 is the efficiency multiplier that
guarantees the establishment of Formula (2), x1

u0 and zr0 are actual data of the DMU, Λ1
j

is the unit weight of unit j in WTT stage, and S1
u and τ1

r are the relaxation variables of the
input u and intermediate output variables r. If ρ1 is 1, the DMU is in the best state at the
WTT stage.

Affected by the WTT stage, the intermediate output variable will change. TTW at the
optimal efficiency of WTT at ρ1, τ2

r will be affected by the regulating variable τ1
r . To depict

this effect without affecting the calculation of linear model, we discretized the influence of
τ1

r on the TTW stage [77] and named this effect τr, where τr = τ1
r ∗ a/10(a = 0, 1, . . . , 10). At

this stage, there are m2 input variables x2
u0(u = 1, 2, . . . , m2), k intermediate input variables

zrj (r = 1, 2, . . . , k) and q final output variables yb0(b = 1, 2, . . . , q). The SBM model of the
TTW stage affected by τr is shown as Equations (9) to (14):

Min ρ2 = T2 − 1
k+m2

(
m2
∑

v=1

S2
v

x2
v0
−

k
∑

r=1

τ2
r −a T2

T1 τr

zr0
) (9)

T2 + 1
q

q
∑

b=1

µb
yb0

= 1 (10)

n
∑

j=1
Λ2

j x2
vj + S2

v = T2x2
v0 v = 1, 2, . . . , m2 (11)

n
∑

j=1
Λ2

j zrj − τ2
r + a T2

T1 τr = T2zr0 r = 1, 2, . . . , k (12)

n
∑

j=1
Λ2

j ybj − µb = T2yb0 b = 1, 2, . . . , q (13)

T2, Λ2
j , S2

v, τ2
r , µb ≥ 0 (14)

where ρ2 is the efficiency of the TTW stage of the DMU, T2 is the efficiency multiplier that
guarantees the establishment of Formula (8), x2

u0 and zr0 are actual data of the DMU, and
Λ2

j is the unit weight of j unit in TTW stage. S2
v, τ2

r and µb are the relaxation variables of
the v second-stage input, the r intermediate input variables and the b second-stage output.
Of these, the zrj property of the WTT stage and the TTW stage is the same, and the smaller
the better.

The final WTW efficiency ρ is obtained by multiplying the efficiency of the two WTT
and TTW stages, as shown in Equation (15):

ρ = ρ1 ∗ ρ2 (15)

The selection of xindicators 1
u0, x2

v0, zr0 and yb0 in the two-stage SBM-DEA model is shown
in Figure 8, and detailed data can be seen in Tables S1–S4 (see Supplementary Material S1). In
particular, the zr0 of EVs does not include the emissions of internal combustion engines.
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Figure 8. Indicator selection for the two-stage SBM-DEA model.

4. Results and Discussion

In this section, the results obtained from the LCA+DEA evaluation model are discussed.
In Section 4.1, the efficiency results obtained in WTT are discussed, and in Section 4.2, the
efficiency results obtained for WTT and WTW are discussed.

4.1. Provincial WTT-Stage Vehicle Environmental Efficiency

Based on previous research, the results for WTT-stage vehicles (divided into pure
electric models and non-pure electric models) are shown in Tables S5 and S6 (see
Supplementary Material S1), where each province’s WTT efficiency is in the last column
of the table. In the pure electric model, which only provides electricity, Fujian, Hubei,
Guangxi and Hainan are less efficient because of the high carbon emissions per unit of
energy production (98.358 CO2-eq g/MJ, 103.228 CO2-eq g/MJ, 83.226 CO2-eq g/MJ and
62.510 CO2-eq g/MJ, respectively). The provinces’ optimization strategies are centered
on the thermal power ratio and the electricity self-sufficiency ratio. For example, the
Fujian and Hubei provinces mainly need to focus on the clean production of kerosene
and diesel and reduce the proportion of thermal power generation, while Guangxi and
Hainan provinces mainly need to improve their own power reliability.

In addition, we discovered an interesting phenomenon whereby, under the pure
electric model, Beijing has a high efficiency with a high proportion of thermal power, low
emissions due to energy production per unit, and the lowest electricity self-sufficiency
ratio, while Sichuan, Yunnan and Qinghai have a low efficiency and a high electricity
self-sufficiency ratio, a low proportion of thermal power, and low emissions due to energy
production per unit. The efficiency of Yunnan is only 0.016. This phenomenon results from
the high rate of electricity autonomy and the high proportion of hydropower generation.
Clean energy is highly influenced by weather and climate [37,72], and the drought in the
second half of 2022 caused a sharp decrease in power supply in Sichuan and Yunnan,
which rely on hydroelectric power generation, and the resulting power gap was made
up by power outages. Meanwhile, Shanghai, which relies on power from Sichuan, was
not seriously affected due to the wide distribution of power sources. In addition, it can
be seen from Table S5 (see Supplementary Material S1) that carbon emissions per unit
of power consumption in Sichuan, Yunnan and Qinghai do not need to be optimized,
indicating that, rather than reducing carbon emissions arising from power consumption,
Sichuan, Yunnan and Qinghai should strengthen their inter-provincial power transmission
or ensure the proportion of thermal power generation [37,79], thus improving the power
toughness and ensuring that electricity generation will be gradually reduced when affected
by environmental factors.

4.2. Provincial TTW-Stage Vehicle Environmental Efficiency

The model efficiency results of the TTW stage affected by the WTT stage are shown in
Supplementary Material S5. We selected the most efficient result as the final result for the
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TTW stage. Therefore, the optimization results of ICEVs, HEVs, PHEVs and EVs at the TTW
stage with the highest efficiency are shown in Tables S7–S10 (see Supplementary Materials S1),
respectively, where the EV model does not include intermediate input variable ICE emissions.

The low temperature during winter and spring in Heilongjiang, Liaoning and Jilin
provinces has a great impact on the energy consumption of the four types of vehicle. Owing
to its unique geographical location, Qinghai still has a great impact on the environment
of three types of vehicle, with EVs being the exception. The reason the impact on EVs is
not obvious is the low carbon emissions per unit of power consumption in Qinghai. While
Neimenggu, Gansu and Xinjiang have less of an impact on the temperature of PHEVs and
EVs than the three northeastern provinces, manufacturers still need their vehicles to pass
stringent temperature tests, which are similar to those required by BYD, before launching
their products in these regions.

The energy consumption of EVs in provinces does not increase significantly with
higher traffic congestion, such as in the case of Ningxia, Qinghai and Beijing, because
they are more efficient in low-speed environments. Therefore, not all provinces need to
be concerned about the additional carbon emissions that result from EVs in congested
areas. Beijing, Hebei, Zhejiang, Fujian, Guangdong, Chongqing, Sichuan, Guizhou, Ningxia
and Xinjiang need to invest more resources into tackling congestion in order to reduce
carbon emissions, but the factors are different. Beijing, Chongqing, Ningxia and Xinjiang
are mainly due to the congestion of their capital cities and the large number of vehicles
in capital cities, while Hebei, Zhejiang, Fujian, Guangdong and Guizhou have multiple
congested cities within the province as a whole, and each congested city also has a certain
number of vehicles.

Finally, we compared the total efficiency of four vehicle types in the WTW stage (see
Figure 9) and compared WTW emissions before EV optimization in each province as the
benchmark with those of ICEVs, HEVs and PHEVs in each province, as shown in Figure 10.
The efficiency curves for ICEVs and HEVs are basically the same, but the efficiencies
of Beijing, Shanghai, Zhejiang and Ningxia are lower than those for ICEVs and HEVs.
This influence is caused by a multifaceted set of factors. The differences in temperature
in ICEVs and HEVs result in differences in environmental efficiency in Liaoning, Jilin
and Heilongjiang, while the difference in environmental efficiency in Shandong is due to
congestion. Due to the combined influence of emissions due to electricity consumption and
the temperature coefficient, the environmental efficiency of PHEVs and EVs in Jilin and
Heilongjiang is not ideal. Moreover, Yunnan and Qinghai are not ideal due to the lower
proportion of thermal power and the higher electricity self-sufficiency ratio. The main
reason for these suboptimal results is that hydropower, like other clean power sources, is
influenced by seasonal changes and the climate. To improve environmental efficiency, it is
necessary to modify the hydropower ratios and electricity self-sufficiency ratios to increase
resilience to electricity outages.

Contrary to the conclusions of Gan [10], we found that the WTW carbon emissions
of an EV is basically lower than that of an ICEV (except in Heilongjiang Province), and
the difference between EVs and ICEVs is affected by the energy composition and power
composition of each province when taking the influence of temperature caused by climate
and congestion caused by road conditions into consideration. Three factors contribute
to this difference: (1) we updated the CO2 coefficient of CH4 to 34 based on Recipe2017;
(2) our data cover the years 2019–2021, while Gan’s data were from before 2017; (3) we
considered the impact of congestion on vehicle energy consumption and different fuel
choices, whereas Gan’s study only used gasoline as the fuel for ICEVs, HEVs and PHEVs.
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Figure 9. Provincial WTW efficiency of four types of vehicle.

Figure 10. Provincial EV carbon emissions differences among different models.

5. Conclusions

In this study, the characteristics of provinces, including differences in fuel production,
power production, inter-provincial power transportation and climate change, were considered.
This study also constructed a new road congestion indicator that is able to simulate different
road conditions at different times and in different regions. Moreover, we combined LCA
and two-stage SBM-DEA models into a more realistic model in order to calculate the WTW
carbon emissions and environmental efficiency of four types of vehicle in 30 provinces in
China. We found that the WTW emission range of ICEVs was 288.28–217.40 CO2-eq g/km,
the WTW emission range of HEVs was 183.98–138.97 CO2-eq g/km, and the WTW emission
range was 231.70–55.17 CO2-eq g/km for PHEVs and 248.20–26.67 CO2-eq g/km for EVs.
The WTW carbon emissions of EVs were generally lower than that of ICEVs (except in
Heilongjiang Province).
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On the basis of this research, the management implications at the provincial level
can be summarized as follows. (1) While increasing the proportion of clean energy in
electric power to significantly reduce carbon emissions, provinces should maintain a
certain proportion of thermal power and inter-provincial power transmission to ensure
power toughness and sustainability to prevent the occurrence of power shortage in the
Yunnan-Guizhou Plateau in the second half of 2022. (2) The temperature coefficient mainly
affects the environmental efficiency of PHEVs and EVs with motors as the power source.
To minimize the effect of temperature on EVs, extreme temperature testing, especially
extreme low-temperature testing, is particularly important for EVs [37]. This kind of
performance measurement should not only be carried out by vehicle manufactures like
BYD; rather, governments should also participate in this, as the impact of climate on cars
will ultimately result in additional carbon emissions and reduced environmental efficiency
in each province. (3) The congestion coefficient mainly affects the environmental efficiency
of ICEVs and HEVs with internal combustion engines as the power source. That is to
say, with the increase in EV retention ratio in each province, the higher road congestion
adaptability of EVs makes it unnecessary for the government to increase their investment
in traffic congestion relief. However, this assumes that the energy consumption of EVs and
ICEVs does not change significantly.

This study nevertheless has the following shortcomings: (1) there are still many
non-localized data points in the GREET2021 database; (2) WTW’s energy production and
vehicle operation have a chronological sequence that needs to be reflected in either the
data or the model; (3) in two-stage SBM-DEA, the priority of the second stage should also
be considered.

Further research is needed to evaluate the carbon emissions and environmental effi-
ciency of vehicles in different provinces. Can energy transportation bring about changes in
carbon emissions and environmental efficiency in some provinces? Can power shortage
caused by drought in the Yunnan-Guizhou Plateau in the second half of 2022 be quantified
and simulated in the model? Can big data be further used to expand the coverage of cities
and broaden the time range?
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www.mdpi.com/article/10.3390/su151511984/s1, Table S1. Temperature coefficients of provinces;
Table S2. Congestion coefficient of provinces; Table S3. First-stage DEA data of provinces; Table S4.
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in provinces; Table S6. First stage DEA regulation of non-pure electric model in provinces; Table S7.
Second stage DEA regulation of ICEVs in provinces; Table S8. Second stage DEA regulation of HEVs
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