Exposure to Air Pollution in Transport Microenvironments
Abstract
:1. Introduction
Authors | Transport Microenvironments | Pollutants Considered | Papers Reviewed and Years Considered | Major Findings |
---|---|---|---|---|
[29] | Car and bus | PM2.5, UFP, CO and BC | 21 (2000–2016) | “Results show greatest exposures in car riders and lowest exposure in pedestrians” |
[23] | Car | VOC | About 50 (1991–2016) | “Elevated concentrations of various VOCs in vehicle cabin, compared with ambient air or other indoor environments, and their impact on human health has been paid a risen attention of the researches. Multiplicity of synthetic materials placed in vehicle interior emit even hundreds of volatile organic compounds. For that reason, concentrations of different organic compounds are probably the highest in new vehicles and decrease with vehicle age increase, along with decreased with time emission of VOCs from materials” |
[19] | Taxi | PM2.5, PM10, organic carbon/elemental carbon (OC/EC) and NO2 | 21 (1998–2018) | “Results show that taxi drivers are exposed inside their vehicle to numerous particulate and gas air pollutants mainly issued from exhaust infiltration emitted from surrounding vehicles and from smoking in cabs. Concentrations inside taxicabs varied considerably between the studies according to the territorial and the topographical features” |
[36] | Aircraft cabin | Oil fumes, organophosphates, and halogenated flame retardants | 138 (1990–2021) | “The results show that those who work in the aircraft cabin are at an increased risk of neurological injury or disease due to their profession” |
[26] | Car, bus and subway | PM and BC | 48 (1998–2013) | “Compared to other transport methods, travelling by car has been shown to involve exposure both to higher PM and BC as compared with cycling” |
[14] | Bus, car and taxi | UFPs and CO | About 50 (1991–2005) | “The exposure studies examined revealed pedestrians and cyclists to experience lower fine particulate matter and CO exposure concentrations in comparison to those inside vehicles—the vehicle shell provided no protection to the passengers. Proximity to the pollutant sources had a significant impact on exposure concentration levels experienced, consequently individuals should be encouraged to use back street routes” |
[32] | Car | UFPs, PM2.5, PM10, CO, CO2, BC, and Polycyclic aromatic hydrocarbons (PAHs) | 25 (1999–2014) | “In-vehicle panel studies provide additional evidence that traffic PM exposures at commonly experienced concentrations among car commuters can be associated with a cardiorespiratory response” |
[31] | Car, bus, ferry, rail | UFPs | 47 (until 2010) | “Mean concentrations in bus, automobile (non-tunnel travel), rail, and walk modes were generally comparable. However, UFP exposure (and dose) during time spent in-transit is strongly dependent on a range of mode-specific and more general determinants, including, but not limited to, the effects of: meteorology, traffic parameters, cabin ventilation, filtration, deposition, UFP penetration, fuel type, exhaust treatment technologies, respiratory minute ventilation, route and microscale phenomena” |
[30] | Car, bus, motorcycles | PM2.5, UFPs and BC | n.a. (1997–2017) | “PM2.5 concentrations while walking were 1.6 and 1.2 times higher in Asian cities (average 42 μg/m3) compared to cities in Europe (26 μg/m3) and the USA (35 μg/m3, respectively. Likewise, average PM2.5 concentrations in car (74 μg/m3) and bus (76 μg/m3) modes in Asian cities were approximately two to three times higher than in Europe and American cities. UFP exposures in Asian cities were twice as high for pedestrians and up to ∼9-times as high in cars than in cities in Europe or the USA. Asian pedestrians were exposed to ∼7-times higher BC concentrations compared with pedestrians in the USA” |
[12] | Car | Volatile Organic Compounds (VOCs) | 64 (2004–2021) | “Car cabins are complex environments, including a large range of materials and products such as plastics, textiles, leather, and electronics. Chemicals are emitted from these materials over time, and it is possible to quantify these chemicals in dust particles, air and on surfaces in car cabins. Levels of flame retardants, such as PBDEs and OPFRs, have been studied extensively in car cabins, but for other SVOCs knowledge about levels is either still limited or unknown for some chemical classes” |
[34] | Schoolchildren commuter | 12 different air pollutants | 31 (2004–2020) | “Commuter microenvironment plays a vital role in schoolchildren’s total daily exposure, although they only spend a small proportion of time on commuting” |
[11] | Rail, bus, car, motorcycle | PM10, PM2.5, UFPs, BC, NO2, and NOx | 40 (2016–2020) | “Higher concentrations of air pollutants were often experienced in motorised transport compared to cycling and walking. However, closing car windows and operating ventilation in recirculation mode was found to lower particulate pollution concentrations inside cars” |
[35] | Rail, bus, car, motorcycle | n.a. | 104 (until 2020) | “The findings show that (a) air pollution exposure is higher in open than close transport modes, (b) pedestrians and cyclists suffer the most due to higher respiration rates and proximity to the streets, (c) air pollution exposure causes both short and long-term changes in travel behaviour (d) despite the poor air quality, many developing nations lack adequate work on exposure” |
[25] | Car | PM and VOCs | 90 | “Particulate matters, aromatic hydrocarbons, carbonyls and airborne bacteria have been identified as the primary air pollutants inside metro system” |
[33] | Car | VOCs, COx, PMs, and NOx | n.a. | “Depending on numerous external factors, window-opening, correct usage of automated air conditioning systems, and indoor air filters could be useful air quality improvement tools and recommendations for optimizing the interior air hygiene” |
- Few transport microenvironments considered for each study;
- Small sample size (number of papers), despite a large research timeframe;
- Limited treatment of the number of pollutants;
- Few studies reported on pollutant concentration values.
2. Methodology
2.1. Scope of the Review
- Q1:
- What are the concentrations of pollutants inside means of transport?
- Q2:
- Are high pollutant concentrations associated with specific areas (e.g., large cities) or moving vehicles?
- Q3:
- How are indoor transportation environments monitored?
A | Research Questions | ||||||||
A1. | Q1—What is the concentration of pollutants inside means of transport? | ||||||||
A2. | Q2—Are high concentrations connected to specific areas (e.g., large cities) or to moving vehicles? | ||||||||
A3. | Q3—How are indoor transportation environments monitored? | ||||||||
B | Database | ||||||||
B1. | ScienceDirect | ||||||||
B2. | PubMed | ||||||||
B3. | Scopus | ||||||||
C | Search Criteria | ||||||||
C1. | Journal | All | |||||||
C2. | Year | 2002–2021 | |||||||
C3. | Article type | Research and Review | |||||||
C4. | Date of search | 24 December 2021 | |||||||
D | Keywords Used in Documentary Research | ||||||||
Group A | Group B | ScienceDirect | Scopus | Pubmed | Total | ||||
D1. | Air quality | AND | Microenvironment | 17.793 | 707 | 676 | 19.176 | ||
D2. | Transport | 389.310 | 17.855 | 10.719 | 67.505 | ||||
D3. | In-Vehicle | 150.797 | 611 | 214 | 151.622 | ||||
D4. | Cabin | 9.990 | 1.061 | 399 | 2.459 | ||||
D5. | Commuter | 7.074 | 357 | 5.577 | 13.008 | ||||
D6. | Driver | 91.320 | 2.049 | 984 | 12.165 | ||||
D7. | Passenger | 36.738 | 2.563 | 561 | 39.862 | ||||
D8. | Indoor air pollutant | AND | Microenvironment | 2.308 | 500 | 450 | 3.258 | ||
D9. | Transport | 16.739 | 1.014 | 1.250 | 17.878 | ||||
D10. | In-Vehicle | 9.900 | 91 | 66 | 256 | ||||
D11. | Cabin | 1.142 | 209 | 225 | 1.576 | ||||
D12. | Commuter | 621 | 62 | 741 | 1.424 | ||||
D13. | Driver | 3.573 | 109 | 133 | 3.815 | ||||
D14. | Passenger | 1.868 | 177 | 164 | 2.209 | ||||
D15. | Exposure | AND | Microenvironment | 90.174 | 7.242 | 5.225 | 102.641 | ||
D16. | Transport | 661.322 | 63.783 | 69.824 | 794.929 | ||||
D17. | In-Vehicle | 282.770 | 1.266 | 685 | 30.228 | ||||
D18. | Cabin | 9.025 | 1.399 | 704 | 11.128 | ||||
D19. | Commuter | 4.723 | 602 | 12.073 | 17.398 | ||||
D20. | Driver | 135.377 | 10.108 | 20.723 | 166.208 | ||||
D21. | Passenger | 27.317 | 2.099 | 883 | 30.299 | ||||
E | Inclusion Criteria | ||||||||
E1. | Analyzes the air quality inside means of transport | OR | |||||||
E2. | Reports the concentrations of pollutants measured | OR |
I | Descriptive Analysis |
Year | |
Journal | |
Location (country and city) | |
II | Material Collection |
PD—Protocol-driven | |
IA—Informal approaches | |
SB—Snowball methods | |
III | Transport Microenvironments |
Transport microenvironments | |
Fuel | |
Vehicle in motion during measurements | |
IV | Pollutant |
Measured pollutant | |
Average concentration | |
V | Period of Measurement |
Sampling period | |
VI | Measurement Typology |
Active and/or passive instrumentation |
2.2. Material Collection and Selection
2.3. Material Analysis
- Group I: descriptive analysis.
- ○
- Year of Publication: This aspect focuses on the distribution of papers across different publication years, providing a temporal perspective on the research in the field;
- ○
- Journal: It identifies the journals where the selected papers were published, indicating the scholarly outlets for this topic;
- ○
- Country of Corresponding Author: This aspect highlights the geographical distribution of the corresponding authors, providing insights into the global representation of research on exposure to air pollution in transport microenvironments.
- Group II: Paper Collection Method. This category describes the approach or method used for collecting the papers included in the analysis. It could involve specific search protocols, databases used, and any additional criteria applied during the paper selection process.
- Group III: Means of Transport.
- ○
- Types of Means of Transport: This aspect focuses on identifying and categorizing the various means of transport that were studied by the authors in the selected papers;
- ○
- Type of Fuel: It indicates the type of fuel used by the transport vehicles examined in the studies;
- ○
- Gear During Measurements: This aspect highlights the gear or equipment used during the measurement process, which could vary depending on the specific means of transport.
- Group IV: Pollutants Measured and Concentrations. This category identifies the pollutants that were measured and quantified in the selected papers. It also provides information on the average concentrations of these pollutants reported in the studies.
- Group V: Sampling Period. This aspect describes the duration or period over which the sampling and measurement of air pollutants took place in the selected studies.
- Group VI: Instrumentation Used. This category specifies the type of instrumentation or devices employed for measuring air pollutants in the transport microenvironments studied by the authors.
3. Results
3.1. Descriptive Analysis
3.2. Material Collection and Paper Type
3.3. Transport Microenvironments
3.4. Pollutants and Concentration
Geographic Area | Pollutant (Unit of Measurement) | Pollutant Concentrations by Means of Transport | References | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Car | Bus | Truck/Van | Tram | Train | Metro | Boat/Ferry | Taxi | ||||
ASIA | |||||||||||
Beirut (Lebanon) | PM2.5 (µg/m3) | 93 | [87] | ||||||||
CO (ppm) | 10–20 | [87,172] | |||||||||
CO2 (ppm) | 2500 | [87] | |||||||||
Teheran (Iran) | PM10 (µg/m3) | 60 | [175] | ||||||||
BTEX (ppb) | 35 | [145,159] | |||||||||
CO (ppm) | 22 | ||||||||||
Formaldehyde (ppb) | 800 | ||||||||||
Acetaldehyde (ppb) | 500 | ||||||||||
Changsha (China) | PM2.5 (µg/m3) | 6 | [94] | ||||||||
BTEX (µg/m3) | 40 | 703 | 1441 | ||||||||
CO2 (ppm) | 1663 | ||||||||||
Tianjin (China) | PM2.5 (µg/m3) | 70 | [174,187] | ||||||||
CO2 (ppm) | 1000 | ||||||||||
Beijing (China) | PM10 (µg/m3) | 108 | [37] | ||||||||
PM2.5 (µg/m3) | 15 | 38 | 37 | 75 | 95 | [37,39,42,188] | |||||
PM1 (µg/m3) | 14.7 | [37] | |||||||||
TVOC (ppm) | 0.3 | [37] | |||||||||
CO (ppm) | 2.8 | [189] | |||||||||
CO2 (ppm) | 17 | 5 | 5 | [42] | |||||||
NO2 (µg/m3) | 31 | 47 | [39] | ||||||||
Benzene (µg/m3) | 13.7 | [37] | |||||||||
Toluene (µg/m3) | 12.4 | ||||||||||
Xylene (µg/m3) | 4.1 | ||||||||||
Shanghai (China) | PM2.5 (µg/m3) | 114 | 159 | 600 | 136 | [190] | |||||
TVOC (µg/m3) | 84 | [114] | |||||||||
CO2 (ppm) | 430 | [191] | |||||||||
Harbin (China) | PAH (µg/g) | 48 | [161] | ||||||||
Hong Kong (China) | PM2.5 (µg/m3) | 331 | [63] | 18 | [192] | ||||||
TVOC (ppb) | 35 | 2.1 | [50,51] | ||||||||
CO (ppm) | 1.7 | 5 | [49,50] | ||||||||
CO2 (ppm) | 5000 | 3000 | |||||||||
NO2 (ppm) | 0.08 | [49] | |||||||||
Seoul (Republic of Korea) | PM10 (µg/m3) | 78 | [193] | ||||||||
TVOC (ppb) | 5 | [194] | |||||||||
Tainan City and Taipei City (Taiwan) | PM10 (µg/m3) | 59.8 | [195] | ||||||||
PM2.5 (µg/m3) | 47.5 | ||||||||||
CO (ppm) | 2.3 | ||||||||||
CO2 (ppm) | 1493 | ||||||||||
Ho Chi Minh (Vietnam) | Benzene (µg/m3) | 25 | 30.5 | [137] | |||||||
Bangkok (Thailand) | PM2.5 (µg/m3) | 49 | 77 | [196] | |||||||
TVOC (µg/m3) | 48 | 13.2 | 45.5 | [197] | |||||||
New Delhi (India) | PM2.5 (µg/m3) | 200 | 113 | 72 | [79,158,198] | ||||||
BC (µg/m3) | 75 | ||||||||||
Bhadrachalam (India) | PM10 (µg/m3) | 56 | 107 | [63,66] | |||||||
PM2.5 (µg/m3) | 85 | 75 | |||||||||
PM1 (µg/m3) | 14 | 16.5 | |||||||||
CO (ppm) | 1.8 | ||||||||||
Dhanbad (India) | PM10 (µg/m3) | 844 | [71,98] | ||||||||
PM2.5 (µg/m3) | 458 | ||||||||||
PM1 (µg/m3) | 302 | ||||||||||
CO2 (ppm) | 600 | 600 | |||||||||
Chennai (India) | CO (ppm) | 4 | [199] | ||||||||
Salem (India) | PM2.5 (µg/m3) | 44 | [200] | ||||||||
CO2 (ppm) | 261 | ||||||||||
Kathmandu (Nepal) | PM10 (µg/m3) | 275 | [166] | ||||||||
PM2.5 (µg/m3) | 92 | ||||||||||
TVOC (ppb) | 3 | ||||||||||
CO (ppm) | 180 | ||||||||||
Manila (Philippines) | PM10 (µg/m3) | 15 | [117] | ||||||||
PM2.5 (µg/m3) | 14 | ||||||||||
CO2 (ppm) | 563 | ||||||||||
EUROPE | |||||||||||
Uppsala and Stockholm (Sweden) | PM10 (µg/m3) | 43 | [143] | ||||||||
PM2.5 (µg/m3) | 12 | ||||||||||
Stockholm (Sweden | BC (µg/m3) | 2.7 | [131] | ||||||||
Helsinki (Finland) | PM2.5 (µg/m3) | 15 | 10 | [131] | |||||||
BC (µg/m3) | 2 | 1.7 | |||||||||
London (UK) | PM10 (µg/m3) | 20 | 39 | 8.9 | 68.4 | [76,128,201] | |||||
PM2.5 (µg/m3) | 7.4 | 13.2 | 3.8 | 34.5 | |||||||
PM1 (µg/m3) | 6.9 | 9.2 | 23.3 | ||||||||
CO2 (ppm) | 802 | [128] | |||||||||
BC (µg/m3) | 4.4 | 5.6 | 9.8 | 5.2 | [76,201] | ||||||
NO2 (ppb) | 80 | 78.5 | [128,164] | ||||||||
Dublin (Ireland) | PM2.5 (µg/m3) | 103.5 | [70] | ||||||||
Benzene (ppb) | 3 | ||||||||||
Frankfurt (Germany) | PM10 (µg/m3) | 40–70 | [202] | ||||||||
PM2.5 (µg/m3) | 45 | ||||||||||
Paris (France) | PM10 (µg/m3) | 188 | [144] | ||||||||
PM2.5 (µg/m3) | 59 | 136 | [144,186] | ||||||||
CO (ppm) | 0.01 | [111] | |||||||||
NO2 (µg/m3) | 203 | 113 | [111,186] | ||||||||
Athens (Greece) | PM10 (µg/m3) | 48–148–350 | [120,121,184] | ||||||||
PM2.5 (µg/m3) | 10–32–50 | ||||||||||
PM1 (µg/m3) | 6.5–7.9–27 | ||||||||||
TVOC (µg/m3) | 0.6 | ||||||||||
CO (ppm) | 443 | ||||||||||
CO2 (ppm) | 755 | [121] | |||||||||
Benzene (µg/m3) | 1.2 | [120,121] | |||||||||
NO2 (µg/m3) | 180 | ||||||||||
SO2 (µg/m3) | 8 | ||||||||||
Thessaloniki (Greece) | PAH (ng/m3) | 4 | 6 | [203] | |||||||
Lisbon (Portugal) | PM10 (µg/m3) | 7 | 2 | 4 | 85 | [96,113] | |||||
PM2.5 (µg/m3) | 14 | 17 | 15 | 40 | |||||||
TVOC (µg/m3) | 1132 | 1313 | 598 | [96] | |||||||
CO (ppm) | 0.6 | 0.6 | 0.3 | ||||||||
CO2 (ppm) | 1132 | 753 | 747 | ||||||||
BC (µg/m3) | 4 | 4.5 | 3 | ||||||||
CH2O (µg/m3) | 0.4 | 0.7 | 0.6 | ||||||||
Oporto (Portugal) | BTEX (µg/m3) | 5.2 | [204] | ||||||||
Milan (Italy) | PM10 (µg/m3) | 15 | 31 | [205,206] | |||||||
PM4 (µg/m3) | 12 | 21 | |||||||||
PM2.5 (µg/m3) | 10 | 17 | |||||||||
PM1 (µg/m3) | 8 | 11 | |||||||||
TPS (µg/m3) | 18 | 38 | |||||||||
BC (µg/m3) | 3.8 | 6 | |||||||||
NO2 (µg/m3) | 24 | 73 | |||||||||
Benzene (µg/m3) | 3.8 | ||||||||||
Ispra (Italy) | PM10 (µg/m3) | 28 | [61,62] | ||||||||
PM2.5 (µg/m3) | 18 | ||||||||||
PM1 (µg/m3) | 15 | ||||||||||
Parma (Italy) | Benzene (µg/m3) | 5.85 | [207] | ||||||||
Florence (Italy) | PM2.5 (µg/m3) | 56 | 39 | [152] | |||||||
Rome (Italy) | PM10 (µg/m3) | 61 | 268 | 268 | [185] | ||||||
CO (ppm) | 0.7 | ||||||||||
CO2 (ppm) | 1271 | ||||||||||
Naples (Italy) | PM10 (µg/m3) | 169 | [208] | ||||||||
PM2.5 (µg/m3) | 46 | ||||||||||
Barcelona (Spain) | PM10 (µg/m3) | 61 | [28] | ||||||||
PM2.5 (µg/m3) | 35 | 25 | 29 | 42 | [16,28,132] | ||||||
CO (ppm) | 6.4 | 2 | 0.4 | 0.9 | 1.2 | ||||||
CO2 (ppm) | 668 | 886 | 643 | 694 | 802 | ||||||
BC (µg/m3) | 17 | 5.5–7 | 3.4 | 7 | 6.5 | ||||||
Istanbul (Turkey) | PM2.5 (µg/m3) | 60 | 100 | 28.5 | 42 | 16 | [135] | ||||
BC (µg/m3) | 10 | 4.7 | 4 | ||||||||
America (North and South) | |||||||||||
Calgary (Canada) | PM2.5 (µg/m3) | 150 | [209] | ||||||||
CO (ppm) | 1.8 | ||||||||||
CO2 (ppm) | 600 | ||||||||||
NO2 (µg/m3) | 0.05 | ||||||||||
North Carolina State University campus (USA) | PM2.5 (µg/m3) | 15 | 14 | [181] | |||||||
CO (ppm) | 1 | 0.9 | |||||||||
O3 (ppb) | 10 | 9 | |||||||||
Detroit (USA) | TVOC (µg/m3) | 57.5 | 65 | [210] | |||||||
Phoenix (USA) | TVOC (µg/m3) | 1000 | [163] | ||||||||
Los Angeles (USA) | PM2.5 (µg/m3) | 13 | 26 | [211,212] | |||||||
PAH(µg/m3) | 148 | 124 | 61 | 77 | [44] | ||||||
Santa Monica (USA) | PM2.5 (µg/m3) | 8.5 | [68] | ||||||||
Austin (USA) | PM2.5 (µg/m3) | 14 | [102] | ||||||||
NO2 (ppb) | 25 | ||||||||||
Mexico City (USA) | PM2.5 (µg/m3) | 28 | 50 | [213] | |||||||
Bogota (Colombia) | PM2.5 (µg/m3) | 150 | 167 | [141,162] | |||||||
CO (ppm) | 3.5-5 | ||||||||||
BC (µg/m3) | 250 | ||||||||||
Medellin (Colombia) | PM2.5 (µg/m3) | 42.2 | [162] | ||||||||
Caxias do Sul (Brazil) | NO2 (ppb) | 48 | [214] | ||||||||
Paramaribo (Suriname) | BTEX (µg/m3) | 0.44 | [149] | ||||||||
Oceania | |||||||||||
Auckland (New Zealand) | CO (ppm) | 1 | [154] | ||||||||
Africa | |||||||||||
Cairo (Egypt) | PM10 (µg/m3) | 26–98 | [74] | ||||||||
PM2.5 (µg/m3) | 12–29 | 200 | [99] | ||||||||
Lagos (Nigeria) | CO (ppm) | 32 | 23 | [157] | |||||||
TVOC (µg/m3) | 0.7 | 0.2 |
3.5. Measurement Period
3.6. Instrumental Approach to Measurement
4. Conclusions
- Strong Scientific Interest: The exposure of workers and commuters to air pollutants in transport microenvironments is a topic of significant scientific interest, as evidenced by the large number of papers collected. There is an increasing trend of scientific articles, particularly in the years 2020 and 2021, indicating the increasing attention given to this field;
- Geographic Distribution: The majority of studies are concentrated in the Northern Hemisphere, specifically in Asia (Beijing, Hong Kong, and Delhi) and Europe (London, Paris, and Athens). This emphasizes the importance of the topic and the health concerns in densely populated areas, especially in mega and big cities.
- Focus on Cars and Buses: Studies on personal exposure to air pollutants during car and bus commuting are more prevalent compared to other types of transport microenvironments. This is expected since cars and buses are the most commonly used means of transportation globally. The evaluations often occur during the movement of these vehicles, particularly those fueled by diesel or petrol, to assess the impact of internal and external sources and the air exchange between the environments;
- Particulate Matter (PM): Researchers are primarily interested in atmospheric particulate matter, especially PM2.5. Fine PM has effects on health, even at very low concentrations; in fact, a threshold below which no damage to health is observed has not been identified. Concentrations of particulate matter in transport microenvironments are often very high, exceeding several hundred µg/m3 and surpassing outdoor levels. These high levels of particulate matter are often linked to particular conditions and, in the studies analyzed, they were found in very busy areas, during peak hours, in old cabins without ventilation and air filtration systems. Tobacco smoke in confined spaces also significantly influences pollutant concentrations;
- Cars, trains and metros are the types of vehicles with higher concentrations of pollutants;
- The World Health Organization (WHO) recognizes the strong relationship between exposure to high concentrations of fine particulate matter and increased mortality and morbidity. The harmful effects on health due to exposure to particulate matter in means of transports have been described and analyzed by various authors, highlighting their criticality;
- Total Volatile Organic Compounds (TVOCs): TVOCs, classified as a class I carcinogen by the International Agency for Research on Cancer (IARC), also exhibit high concentrations in various transport microenvironments;
- Their presence is particularly relevant especially in new vehicles where the internal construction materials (e.g., plastic, rubber, textiles, fibers, and adhesives) have significant emissions of VOCs. Also, in this case, various factors combine to increase the pollutant concentrations: air temperature (maximum level with high temperatures) and relative humidity, air exchange rate, and type of material.
- In particular, the highest concentrations were found in parked new vehicles compared to older vehicles during operating conditions (vehicle moving).
- Seasonal Variation: While there is a clear relationship between pollutant concentrations and seasons (higher concentrations in winter), most studies analyzed focused on individual seasons. Only a few papers included evaluations in both warm and cold periods. This limits our understanding of the seasonal variations in pollutant levels within transport microenvironments.
- Active Instrumentation: Active sampling approaches, employing instruments with forced aspiration systems, are the most commonly used in measuring pollutant concentrations within transport microenvironments.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lolli, F.; Coruzzolo, A.M.; Marinello, S.; Traini, A.; Gamberini, R. A Bibliographic Analysis of Indoor Air Quality (IAQ) in Industrial Environments. Sustainability 2022, 14, 10108. [Google Scholar]
- Lolli, F.; Marinello, S.; Coruzzolo, A.M.; Butturi, M.A. Post-Occupancy Evaluation’s (POE) Applications for Improving Indoor Environment Quality (IEQ). Toxics 2022, 10, 626. [Google Scholar] [CrossRef] [PubMed]
- Lucialli, P.; Marinello, S.; Pollini, E.; Scaringi, M.; Sajani, S.Z.; Marchesi, S.; Cori, L. Indoor and Outdoor Concentrations of Benzene, Toluene, Ethylbenzene and Xylene in Some Italian Schools Evaluation of Areas with Different Air Pollution. Atmos. Pollut. Res. 2020, 11, 1998–2010. [Google Scholar] [CrossRef]
- Prüss-Ustün, A.; Wolf, J.; Corvalán, C.; Neville, T.; Bos, R.; Neira, M. Diseases Due to Unhealthy Environments: An Updated Estimate of the Global Burden of Disease Attributable to Environmental Determinants of Health. J. Public Health 2017, 39, 464. [Google Scholar] [CrossRef] [Green Version]
- Prüss-Üstün, A.; Corvalán, C.; Bos, R.; Neira, M.; World Health Organization. Preventing Disease through Healthy Environments: A Global Assessment of the Burden of Disease from Environmental Risks; World Health Organization: Geneva, Switzerland, 2018; p. 147. [Google Scholar]
- Khomenko, S.; Cirach, M.; Pereira-Barboza, E.; Mueller, N.; Barrera-Gómez, J.; Rojas-Rueda, D.; de Hoogh, K.; Hoek, G.; Nieuwenhuijsen, M. Premature Mortality Due to Air Pollution in European Cities: A Health Impact Assessment. Lancet Planet. Health 2021, 5, e121–e134. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Ambient Air Pollution: A Global Assessment of Exposure and Burden of Disease; World Health Organization: Geneva, Switzerland, 2016. [Google Scholar]
- World Health Organization. Ambient (Outdoor) Air Pollution; World Health Organization: Geneva, Switzerland, 2022. [Google Scholar]
- UNEP. Global Environment Outlook 6; UNEP: Nairobi, Kenya, 2019. [Google Scholar]
- Health Effect Institute (HEI). State of Global Air 2018: Over 7 Billion People Face Unsafe Air; Health Effect Institute (HEI): Boston, MA, USA, 2018. [Google Scholar]
- Mitsakou, C.; Adamson, J.P.; Doutsi, A.; Brunt, H.; Jones, S.J.; Gowers, A.M.; Exley, K.S. Assessing the Exposure to Air Pollution during Transport in Urban Areas—Evidence Review. J. Transp. Health 2021, 21, 101064. [Google Scholar] [CrossRef]
- Lexén, J.; Bernander, M.; Cotgreave, I.; Andersson, P.L. Assessing Exposure of Semi-Volatile Organic Compounds (SVOCs) in Car Cabins: Current Understanding and Future Challenges in Developing a Standardized Methodology. Environ. Int. 2021, 157, 106847. [Google Scholar] [CrossRef]
- Marshall, J.D.; Granvold, P.W.; Hoats, A.S.; McKone, T.E.; Deakin, E.; Nazaroff, W.W. Inhalation Intake of Ambient Air Pollution in California’s South Coast Air Basin. Atmos. Environ. 2006, 40, 4381–4392. [Google Scholar] [CrossRef] [Green Version]
- Kaur, S.; Nieuwenhuijsen, M.J.; Colvile, R.N. Fine Particulate Matter and Carbon Monoxide Exposure Concentrations in Urban Street Transport Microenvironments. Atmos. Environ. 2007, 41, 4781–4810. [Google Scholar] [CrossRef]
- Van Roosbroeck, S.; Hoek, G.; Meliefste, K.; Janssen, N.A.H.; Brunekreef, B. Validity of Residential Traffic Intensity as an Estimate of Long-Term Personal Exposure to Traffic-Related Air Pollution among Adults. Environ. Sci. Technol. 2008, 42, 1337–1344. [Google Scholar] [CrossRef]
- De Nazelle, A.; Seto, E.; Donaire-Gonzalez, D.; Mendez, M.; Matamala, J.; Nieuwenhuijsen, M.J.; Jerrett, M. Improving Estimates of Air Pollution Exposure through Ubiquitous Sensing Technologies. Environ. Pollut. 2013, 176, 92–99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dons, E.; Int Panis, L.; Van Poppel, M.; Theunis, J.; Wets, G. Personal Exposure to Black Carbon in Transport Microenvironments. Atmos. Environ. 2012, 55, 392–398. [Google Scholar] [CrossRef]
- Dons, E.; Temmerman, P.; Van Poppel, M.; Bellemans, T.; Wets, G.; Int Panis, L. Street Characteristics and Traffic Factors Determining Road Users’ Exposure to Black Carbon. Sci. Total Environ. 2013, 447, 72–79. [Google Scholar] [CrossRef] [PubMed]
- Hachem, M.; Saleh, N.; Paunescu, A.C.; Momas, I.; Bensefa-Colas, L. Exposure to Traffic Air Pollutants in Taxicabs and Acute Adverse Respiratory Effects: A Systematic Review. Sci. Total Environ. 2019, 693, 133439. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Rivas, I.; Singh, A.P.; Ganesh, V.J.; Ananya, M.; Frey, H.C. Dynamics of Coarse and Fine Particle Exposure in Transport Microenvironments. npj Clim. Atmos. Sci. 2018, 1, 11. [Google Scholar] [CrossRef] [Green Version]
- Kumar, R.; Goel, N.; Gupta, N.; Singh, K.; Nagar, S.; Mittal, J. Indoor Air Pollution and Respiratory Illness in Children from Rural India a Pilot Study. Indian J. Chest Dis. Allied Sci. 2014, 56, 79–83. [Google Scholar]
- Patton, A.P.; Laumbach, R.; Ohman-Strickland, P.; Black, K.; Alimokhtari, S.; Lioy, P.J.; Kipen, H.M. Scripted Drives: A Robust Protocol for Generating Exposures to Traffic-Related Air Pollution. Atmos. Environ. 2016, 143, 290–299. [Google Scholar] [CrossRef] [Green Version]
- Faber, J.; Brodzik, K. Air Quality inside Passenger Cars. AIMS Environ. Sci. 2017, 4, 112–133. [Google Scholar] [CrossRef]
- Rönkkö, T.; Kuuluvainen, H.; Karjalainen, P.; Keskinen, J.; Hillamo, R.; Niemi, J.V.; Pirjola, L.; Timonen, H.J.; Saarikoski, S.; Saukko, E.; et al. Traffic Is a Major Source of Atmospheric Nanocluster Aerosol. Proc. Natl. Acad. Sci. USA 2017, 114, 7549–7554. [Google Scholar]
- Xu, B.; Hao, J. Air Quality inside Subway Metro Indoor Environment Worldwide: A Review. Environ. Int. 2017, 107, 33–46. [Google Scholar] [CrossRef]
- Karanasiou, A.; Viana, M.; Querol, X.; Moreno, T.; de Leeuw, F. Assessment of Personal Exposure to Particulate Air Pollution during Commuting in European Cities-Recommendations and Policy Implications. Sci. Total Environ. 2014, 490, 785–797. [Google Scholar] [CrossRef] [PubMed]
- Morawska, L.; Ristovski, Z.; Jayaratne, E.R.; Keogh, D.U.; Ling, X. Ambient Nano and Ultrafine Particles from Motor Vehicle Emissions: Characteristics, Ambient Processing and Implications on Human Exposure. Atmos. Environ. 2008, 42, 8113–8138. [Google Scholar] [CrossRef] [Green Version]
- Moreno, T.; Pacitto, A.; Fernández, A.; Amato, F.; Marco, E.; Grimalt, J.; Buonanno, G.; Querol, X. Vehicle Interior Air Quality Conditions When Travelling by Taxi. Environ. Res. 2019, 172, 529–542. [Google Scholar] [CrossRef]
- De Nazelle, A.; Bode, O.; Orjuela, J.P. Comparison of Air Pollution Exposures in Active vs. Passive Travel Modes in European Cities: A Quantitative Review. Environ. Int. 2017, 99, 151–160. [Google Scholar] [CrossRef]
- Kumar, P.; Patton, A.P.; Durant, J.L.; Frey, H.C. A Review of Factors Impacting Exposure to PM2.5, Ultrafine Particles and Black Carbon in Asian Transport Microenvironments. Atmos. Environ. 2018, 187, 301–316. [Google Scholar] [CrossRef]
- Knibbs, L.D.; Cole-Hunter, T.; Morawska, L. A Review of Commuter Exposure to Ultrafine Particles and Its Health Effects. Atmos. Environ. 2011, 45, 2611–2622. [Google Scholar] [CrossRef] [Green Version]
- Kelly, F.J.; Fussell, J.C. Improving Indoor Air Quality, Health and Performance within Environments Where People Live, Travel, Learn and Work. Atmos. Environ. 2019, 200, 90–109. [Google Scholar] [CrossRef] [Green Version]
- Zulauf, N.; Dröge, J.; Klingelhöfer, D.; Braun, M.; Oremek, G.M.; Groneberg, D.A. Indoor Air Pollution in Cars: An Update on Novel Insights. Int. J. Environ. Res. Public Health 2019, 16, 2441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, X.; Longley, I.; Gao, J.; Salmond, J. Assessing Schoolchildren’s Exposure to Air Pollution during the Daily Commute—A Systematic Review. Sci. Total Environ. 2020, 737, 140389. [Google Scholar] [CrossRef]
- Poom, A.; Willberg, E.; Toivonen, T. Environmental Exposure during Travel: A Research Review and Suggestions Forward. Health Place 2021, 70, 102584. [Google Scholar] [CrossRef]
- Hayes, K.; Megson, D.; Doyle, A.; O’Sullivan, G. Occupational Risk of Organophosphates and Other Chemical and Radiative Exposure in the Aircraft Cabin: A Systematic Review. Sci. Total Environ. 2021, 796, 148742. [Google Scholar] [CrossRef] [PubMed]
- Li, T.T.; Bai, Y.H.; Liu, Z.R.; Li, J.L. In-Train Air Quality Assessment of the Railway Transit System in Beijing: A Note. Transp. Res. Part D Transp. Environ. 2007, 12, 64–67. [Google Scholar] [CrossRef]
- Zheng, B.; Huo, H.; Zhang, Q.; Yao, Z.L.; Wang, X.T.; Yang, X.F.; Liu, H.; He, K.B. High-Resolution Mapping of Vehicle Emissions in China in 2008. Atmos. Chem. Phys. 2014, 14, 9787–9805. [Google Scholar] [CrossRef] [Green Version]
- Du, X.; Fu, L.; Ge, W.; Zhang, S.; Wang, H. Exposure of Taxi Drivers and Office Workers to Traffic-Related Pollutants in Beijing: A Note. Transp. Res. Part D Transp. Environ. 2011, 16, 78–81. [Google Scholar] [CrossRef]
- Wu, S.; Deng, F.; Niu, J.; Huang, Q.; Liu, Y.; Guo, X. Exposures to PM2.5 Components and Heart Rate Variability in Taxi Drivers around the Beijing 2008 Olympic Games. Sci. Total Environ. 2011, 409, 2478–2485. [Google Scholar] [CrossRef]
- Huang, J.; Deng, F.; Wu, S.; Guo, X. Comparisons of Personal Exposure to PM2.5 and CO by Different Commuting Modes in Beijing, China. Sci. Total Environ. 2012, 425, 52–59. [Google Scholar] [CrossRef]
- Yan, C.; Zheng, M.; Yang, Q.; Zhang, Q.; Qiu, X.; Zhang, Y.; Fu, H.; Li, X.; Zhu, T.; Zhu, Y. Commuter Exposure to Particulate Matter and Particle-Bound PAHs in Three Transportation Modes in Beijing, China. Environ. Pollut. 2015, 204, 199–206. [Google Scholar] [CrossRef]
- Hudda, N.; Eckel, S.P.; Knibbs, L.D.; Sioutas, C.; Delfino, R.J.; Fruin, S.A. Linking In-Vehicle Ultrafine Particle Exposures to on-Road Concentrations. Atmos. Environ. 2012, 59, 578–586. [Google Scholar] [CrossRef] [Green Version]
- Houston, D.; Wu, J.; Yang, D.; Jaimes, G. Particle-Bound Polycyclic Aromatic Hydrocarbon Concentrations in Transportation Microenvironments. Atmos. Environ. 2013, 71, 148–157. [Google Scholar] [CrossRef]
- Jung, H.S.; Grady, M.L.; Victoroff, T.; Miller, A.L. Simultaneously Reducing CO2 and Particulate Exposures via Fractional Recirculation of Vehicle Cabin Air. Atmos. Environ. 2017, 160, 77–88. [Google Scholar] [CrossRef] [Green Version]
- Lovett, C.; Shirmohammadi, F.; Sowlat, M.H.; Sioutas, C. Commuting in Los Angeles: Cancer and Non-Cancer Health Risks of Roadway, Light-Rail and Subway Transit Routes. Aerosol Air Qual. Res. 2018, 18, 2363–2374. [Google Scholar] [CrossRef]
- Lim, S.; Mudway, I.; Molden, N.; Holland, J.; Barratt, B. Identifying Trends in Ultrafine Particle Infiltration and Carbon Dioxide Ventilation in 92 Vehicle Models. Sci. Total Environ. 2022, 812, 152521. [Google Scholar] [CrossRef]
- An, T.; Huang, Y.; Li, G.; He, Z.; Chen, J.; Zhang, C. Pollution Profiles and Health Risk Assessment of VOCs Emitted during E-Waste Dismantling Processes Associated with Different Dismantling Methods. Environ. Int. 2014, 73, 186–194. [Google Scholar] [CrossRef]
- Chan, A.T. Commuter Exposure and Indoor-Outdoor Relationships of Carbon Oxides in Buses in Hong Kong. Atmos. Environ. 2003, 37, 3809–3815. [Google Scholar] [CrossRef]
- Barnes, N.M.; Ng, T.; Ma, K.K.; Lai, K.M. In-Cabin Air Quality during Driving and Engine Idling in Air-Conditioned Private Vehicles in Hong Kong. Int. J. Environ. Res. Public Health 2018, 15, 611. [Google Scholar] [CrossRef] [Green Version]
- Lau, W.L.; Chan, L.Y. Commuter Exposure to Aromatic VOCs in Public Transportation Modes in Hong Kong. Sci. Total Environ. 2003, 308, 143–155. [Google Scholar] [CrossRef] [PubMed]
- Mui, K.W.; Shek, K.W. Influence of In-Tunnel Environment to in-Bus Air Quality and Thermal Condition in Hong Kong. Sci. Total Environ. 2005, 347, 163–174. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Cai, B.; Wu, F.; Zeng, H. Hourly Disaggregation of Industrial CO2 Emissions from Shenzhen, China. Environ. Pollut. 2018, 236, 396–404. [Google Scholar] [CrossRef] [PubMed]
- Chertok, M.; Voukelatos, A.; Sheppeard, V.; Rissel, C. Comparison of Air Pollution Exposure for Five Commuting Modes in Sydney—Car, Train, Bus, Bicycle and Walking. Health Promot. J. Aust. 2004, 15, 63–67. [Google Scholar] [CrossRef] [Green Version]
- Hudda, N.; Fruin, S.A. Models for Predicting the Ratio of Particulate Pollutant Concentrations inside Vehicles to Roadways. Environ. Sci. Technol. 2013, 47, 11048–11055. [Google Scholar] [CrossRef] [Green Version]
- Ramacher, M.O.P.; Karl, M. Integrating Modes of Transport in a Dynamic Modelling Approach to Evaluate Population Exposure to Ambient NO2 and PM2.5 Pollution in Urban Areas. Int. J. Environ. Res. Public Health 2020, 17, 2099. [Google Scholar] [CrossRef] [Green Version]
- Hochstetler, H.A.; Yermakov, M.; Reponen, T.; Ryan, P.H.; Grinshpun, S.A. Aerosol Particles Generated by Diesel-Powered School Buses at Urban Schools as a Source of Children’s Exposure. Atmos. Environ. 2011, 45, 1444–1453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kingham, S.; Longley, I.; Salmond, J.; Pattinson, W.; Shrestha, K. Variations in Exposure to Traffic Pollution While Travelling by Different Modes in a Low Density, Less Congested City. Environ. Pollut. 2013, 181, 211–218. [Google Scholar] [CrossRef] [PubMed]
- Joodatnia, P.; Kumar, P.; Robins, A. Fast Response Sequential Measurements and Modelling of Nanoparticles inside and Outside a Car Cabin. Atmos. Environ. 2013, 71, 364–375. [Google Scholar] [CrossRef] [Green Version]
- Kumar, P.; Hama, S.; Abbass, R.A.; Nogueira, T.; Brand, V.S.; Abhijith, K.V.; de Fatima Andrade, M.; Asfaw, A.; Aziz, K.H.; Cao, S.J.; et al. Potential Health Risks Due to In-Car Aerosol Exposure across Ten Global Cities. Environ. Int. 2021, 155, 106688. [Google Scholar] [CrossRef] [PubMed]
- Geiss, O.; Tirendi, S.; Barrero-Moreno, J.; Kotzias, D. Investigation of Volatile Organic Compounds and Phthalates Present in the Cabin Air of Used Private Cars. Environ. Int. 2009, 35, 1188–1195. [Google Scholar] [CrossRef]
- Geiss, O.; Barrero-Moreno, J.; Tirendi, S.; Kotzias, D. Exposure to Particulate Matter in Vehicle Cabins of Private Cars. Aerosol Air Qual. Res. 2010, 10, 581–588. [Google Scholar] [CrossRef] [Green Version]
- Kolluru, S.S.R.; Patra, A.K.; Sahu, S.P. A Comparison of Personal Exposure to Air Pollutants in Different Travel Modes on National Highways in India. Sci. Total Environ. 2018, 619–620, 155–164. [Google Scholar] [CrossRef]
- Kolluru, S.S.R.; Patra, A.K.; Dubey, R.S. In-Vehicle PM2.5 Personal Concentrations in Winter during Long Distance Road Travel in India. Sci. Total Environ. 2019, 684, 207–220. [Google Scholar] [CrossRef]
- Kolluru, S.S.R.; Patra, A.K. Personal Exposures to PM during Short Distance Highway Travel in India. Transp. Res. Part D Transp. Environ. 2020, 81, 102315. [Google Scholar] [CrossRef]
- Kolluru, S.S.R.; Patra, A.K.; Kumar, P. Determinants of Commuter Exposure to PM2.5 and CO during Long-Haul Journeys on National Highways in India. Atmos. Pollut. Res. 2019, 10, 1031–1041. [Google Scholar] [CrossRef]
- Dotherow, J.E.; Martin, D.; Adhikari, A. VOC and Particle Concentrations in New and Old Model Automobiles. Int. J. Transp. Dev. Integr. 2019, 3, 179–184. [Google Scholar] [CrossRef] [Green Version]
- Quiros, D.C.; Lee, E.S.; Wang, R.; Zhu, Y. Ultrafine Particle Exposures While Walking, Cycling, and Driving along an Urban Residential Roadway. Atmos. Environ. 2013, 73, 185–194. [Google Scholar] [CrossRef]
- Dekoninck, L.; Int Panis, L. A High Resolution Spatiotemporal Model for In-Vehicle Black Carbon Exposure: Quantifying the In-Vehicle Exposure Reduction Due to the Euro 5 Particulate Matter Standard Legislation. Atmosphere 2017, 8, 230. [Google Scholar] [CrossRef] [Green Version]
- McNabola, A.; Broderick, B.M.; Gill, L.W. The Impacts of Inter-Vehicle Spacing on in-Vehicle Air Pollution Concentrations in Idling Urban Traffic Conditions. Transp. Res. Part D Transp. Environ. 2009, 14, 567–575. [Google Scholar] [CrossRef]
- Gupta, S.K.; Elumalai, S.P. Exposure to Traffic-Related Particulate Matter and Deposition Dose to Auto Rickshaw Driver in Dhanbad, India. Atmos. Pollut. Res. 2019, 10, 1128–1139. [Google Scholar] [CrossRef]
- Sarnat, J.A.; Golan, R.; Greenwald, R.; Raysoni, A.U.; Kewada, P.; Winquist, A.; Sarnat, S.E.; Dana Flanders, W.; Mirabelli, M.C.; Zora, J.E.; et al. Exposure to Traffic Pollution, Acute Inflammation and Autonomic Response in a Panel of Car Commuters. Environ. Res. 2014, 133, 66–76. [Google Scholar] [CrossRef] [Green Version]
- Noordin, N.H.; Abd Razak, A.; Kwong, Q.J. Effects of ventilation modes on the concentrations of particulate matter (pm2.5) and indoor temperature inside vehicle cabin during mobile conditions. Malays. J. Sustain. Environ. 2021, 8, 33–48. [Google Scholar]
- Abbass, R.A.; Kumar, P.; El-Gendy, A. Car Users Exposure to Particulate Matter and Gaseous Air Pollutants in Megacity Cairo. Sustain. Cities Soc. 2020, 56, 102090. [Google Scholar] [CrossRef]
- Bigazzi, A.Y.; Figliozzi, M.A. Impacts of Freeway Traffic Conditions on In-Vehicle Exposure to Ultrafine Particulate Matter. Atmos. Environ. 2012, 60, 495–503. [Google Scholar] [CrossRef]
- Briggs, D.J.; de Hoogh, K.; Morris, C.; Gulliver, J. Effects of Travel Mode on Exposures to Particulate Air Pollution. Environ. Int. 2008, 34, 12–22. [Google Scholar] [CrossRef]
- Abi Esber, L.; El-Fadel, M.; Nuwayhid, I.; Saliba, N. The Effect of Different Ventilation Modes on In-Vehicle Carbon Monoxide Exposure. Atmos. Environ. 2007, 41, 3644–3657. [Google Scholar] [CrossRef]
- Hudda, N.; Fruin, S.A. Carbon Dioxide Accumulation inside Vehicles: The Effect of Ventilation and Driving Conditions. Sci. Total Environ. 2018, 610–611, 1448–1456. [Google Scholar] [CrossRef] [PubMed]
- Jain, S. Exposure to In-Vehicle Respirable Particulate Matter in Passenger Vehicles under Different Ventilation Conditions and Seasons. Sustain. Environ. Res. 2017, 27, 87–94. [Google Scholar] [CrossRef]
- Kim, K.H.; Szulejko, J.E.; Jo, H.J.; Lee, M.H.; Kim, Y.H.; Kwon, E.; Ma, C.J.; Kumar, P. Measurements of Major VOCs Released into the Closed Cabin Environment of Different Automobiles under Various Engine and Ventilation Scenarios. Environ. Pollut. 2016, 215, 340–346. [Google Scholar] [CrossRef]
- Lesage, M.; Chalet, D.; Migaud, J. Experimental Analysis and Quantification of Air Infiltration into a Passenger Car Cabin. Transp. Res. Part D Transp. Environ. 2021, 99, 103006. [Google Scholar] [CrossRef]
- Rismanchian, M.; Shakerian, M.; Garsivaz, M.; Heidari, M.; Maracy, M.; Porzamani, H. Effects of Vehicle Ventilation System, Fuel Type, and in-Cabin Smoking on the Concentration of Toluene and Ethylbenzene in Pride Cars. Int. J. Environ. Health Eng. 2013, 2, 43. [Google Scholar] [CrossRef]
- Tolis, E.I.; Karanotas, T.; Svolakis, G.; Panaras, G.; Bartzis, J.G. Air Quality in Cabin Environment of Different Passenger Cars: Effect of Car Usage, Fuel Type and Ventilation/Infiltration Conditions. Environ. Sci. Pollut. Res. 2021, 28, 51232–51241. [Google Scholar] [CrossRef] [PubMed]
- Szczurek, A.; Maciejewska, M. Categorisation for Air Quality Assessment in Car Cabin. Transp. Res. Part D Transp. Environ. 2016, 48, 161–170. [Google Scholar] [CrossRef]
- Szczurek, A.; Maciejewska, M. Classification of Air Quality inside Car Cabin Using Sensor System. In Proceedings of the SENSORNETS 2015: 4th International Conference on Sensor Networks, Angers, France, 11–13 February 2015; pp. 211–219. [Google Scholar] [CrossRef]
- Noordin, N.H.; Razak, A.A.; Kushairi, S.; Mohamad, M.F.; Kwong, Q.J.; Salim, S.A.Z.S. Preliminary Analysis of Benzene, Toluene, Ethylbenzene, o-Xylene (BTEX) and Formaldehyde inside Vehicle Cabin. J. Mech. Eng. 2018, 5, 80–99. [Google Scholar]
- Abi-Esber, L.; El-Fadel, M. Indoor to Outdoor Air Quality Associations with Self-Pollution Implications inside Passenger Car Cabins. Atmos. Environ. 2013, 81, 450–463. [Google Scholar] [CrossRef]
- Yoshida, T.; Matsunaga, I. A Case Study on Identification of Airborne Organic Compounds and Time Courses of Their Concentrations in the Cabin of a New Car for Private Use. Environ. Int. 2006, 32, 58–79. [Google Scholar] [CrossRef] [PubMed]
- Chien, Y.C. Variations in Amounts and Potential Sources of Volatile Organic Chemicals in New Cars. Sci. Total Environ. 2007, 382, 228–239. [Google Scholar] [CrossRef]
- Tran, P.T.M.; Nguyen, T.; Balasubramanian, R. Personal Exposure to Airborne Particles in Transport Micro-Environments and Potential Health Impacts: A Tale of Two Cities. Sustain. Cities Soc. 2020, 63, 102470. [Google Scholar] [CrossRef]
- Faber, J.; Brodzik, K.; Gołda-Kopek, A.; Łomankiewicz, D.; Nowak, J.; Łwiątek, A. Passive Sampling Application to Control Air Quality in Interior of New Vehicles. Chem. Pap. 2015, 69, 799–809. [Google Scholar] [CrossRef]
- Faber, J.; Brodzik, K.; Łomankiewicz, D.; Gołda-Kopek, A.; Nowak, J.; Świątek, A. Comparison of Air Pollution by VOCs Inside the Cabins of New Vehicles Vehicle Interior Air Quality View Project Petroleum Products Quality View Project Comparison of Air Pollution by VOCs Inside the Cabins of New Vehicles. Environ. Nat. Resour. Res. 2014, 4, 155. [Google Scholar] [CrossRef] [Green Version]
- Xing, L.; Wang, L.; Zhang, R. Characteristics and Health Risk Assessment of Volatile Organic Compounds Emitted from Interior Materials in Vehicles: A Case Study from Nanjing, China. Environ. Sci. Pollut. Res. 2018, 25, 14789–14798. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.Y.; Ho, K.F.; Chang, T.Y.; Hong, G.B.; Liu, C.W.; Chuang, K.J. In-Vehicle Carbon Dioxide and Adverse Effects: An Air Filtration-Based Intervention Study. Sci. Total Environ. 2020, 723, 138047. [Google Scholar] [CrossRef]
- Deng, Y.; Sprowls, M.; Jimena Mora, S.; Kulick, D.; Tao, N.; Destaillats, H.; Forzani, E. An Unobstructive Sensing Method for Indoor Air Quality Optimization and Metabolic Assessment within Vehicles. Sensors 2020, 20, 7202. [Google Scholar] [CrossRef]
- Buitrago, N.D.; Savdie, J.; Almeida, S.M.; Verde, S.C. Factors Affecting the Exposure to Physicochemical and Microbiological Pollutants in Vehicle Cabins While Commuting in Lisbon. Environ. Pollut. 2021, 270, 116062. [Google Scholar] [CrossRef]
- Chaudhry, S.K.; Elumalai, S.P. Students Exposure Assessment towards PM Number Concentration While Commuting from Different Transport Modes during School Timings. Stoch. Environ. Res. Risk Assess. 2021, 35, 371–388. [Google Scholar] [CrossRef]
- Chaudhry, S.K.; Elumalai, S.P. Exploring the Influence of Ventilation Settings and Fan Strength on Passenger Car In-Cabin Particle Number Concentration. Air Qual. Atmos. Health 2022, 15, 679–690. [Google Scholar] [CrossRef]
- Abbass, R.A.; Kumar, P.; El-Gendy, A. Fine Particulate Matter Exposure in Four Transport Modes of Greater Cairo. Sci. Total Environ. 2021, 791, 148104. [Google Scholar] [CrossRef] [PubMed]
- Velasco, E.; Retama, A.; Segovia, E.; Ramos, R. Particle Exposure and Inhaled Dose While Commuting by Public Transport in Mexico City. Atmos. Environ. 2019, 219, 117044. [Google Scholar] [CrossRef]
- Chan, L.Y.; Lau, W.L.; Zou, S.C.; Cao, Z.X.; Lai, S.C. Exposure Level of Carbon Monoxide and Respirable Suspended Particulate in Public Transportation Modes While Commuting in Urban Area of Guangzhou, China. Atmos. Environ. 2002, 36, 5831–5840. [Google Scholar] [CrossRef]
- Rim, D.; Siegel, J.; Spinhirne, J.; Webb, A.; McDonald-Buller, E. Characteristics of Cabin Air Quality in School Buses in Central Texas. Atmos. Environ. 2008, 42, 6453–6464. [Google Scholar] [CrossRef]
- Van Ryswyk, K.; Evans, G.J.; Kulka, R.; Sun, L.; Sabaliauskas, K.; Rouleau, M.; Anastasopolos, A.T.; Wallace, L.; Weichenthal, S. Personal Exposures to Traffic-Related Air Pollution in Three Canadian Bus Transit Systems: The Urban Transportation Exposure Study. J. Expo. Sci. Environ. Epidemiol. 2020, 31, 628–640. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, G.; Zhang, Q.; Chen, H. Mass Concentrations of BTEX inside Air Environment of Buses in Changsha, China. Build. Environ. 2011, 46, 421–427. [Google Scholar] [CrossRef]
- Chio, C.P.; Cheng, Y.H.; Ling, M.P.; Chen, S.C.; Liao, C.M. Quantitative Estimation of Excess Mortality for Drivers and Passengers Exposed to Particulate Matters in Long-Distance Buses. Atmos. Environ. 2012, 51, 260–267. [Google Scholar] [CrossRef]
- Behrentz, E.; Sabin, L.D.; Winer, A.M.; Fitz, D.R.; Pankratz, D.V.; Colome, S.D.; Fruin, S.A. Relative Importance of School Bus-Related Microenvironments to Children’s Pollutant Exposure. J. Air Waste Manag. Assoc. 2005, 55, 1418–1430. [Google Scholar] [CrossRef] [Green Version]
- Adar, S.D.; Adamkiewicz, G.; Gold, D.R.; Schwartz, J.; Coull, B.A.; Suh, H. Ambient and Microenvironmental Particles and Exhaled Nitric Oxide before and after a Group Bus Trip. Environ. Health Perspect. 2007, 115, 507–512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mbelambela, E.P.; Hirota, R.; Eitoku, M.; Muchanga, S.M.J.; Kiyosawa, H.; Yasumitsu-Lovell, K.; Lawanga, O.L.; Suganuma, N. Occupation Exposed to Road-Traffic Emissions and Respiratory Health among Congolese Transit Workers, Particularly Bus Conductors, in Kinshasa: A Cross-Sectional Study. Environ. Health Prev. Med. 2017, 22, 11. [Google Scholar] [CrossRef] [Green Version]
- Morales Betancourt, R.; Galvis, B.; Balachandran, S.; Ramos-Bonilla, J.P.; Sarmiento, O.L.; Gallo-Murcia, S.M.; Contreras, Y. Exposure to Fine Particulate, Black Carbon, and Particle Number Concentration in Transportation Microenvironments. Atmos. Environ. 2017, 157, 135–145. [Google Scholar] [CrossRef]
- Son, B.; Yang, W.; Breysse, P.; Chung, T.; Lee, Y. Estimation of Occupational and Nonoccupational Nitrogen Dioxide Exposure for Korean Taxi Drivers Using a Microenvironmental Model. Environ. Res. 2004, 94, 291–296. [Google Scholar] [CrossRef]
- Hachem, M.; Loizeau, M.; Saleh, N.; Momas, I.; Bensefa-Colas, L. Short-Term Association of in-Vehicle Ultrafine Particles and Black Carbon Concentrations with Respiratory Health in Parisian Taxi Drivers. Environ. Int. 2021, 147, 106346. [Google Scholar] [CrossRef] [PubMed]
- Hadei, M.; Shahsavani, A.; Hopke, P.K.; Kermani, M.; Yarahmadi, M.; Mahmoudi, B. Comparative Health Risk Assessment of In-Vehicle Exposure to Formaldehyde and Acetaldehyde for Taxi Drivers and Passengers: Effects of Zone, Fuel, Refueling, Vehicle’s Age and Model. Environ. Pollut. 2019, 254, 112943. [Google Scholar] [CrossRef] [PubMed]
- Correia, C.; Martins, V.; Cunha-Lopes, I.; Faria, T.; Diapouli, E.; Eleftheriadis, K.; Almeida, S.M. Particle Exposure and Inhaled Dose While Commuting in Lisbon. Environ. Pollut. 2020, 257, 113547. [Google Scholar] [CrossRef]
- Gong, Y.; Wei, Y.; Cheng, J.; Jiang, T.; Chen, L.; Xu, B. Health Risk Assessment and Personal Exposure to Volatile Organic Compounds (VOCs) in Metro Carriages—A Case Study in Shanghai, China. Sci. Total Environ. 2017, 574, 1432–1438. [Google Scholar] [CrossRef]
- Gong, Y.; Zhou, T.; Zhao, Y.; Xu, B. Characterization and Risk Assessment of Particulate Matter and Volatile Organic Compounds in Metro Carriage in Shanghai, China. Atmosphere 2019, 10, 302. [Google Scholar] [CrossRef] [Green Version]
- Abramesko, V.; Tartakovsky, L. Ultrafine Particle Air Pollution inside Diesel-Propelled Passenger Trains. Environ. Pollut. 2017, 226, 288–296. [Google Scholar] [CrossRef]
- Batutay, T.J.G.; Cabanban, H.S.; Serate, F.P.S.; Quito, J.D.; Umali, E.R.D.; Gumasing, M.J.J. Quantitative and Qualitative Analysis of Indoor Air Quality inside the Mrt 3 Train Cabins. In Proceedings of the 5th NA International Conference on Industrial Engineering and Operatiosn Management Detroit Michigan, Virtual, 10–14 August 2020; pp. 94–102. [Google Scholar]
- Campagnolo, D.; Cattaneo, A.; Corbella, L.; Borghi, F.; Del Buono, L.; Rovelli, S.; Spinazzé, A.; Cavallo, D.M. In-Vehicle Airborne Fine and Ultra-Fine Particulate Matter Exposure: The Impact of Leading Vehicle Emissions. Environ. Int. 2019, 123, 407–416. [Google Scholar] [CrossRef] [PubMed]
- Borghi, F.; Spinazzè, A.; Fanti, G.; Campagnolo, D.; Rovelli, S.; Keller, M.; Cattaneo, A.; Cavallo, D.M. Commuters’ Personal Exposure Assessment and Evaluation of Inhaled Dose to Different Atmospheric Pollutants. Int. J. Environ. Res. Public Health 2020, 17, 3357. [Google Scholar] [CrossRef] [PubMed]
- Maggos, T.; Saraga, D.; Bairachtari, K.; Tzagkaroulaki, I.; Pateraki, S.; Vasilakos, C.; Makarounis, C.; Stavdaris, A.; Danias, G.; Anagnostopoulos, G.; et al. Air Quality Assessment in Passenger Trains: The Impact of Smokestack Emissions. Air Qual. Atmos. Health 2016, 9, 391–401. [Google Scholar] [CrossRef]
- Barmparesos, N.; Assimakopoulos, V.D.; Assimakopoulos, M.N.; Tsairidi, E. Particulate Matter Levels and Comfort Conditions in the Trains and Platforms of the Athens Underground Metro. AIMS Environ. Sci. 2016, 3, 199–219. [Google Scholar] [CrossRef]
- Gao, K.; Xie, J.; Yang, X. Estimation of the Contribution of Human Skin and Ozone Reaction to Volatile Organic Compounds (VOC) Concentration in Aircraft Cabins. Build. Environ. 2015, 94, 12–20. [Google Scholar] [CrossRef]
- Guan, J.; Gao, K.; Wang, C.; Yang, X.; Lin, C.H.; Lu, C.; Gao, P. Measurements of Volatile Organic Compounds in Aircraft Cabins. Part I: Methodology and Detected VOC Species in 107 Commercial Flights. Build. Environ. 2014, 72, 154–161. [Google Scholar] [CrossRef]
- Guan, J.; Jia, Y.; Wei, Z.; Tian, X. Temporal Variations of Ultrafine Particle Concentrations in Aircraft Cabin: A Field Study. Build. Environ. 2019, 153, 118–127. [Google Scholar] [CrossRef]
- Rosenberger, W.; Beckmann, B.; Wrbitzky, R. Airborne Aldehydes in Cabin-Air of Commercial Aircraft: Measurement by HPLC with UV Absorbance Detection of 2,4-Dinitrophenylhydrazones. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2016, 1019, 117–127. [Google Scholar] [CrossRef]
- Rosenberger, W. Effect of Charcoal Equipped HEPA Filters on Cabin Air Quality in Aircraft. A Case Study Including Smell Event Related in-Flight Measurements. Build. Environ. 2018, 143, 358–365. [Google Scholar] [CrossRef]
- Lim, S.; Holliday, L.; Barratt, B.; Griffiths, C.J.; Mudway, I.S. Assessing the Exposure and Hazard of Diesel Exhaust in Professional Drivers: A Review of the Current State of Knowledge. Air Qual. Atmos. Health 2021, 14, 1681–1695. [Google Scholar] [CrossRef]
- Frederickson, L.B.; Lim, S.; Russell, H.S.; Kwiatkowski, S.; Bonomaully, J.; Schmidt, J.A.; Hertel, O.; Mudway, I.; Barratt, B.; Johnson, M.S. Monitoring Excess Exposure to Air Pollution for Professional Drivers in London Using Low-Cost Sensors. Atmosphere 2020, 11, 749. [Google Scholar] [CrossRef]
- Tan, Z.; Tay, R. Sources Contributing to PM2.5 in a Commercial Truck Cabin in Winter. Transp. Res. Part D Transp. Environ. 2008, 13, 54–58. [Google Scholar] [CrossRef]
- Muresan, B.; François, D. Air Quality in Tramway and High-Level Service Buses: A Mixed Experimental/Modeling Approach to Estimating Users’ Exposure. Transp. Res. Part D Transp. Environ. 2018, 65, 244–263. [Google Scholar] [CrossRef]
- Asmi, E.; Antola, M.; Yli-Tuomi, T.; Jantunen, M.; Aarnio, P.; Mäkelä, T.; Hillamo, R.; Hämeri, K. Driver and Passenger Exposure to Aerosol Particles in Buses and Trams in Helsinki, Finland. Sci. Total Environ. 2009, 407, 2860–2867. [Google Scholar] [CrossRef] [PubMed]
- Moreno, T.; Reche, C.; Rivas, I.; Cruz Minguillón, M.; Martins, V.; Vargas, C.; Buonanno, G.; Parga, J.; Pandolfi, M.; Brines, M.; et al. Urban Air Quality Comparison for Bus, Tram, Subway and Pedestrian Commutes in Barcelona. Environ. Res. 2015, 142, 495–510. [Google Scholar] [CrossRef]
- Papp, E.; Nagy, D.; Szoboszlai, Z.; Angyal, A.; Török, Z.; Csepregi, Á.; Furu, E.; Kertész, Z. Investigation of Aerosol Pollution inside Trams in Debrecen, Hungary. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2020, 477, 138–143. [Google Scholar] [CrossRef]
- Ragettli, M.S.; Corradi, E.; Braun-Fahrländer, C.; Schindler, C.; de Nazelle, A.; Jerrett, M.; Ducret-Stich, R.E.; Künzli, N.; Phuleria, H.C. Commuter Exposure to Ultrafine Particles in Different Urban Locations, Transportation Modes and Routes. Atmos. Environ. 2013, 77, 376–384. [Google Scholar] [CrossRef]
- Onat, B.; Alver Şahin, Ü.; Uzun, B.; Akin, Ö.; Özkaya, F.; Ayvaz, C. Commuter Exposure to Black Carbon, Fine Particulate Matter and Particle Number Concentration in Ferry and at the Pier in Istanbul. Atmosphere 2019, 10, 439. [Google Scholar] [CrossRef] [Green Version]
- Jiao, W.; Christopher, H. Comparison of Fine Particulate Matter and Carbon Monoxide Exposure Concentrations for Selected Transportation Modes. Transp. Res. Rec. 2014, 2428, 54–62. [Google Scholar] [CrossRef]
- Lan, T.T.N.; Liem, N.Q.; Binh, N.T.T. Personal Exposure to Benzene of Selected Population Groups and Impact of Commuting Modes in Ho Chi Minh, Vietnam. Environ. Pollut. 2013, 175, 56–63. [Google Scholar] [CrossRef]
- Onat, B.; Stakeeva, B. Personal Exposure of Commuters in Public Transport to PM2.5 and Fine Particle Counts. Atmos. Pollut. Res. 2013, 4, 329–335. [Google Scholar] [CrossRef] [Green Version]
- Ham, W.; Vijayan, A.; Schulte, N.; Herner, J.D. Commuter Exposure to PM2.5, BC, and UFP in Six Common Transport Microenvironments in Sacramento, California. Atmos. Environ. 2017, 167, 335–345. [Google Scholar] [CrossRef]
- deSouza, P.; Anjomshoaa, A.; Duarte, F.; Kahn, R.; Kumar, P.; Ratti, C. Air Quality Monitoring Using Mobile Low-Cost Sensors Mounted on Trash-Trucks: Methods Development and Lessons Learned. Sustain. Cities Soc. 2020, 60, 102239. [Google Scholar] [CrossRef]
- Morales Betancourt, R.; Galvis, B.; Rincón-Riveros, J.M.; Rincón-Caro, M.A.; Rodriguez-Valencia, A.; Sarmiento, O.L. Personal Exposure to Air Pollutants in a Bus Rapid Transit System: Impact of Fleet Age and Emission Standard. Atmos. Environ. 2019, 202, 117–127. [Google Scholar] [CrossRef]
- Tong, Z.; Li, Y.; Westerdahl, D.; Adamkiewicz, G.; Spengler, J.D. Exploring the Effects of Ventilation Practices in Mitigating In-Vehicle Exposure to Traffic-Related Air Pollutants in China. Environ. Int. 2019, 127, 773–784. [Google Scholar] [CrossRef]
- Cha, Y.; Tu, M.; Elmgren, M.; Silvergren, S.; Olofsson, U. Factors Affecting the Exposure of Passengers, Service Staff and Train Drivers inside Trains to Airborne Particles. Environ. Res. 2018, 166, 16–24. [Google Scholar] [CrossRef]
- Guseva Canu, I.; Crézé, C.; Hemmendinger, M.; Ben Rayana, T.; Besançon, S.; Jouannique, V.; Debatisse, A.; Wild, P.; Sauvain, J.J.; Suárez, G.; et al. Particle and Metal Exposure in Parisian Subway: Relationship between Exposure Biomarkers in Air, Exhaled Breath Condensate, and Urine. Int. J. Hyg. Environ. Health 2021, 237, 113837. [Google Scholar] [CrossRef]
- Kakooei, H.; Golhosseini, M.J.; Shahtaheri, S.J.; Azari, M.R.; Azam, K. Evaluation of Volatile Organic Compounds Levels inside Taxis Passing through Main Streets of Tehran. Int. J. Occup. Hyg. 2013, 5, 152–158. [Google Scholar]
- Liang, B.; Yu, X.; Mi, H.; Liu, D.; Huang, Q.; Tian, M. Health Risk Assessment and Source Apportionment of VOCs inside New Vehicle Cabins: A Case Study from Chongqing, China. Atmos. Pollut. Res. 2019, 10, 1677–1684. [Google Scholar] [CrossRef]
- You, K.W.; Ge, Y.S.; Bin, H.U.; Ning, Z.W.; Zhao, S.T.; Zhang, Y.N.; Peng, X.I.E. Measurement of In-Vehicle Volatile Organic Compounds under Static Conditions. J. Environ. Sci. 2007, 19, 1208–1213. [Google Scholar] [CrossRef]
- Zhang, G.S.; Li, T.T.; Luo, M.; Liu, J.F.; Liu, Z.R.; Bai, Y.H. Air Pollution in the Microenvironment of Parked New Cars. Build. Environ. 2008, 43, 315–319. [Google Scholar] [CrossRef]
- Doornkamp, J.L.; James, N.A.; Ori, S.; Bent, G.A. Preliminary Assessment of BTEX Exposure Levels in Urban Ambient Air and Public Buses: A Pilot Study Conducted in Paramaribo, Suriname. Case Stud. Chem. Environ. Eng. 2021, 4, 100112. [Google Scholar] [CrossRef]
- Targino, A.C.; Rodrigues, M.V.C.; Krecl, P.; Cipoli, Y.A.; Ribeiro, J.P.M. Commuter Exposure to Black Carbon Particles on Diesel Buses, on Bicycles and on Foot: A Case Study in a Brazilian City. Environ. Sci. Pollut. Res. 2018, 25, 1132–1146. [Google Scholar] [CrossRef]
- Jo, W.-K.; Lee, J.-H. In-Vehicle Levels of Naphthalene and Monocyclic Aromatic Compounds According to Vehicle Type. Environ. Eng. Res. 2009, 14, 180–185. [Google Scholar] [CrossRef]
- Fondelli, M.C.; Chellini, E.; Yli-Tuomi, T.; Cenni, I.; Gasparrini, A.; Nava, S.; Garcia-Orellana, I.; Lupi, A.; Grechi, D.; Mallone, S.; et al. Fine Particle Concentrations in Buses and Taxis in Florence, Italy. Atmos. Environ. 2008, 42, 8185–8193. [Google Scholar] [CrossRef]
- Ren, Z.; Xiao, X.; Chen, D.; Bi, X.; Huang, B.; Liu, M.; Hu, J.; Peng, P.; Sheng, G.; Fu, J. Halogenated Organic Pollutants in Particulate Matters Emitted during Recycling of Waste Printed Circuit Boards in a Typical E-Waste Workshop of Southern China. Chemosphere 2014, 94, 143–150. [Google Scholar] [CrossRef] [PubMed]
- Dirks, K.N.; Salmond, J.A.; Talbot, N. Air Pollution Exposure in Walking School Bus Routes: A New Zealand Case Study. Int. J. Environ. Res. Public Health 2018, 15, 2802. [Google Scholar] [CrossRef] [Green Version]
- Gastelum-Arellanez, A.; Esquivel-Días, J.; Lopez-Padilla, R.; Robledo, V.H.; Paulina, R.; Beltrán, M.F.; Saucedo-Lucero, J.O. Assessment of Persistent Indoor VOCs inside Public Transport during Winter Season. Chemosphere 2021, 263, 128127. [Google Scholar] [CrossRef]
- Harik, G.; El-Fadel, M.; Shihadeh, A.; Alameddine, I.; Hatzopoulou, M. Is In-Cabin Exposure to Carbon Monoxide and Fine Particulate Matter Amplified by the Vehicle’s Self-Pollution Potential? Quantifying the Rate of Exhaust Intrusion. Transp. Res. Part D Transp. Environ. 2017, 54, 225–238. [Google Scholar] [CrossRef]
- Odekanle, E.L.; Fakinle, B.S.; Jimoda, L.A.; Okedere, O.B.; Akeredolu, F.A.; Sonibare, J.A. In-Vehicle and Pedestrian Exposure to Carbon Monoxide and Volatile Organic Compounds in a Mega City. Urban Clim. 2017, 21, 173–182. [Google Scholar] [CrossRef]
- Apte, J.S.; Kirchstetter, T.W.; Reich, A.H.; Deshpande, S.J.; Kaushik, G.; Chel, A.; Marshall, J.D.; Nazaroff, W.W. Concentrations of Fine, Ultrafine, and Black Carbon Particles in Auto-Rickshaws in New Delhi, India. Atmos. Environ. 2011, 45, 4470–4480. [Google Scholar] [CrossRef]
- Bakhtiari, R.; Hadei, M.; Hopke, P.K.; Shahsavani, A.; Rastkari, N.; Kermani, M.; Yarahmadi, M.; Ghaderpoori, A. Investigation of In-Cabin Volatile Organic Compounds (VOCs) in Taxis; Influence of Vehicle’s Age, Model, Fuel, and Refueling. Environ. Pollut. 2018, 237, 348–355. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Iriarte, A.; Amato, F.; Moreno, N.; Pacitto, A.; Reche, C.; Marco, E.; Grimalt, J.O.; Querol, X.; Moreno, T. Chemistry and Sources of PM2.5 and Volatile Organic Compounds Breathed inside Urban Commuting and Tourist Buses. Atmos. Environ. 2020, 223, 117234. [Google Scholar] [CrossRef]
- Gao, P.; Liu, S.; Feng, Y.; Lin, N.; Lu, B.; Zhang, Z.; Cui, F.; Xing, B.; Hammond, S.K. Concentrations of Polycyclic Aromatic Hydrocarbons in Resuspendable Fraction of Settled Bus Dust and Its Implications for Human Exposure. Environ. Pollut. 2015, 198, 1–7. [Google Scholar] [CrossRef]
- Castillo-Camacho, M.P.; Tunarrosa-Grisales, I.C.; Chacón-Rivera, L.M.; Guevara-Luna, M.A.; Belalcázar-Cerón, L.C. Personal Exposure to PM2.5in the Massive Transport System of Bogota and Medellin, Colombia. Asian J. Atmos. Environ. 2020, 14, 210–224. [Google Scholar] [CrossRef]
- Deng, B.; Hou, K.; Chen, Y.; Chen, Z.; Duan, X.; Huang, Z.; Tao, D. Quantitative Detection, Sources Exploration and Reduction of in-Cabin Benzene Series Hazards of Electric Buses through Climate Chamber Experiments. J. Hazard. Mater. 2021, 412, 125107. [Google Scholar] [CrossRef]
- Bos, B.; Lim, S.; Hedges, M.; Molden, N.; Boyle, S.; Mudway, D.I.; Barratt, D.B. Taxi Drivers’ Exposure to Black Carbon and Nitrogen Dioxide in Electric and Diesel Vehicles: A Case Study in London. Environ. Res. 2021, 195, 110736. [Google Scholar] [CrossRef]
- Diapouli, E.; Grivas, G.; Chaloulakou, A.; Spyrellis, N. PM10 and Ultrafine Particles Counts In-Vehicle and On-Road in the Athens Area. Water Air Soil Pollut. Focus 2008, 8, 89–97. [Google Scholar] [CrossRef]
- Dhital, N.B.; Hung, W.T.; Byanju, R.M. Air Pollution inside Public Transport Vehicles of Kathmandu Valley. Nepal J. Environ. Sci. 2014, 2, 35–41. [Google Scholar] [CrossRef]
- Bekö, G.; Kjeldsen, B.U.; Olsen, Y.; Schipperijn, J.; Wierzbicka, A.; Karottki, D.G.; Toftum, J.; Loft, S.; Clausen, G. Contribution of Various Microenvironments to the Daily Personal Exposure to Ultrafine Particles: Personal Monitoring Coupled with GPS Tracking. Atmos. Environ. 2015, 110, 122–129. [Google Scholar] [CrossRef]
- Chaney, R.A.; Sloan, C.D.; Cooper, V.C.; Robinson, D.R.; Hendrickson, N.R.; McCord, T.A.; Johnston, J.D. Personal Exposure to Fine Particulate Air Pollution While Commuting: An Examination of Six Transport Modes on an Urban Arterial Roadway. PLoS ONE 2017, 12, e0188053. [Google Scholar] [CrossRef] [PubMed]
- Jo, W.K.; Song, K.B. Exposure to Volatile Organic Compounds for Individuals with Occupations Associated with Potential Exposure to Motor Vehicle Exhaust and/or Gasoline Vapor Emissions. Sci. Total Environ. 2001, 269, 25–37. [Google Scholar] [CrossRef] [PubMed]
- McNabola, A.; Broderick, B.M.; Gill, L.W. Relative Exposure to Fine Particulate Matter and VOCs between Transport Microenvironments in Dublin: Personal Exposure and Uptake. Atmos. Environ. 2008, 42, 6496–6512. [Google Scholar] [CrossRef]
- Luangprasert, M.; Vasithamrong, C.; Pongratananukul, S.; Chantranuwathana, S.; Pumrin, S.; De Silva, I.P.D. In-Vehicle Carbon Dioxide Concentration in Commuting Cars in Bangkok, Thailand. J. Air Waste Manag. Assoc. 2017, 67, 623–633. [Google Scholar] [CrossRef] [Green Version]
- Esber, L.A.; El-Fadel, M. In-Vehicle CO Ingression: Validation through Field Measurements and Mass Balance Simulations. Sci. Total Environ. 2008, 394, 75–89. [Google Scholar] [CrossRef]
- Gajewski, A. Indoor Air Quality in a Bus. WIT Trans. Built Environ. 2013, 134, 749–757. [Google Scholar] [CrossRef] [Green Version]
- Ding, H.; Zhang, Y.; Sun, H.; Feng, L. Analysis of the PM2.5 Distribution and the Transfer Characteristic in a Car-Cabin. Procedia Eng. 2015, 121, 875–880. [Google Scholar] [CrossRef] [Green Version]
- Nayeb Yazdi, M.; Arhami, M.; Delavarrafiee, M.; Ketabchy, M. Developing Air Exchange Rate Models by Evaluating Vehicle In-Cabin Air Pollutant Exposures in a Highway and Tunnel Setting: Case Study of Tehran, Iran. Environ. Sci. Pollut. Res. 2019, 26, 501–513. [Google Scholar] [CrossRef]
- Langer, S.; Österman, C.; Strandberg, B.; Moldanová, J.; Fridén, H. Impacts of Fuel Quality on Indoor Environment Onboard a Ship: From Policy to Practice. Transp. Res. Part D Transp. Environ. 2020, 83, 102352. [Google Scholar] [CrossRef]
- Lewné, M.; Nise, G.; Lind, M.L.; Gustavsson, P. Exposure to Particles and Nitrogen Dioxide among Taxi, Bus and Lorry Drivers. Int. Arch. Occup. Environ. Health 2006, 79, 220–226. [Google Scholar] [CrossRef]
- Gokul Raj, M.; Karthikeyan, S. Effect of Modes of Transportation on Commuters’ Exposure to Fine Particulate Matter (PM2.5) and Nitrogen Dioxide (NO2) in Chennai, India. Environ. Eng. Res. 2020, 25, 898–907. [Google Scholar] [CrossRef]
- Bhangar, S.; Singer, B.C.; Nazaroff, W.W. Calibration of the Ogawa Passive Ozone Sampler for Aircraft Cabins. Atmos. Environ. 2013, 65, 21–24. [Google Scholar] [CrossRef]
- Ji, W.; Zhao, B. Estimation of the Contribution of Secondary Organic Aerosol to PM2.0 Concentration in Aircraft Cabins. Build. Environ. 2014, 82, 267–273. [Google Scholar] [CrossRef]
- Christopher Frey, H.; Gadre, D.; Singh, S.; Kumar, P. Quantification of Sources of Variability of Air Pollutant Exposure Concentrations among Selected Transportation Microenvironments. Transp. Res. Rec. 2020, 2674, 395–411. [Google Scholar] [CrossRef]
- Kadiyala, A. Study of In-Vehicle Pollutant Variation in Public Transport Buses Operating on Alternative Fuels in the City of Toledo, Ohio. Open Environ. Biol. Monit. J. 2011, 4, 01–20. [Google Scholar] [CrossRef] [Green Version]
- Botsou, F.; Moutafis, I.; Dalaina, S.; Kelepertzis, E. Settled Bus Dust as a Proxy of Traffic-Related Emissions and Health Implications of Exposures to Potentially Harmful Elements. Atmos. Pollut. Res. 2020, 11, 1776–1784. [Google Scholar] [CrossRef]
- Assimakopoulos, M.N.; Dounis, A.; Spanou, A.; Santamouris, M. Indoor Air Quality in a Metropolitan Area Metro Using Fuzzy Logic Assessment System. Sci. Total Environ. 2013, 449, 461–469. [Google Scholar] [CrossRef]
- Grana, M.; Toschi, N.; Vicentini, L.; Pietroiusti, A.; Magrini, A. Exposure to Ultrafine Particles in Different Transport Modes in the City of Rome. Environ. Pollut. 2017, 228, 201–210. [Google Scholar] [CrossRef]
- Molle, R.; Mazoué, S.; Géhin, É.; Ionescu, A. Indoor-Outdoor Relationships of Airborne Particles and Nitrogen Dioxide inside Parisian Buses. Atmos. Environ. 2013, 69, 240–248. [Google Scholar] [CrossRef]
- Ding, H.; Zhang, Y.; Sun, H.; Feng, L. Analysis of PM2.5 Distribution and Transfer Characteristics in a Car Cabin. Energy Build. 2016, 127, 252–258. [Google Scholar] [CrossRef]
- Wei, D.; Nielsen, F.; Ekberg, L.; Löfvendahl, A.; Bernander, M.; Dalenbäck, J.O. PM2.5 and Ultrafine Particles in Passenger Car Cabins in Sweden and Northern China—The Influence of Filter Age and Pre-Ionization. Environ. Sci. Pollut. Res. 2020, 27, 30815–30830. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Deng, F.; Liu, Y.; Shima, M.; Niu, J.; Huang, Q.; Guo, X. Temperature, Traffic-Related Air Pollution, and Heart Rate Variability in a Panel of Healthy Adults. Environ. Res. 2013, 120, 82–89. [Google Scholar] [CrossRef]
- Peng, L.; Shen, Y.; Gao, W.; Zhou, J.; Pan, L.; Kan, H.; Cai, J. Personal Exposure to PM2.5 in Five Commuting Modes under Hazy and Non-Hazy Conditions. Environ. Pollut. 2021, 289, 117823. [Google Scholar] [CrossRef] [PubMed]
- Xu, B.; Cui, P.; Xu, H.; Chen, H.; Lin, Y. Commuter Exposure to Particle Matter and Carbon Dioxide inside High-Speed Rail Carriages. Transp. Res. Part D Transp. Environ. 2013, 20, 1–6. [Google Scholar] [CrossRef]
- Li, Z.; Che, W.; Frey, H.C.; Lau, A.K.H. Factors Affecting Variability in PM2.5 Exposure Concentrations in a Metro System. Environ. Res. 2018, 160, 20–26. [Google Scholar] [CrossRef] [PubMed]
- Park, D.; Oh, M.; Yoon, Y.; Park, E.; Lee, K. Source Identification of PM10 Pollution in Subway Passenger Cabins Using Positive Matrix Factorization. Atmos. Environ. 2012, 49, 180–185. [Google Scholar] [CrossRef]
- Kim, H.H.; Park, G.Y.; Lee, J.H. Concentrations of Particulate Matter, Carbon Dioxide, VOCs and Risk Assessment inside Korean Taxis and Ships. Environ. Sci. Pollut. Res. 2019, 26, 9619–9631. [Google Scholar] [CrossRef]
- Hsu, D.J.; Huang, H.L. Concentrations of Volatile Organic Compounds, Carbon Monoxide, Carbon Dioxide and Particulate Matter in Buses on Highways in Taiwan. Atmos. Environ. 2009, 43, 5723–5730. [Google Scholar] [CrossRef]
- Jinsart, W.; Kaewmanee, C.; Inoue, M.; Hara, K.; Hasegawa, S.; Karita, K.; Tamura, K.; Yano, E. Driver Exposure to Particulate Matter in Bangkok. J. Air Waste Manag. Assoc. 2012, 62, 64–71. [Google Scholar] [CrossRef] [Green Version]
- Ongwandee, M.; Chavalparit, O. Commuter Exposure to BTEX in Public Transportation Modes in Bangkok, Thailand. J. Environ. Sci. 2010, 22, 397–404. [Google Scholar] [CrossRef]
- Maji, K.J.; Namdeo, A.; Hoban, D.; Bell, M.; Goodman, P.; Nagendra, S.M.S.; Barnes, J.; De Vito, L.; Hayes, E.; Longhurst, J.; et al. Analysis of Various Transport Modes to Evaluate Personal Exposure to PM2.5 Pollution in Delhi. Atmos. Pollut. Res. 2021, 12, 417–431. [Google Scholar] [CrossRef]
- Aswin Giri, J.; Karthikeyan, S.; Gokul Raj, M. Effect of Ambient Concentration of Carbon Monoxide (Co) on the in-Vehicle Concentration of Carbon Monoxide in Chennai, India. Environ. Eng. Res. 2021, 26, 200165. [Google Scholar] [CrossRef]
- Ayyakkannu, R.K.; Subbaian, J.; Pandian, M.; Iruthayaraj, D.L. Commuter exposure to fine particulate matter in private road transport modes in Salem, India. Therm. Sci. 2022, 26, 1695–1708. [Google Scholar] [CrossRef]
- Rivas, I.; Kumar, P.; Hagen-Zanker, A. Exposure to Air Pollutants during Commuting in London: Are There Inequalities among Different Socio-Economic Groups? Environ. Int. 2017, 101, 143–157. [Google Scholar] [CrossRef] [Green Version]
- Dröge, J.; Müller, R.; Scutaru, C.; Braun, M.; Groneberg, D.A. Mobile Measurements of Particulate Matter in a Car Cabin: Local Variations, Contrasting Data from Mobile versus Stationary Measurements and the Effect of an Opened versus a Closed Window. Int. J. Environ. Res. Public Health 2018, 15, 2642. [Google Scholar] [CrossRef] [Green Version]
- Karageorgou, K.; Manoli, E.; Kouras, A.; Samara, C. Commuter Exposure to Particle-Bound Polycyclic Aromatic Hydrocarbons in Thessaloniki, Greece. Environ. Sci. Pollut. Res. 2021, 28, 59119–59130. [Google Scholar] [CrossRef] [PubMed]
- Fontes, T.; Manso, M.C.; Prata, J.C.; Carvalho, M.; Silva, C.; Barros, N. Exposure to BTEX in Buses: The Influence of Vehicle Fuel Type. Environ. Pollut. 2019, 255, 113100. [Google Scholar] [CrossRef] [PubMed]
- Borghi, F.; Cattaneo, A.; Spinazzè, A.; Manno, A.; Rovelli, S.; Campagnolo, D.; Vicenzi, M.; Mariani, J.; Bollati, V.; Cavallo, D.M. Evaluation of the Inhaled Dose across Different Microenvironments. IOP Conf. Ser. Earth Environ. Sci. 2019, 296, 012007. [Google Scholar] [CrossRef]
- Boniardi, L.; Borghi, F.; Straccini, S.; Fanti, G.; Campagnolo, D.; Campo, L.; Olgiati, L.; Lioi, S.; Cattaneo, A.; Spinazzè, A.; et al. Commuting by Car, Public Transport, and Bike: Exposure Assessment and Estimation of the Inhaled Dose of Multiple Airborne Pollutants. Atmos. Environ. 2021, 262, 118613. [Google Scholar] [CrossRef]
- Manini, P.; De Palma, G.; Andreoli, R.; Poli, D.; Mozzoni, P.; Folesani, G.; Mutti, A.; Apostoli, P. Environmental and Biological Monitoring of Benzene Exposure in a Cohort of Italian Taxi Drivers. Toxicol. Lett. 2006, 167, 142–151. [Google Scholar] [CrossRef]
- Cartenì, A.; Cascetta, F.; Campana, S. Underground and Ground-Level Particulate Matter Concentrations in an Italian Metro System. Atmos. Environ. 2015, 101, 328–337. [Google Scholar] [CrossRef]
- Cheng, X.; Tan, Z.; Wang, X.; Tay, R. Air Quality in a Commercial Truck Cabin. Transp. Res. Part D Transp. Environ. 2006, 11, 389–395. [Google Scholar] [CrossRef]
- Batterman, S.A.; Peng, C.Y.; Braun, J. Levels and Composition of Volatile Organic Compounds on Commuting Routes in Detroit, Michigan. Atmos. Environ. 2002, 36, 6015–6030. [Google Scholar] [CrossRef]
- Yu, N.; Shu, S.; Lin, Y.; Zhu, Y. Assessing and Reducing Fine and Ultrafine Particles inside Los Angeles Taxis. Atmos. Environ. 2018, 181, 155–163. [Google Scholar] [CrossRef]
- Zhang, Q.; Fischer, H.J.; Weiss, R.E.; Zhu, Y. Ultrafine Particle Concentrations in and around Idling School Buses. Atmos. Environ. 2013, 69, 65–75. [Google Scholar] [CrossRef]
- Hernández-Paniagua, I.Y.; Andraca-Ayala, G.L.; Diego-Ayala, U.; Ruiz-Suarez, L.G.; Zavala-Reyes, J.C.; Cid-Juárez, S.; Torre-Bouscoulet, L.; Gochicoa-Rangel, L.; Rosas-Pérez, I.; Jazcilevich, A. Personal Exposure to PM2.5 in the Megacity of Mexico: A Multi-Mode Transport Study. Atmosphere 2018, 9, 57. [Google Scholar] [CrossRef] [Green Version]
- Heberle, S.M.; Lorini, C.; Rosa, M.S.G.; Barros, N. Evaluation of Bus Driver Exposure to Nitrogen Dioxide Levels during Working Hours. Atmos. Environ. 2019, 216, 116906. [Google Scholar] [CrossRef]
- Shu, S.; Yu, N.; Wang, Y.; Zhu, Y. Measuring and Modeling Air Exchange Rates inside Taxi Cabs in Los Angeles, California. Atmos. Environ. 2015, 122, 628–635. [Google Scholar] [CrossRef]
- Qin, D.; Guo, B.; Zhou, J.; Cheng, H.; Chen, X. Indoor Air Formaldehyde (HCHO) Pollution of Urban Coach Cabins. Sci. Rep. 2020, 10, 332. [Google Scholar] [CrossRef] [Green Version]
- Miller-Schulze, J.P.; Paulsen, M.; Toriba, A.; Tang, N.; Hayakawa, K.; Tamura, K.; Dong, L.; Zhang, X.; Simpson, C.D. Exposures to Particulate Air Pollution and Nitro-Polycyclic Aromatic Hydrocarbons among Taxi Drivers in Shenyang, China. Environ. Sci. Technol. 2010, 44, 216–221. [Google Scholar] [CrossRef] [Green Version]
- Dennekamp, M.; Mehenni, O.H.; Cherrie, J.W.; Seaton, A. Exposure to Ultrafine Particles and PM 2.5 in Different Micro-Environments. Ann. Occup. Hyg. 2002, 46, 412–414. [Google Scholar] [CrossRef] [Green Version]
- Vouitsis, I.; Taimisto, P.; Kelessis, A.; Samaras, Z. Microenvironment Particle Measurements in Thessaloniki, Greece. Urban Clim. 2014, 10, 608–620. [Google Scholar] [CrossRef]
- Patel, D.; Shibata, T.; Wilson, J.; Maidin, A. Challenges in Evaluating PM Concentration Levels, Commuting Exposure, and Mask Efficacy in Reducing PM Exposure in Growing, Urban Communities in a Developing Country. Sci. Total Environ. 2016, 543, 416–424. [Google Scholar] [CrossRef]
- Boogaard, H.; Borgman, F.; Kamminga, J.; Hoek, G. Exposure to Ultrafine and Fine Particles and Noise during Cycling and Driving in 11 Dutch Cities. Atmos. Environ. 2009, 43, 4234–4242. [Google Scholar] [CrossRef]
- Leavey, A.; Reed, N.; Patel, S.; Bradley, K.; Kulkarni, P.; Biswas, P. Comparing On-Road Real-Time Simultaneous in-Cabin and Outdoor Particulate and Gaseous Concentrations for a Range of Ventilation Scenarios. Atmos. Environ. 2017, 166, 130–141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, S.; Chen, S.; Zhu, L.; Chen, X.; Yao, C.; Shen, X. Concentrations and Risk Assessment of Selected Monoaromatic Hydrocarbons in Buses and Bus Stations of Hangzhou, China. Sci. Total Environ. 2009, 407, 2004–2011. [Google Scholar] [CrossRef]
- Zuurbier, M.; Hoek, G.; van den Hazel, P.; Brunekreef, B. Minute Ventilation of Cyclists, Car and Bus Passengers: An Experimental Study. Environ. Health A Glob. Access Sci. Source 2009, 8, 48. [Google Scholar] [CrossRef] [Green Version]
- Alameddine, I.; Abi Esber, L.; Bou Zeid, E.; Hatzopoulou, M.; El-Fadel, M. Operational and Environmental Determinants of In-Vehicle CO and PM 2.5 Exposure. Sci. Total Environ. 2016, 551–552, 42–50. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, Z.; Wen, S. Spatiotemporal Variations of In-Cabin Particle Concentrations along Public Transit Routes, a Case Study in Shenzhen, China. Build. Environ. 2020, 180, 107047. [Google Scholar] [CrossRef]
- Liu, Y.; Zhong, H.; Liu, K.; Oliver Gao, H.; He, L.; Xu, R.; Ding, H.; Huang, W. Assessment of Personal Exposure to PM for Multiple Transportation Modes. Transp. Res. Part D Transp. Environ. 2021, 101, 103086. [Google Scholar] [CrossRef]
- Zheng, J.; Qiu, Z.; Gao, H.O.; Li, B. Commuter PM Exposure and Estimated Life-Expectancy Loss across Multiple Transportation Modes in Xi’an, China. Ecotoxicol. Environ. Saf. 2021, 214, 112117. [Google Scholar] [CrossRef] [PubMed]
- Parra, M.A.; Elustondo, D.; Bermejo, R.; Santamaría, J.M. Exposure to Volatile Organic Compounds (VOC) in Public Buses of Pamplona, Northern Spain. Sci. Total Environ. 2008, 404, 18–25. [Google Scholar] [CrossRef] [PubMed]
Research Papers | ||||||||
---|---|---|---|---|---|---|---|---|
From search and selection protocol | ||||||||
249 | ||||||||
From browse approach | ||||||||
9 | ||||||||
From snowball methods | ||||||||
24 | ||||||||
Total | ||||||||
282 | ||||||||
Review papers | ||||||||
From search and selection protocol | ||||||||
14 | ||||||||
From browse approach | ||||||||
1 | ||||||||
From snowball methods | ||||||||
0 | ||||||||
Total | ||||||||
15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marinello, S.; Lolli, F.; Coruzzolo, A.M.; Gamberini, R. Exposure to Air Pollution in Transport Microenvironments. Sustainability 2023, 15, 11958. https://doi.org/10.3390/su151511958
Marinello S, Lolli F, Coruzzolo AM, Gamberini R. Exposure to Air Pollution in Transport Microenvironments. Sustainability. 2023; 15(15):11958. https://doi.org/10.3390/su151511958
Chicago/Turabian StyleMarinello, Samuele, Francesco Lolli, Antonio Maria Coruzzolo, and Rita Gamberini. 2023. "Exposure to Air Pollution in Transport Microenvironments" Sustainability 15, no. 15: 11958. https://doi.org/10.3390/su151511958
APA StyleMarinello, S., Lolli, F., Coruzzolo, A. M., & Gamberini, R. (2023). Exposure to Air Pollution in Transport Microenvironments. Sustainability, 15(15), 11958. https://doi.org/10.3390/su151511958