Evaluation of the Productive Potential of a World Collection of Chickpeas (Cicer arietinum L.) for the Initiation of Breeding Programs for Adaptation to Conservation Agriculture
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site Climatic Conditions
2.2. Plant Material, Trial Design, and Treatments
2.3. Evaluations and Measurements of the Parameters
2.4. Data Analysis
3. Results
3.1. Effect of Till System, Genotype, and Their Interaction on All Measured Traits
3.2. Performance and Effect of Till System, Genotype, and Their Interaction for the Checks Varieties
3.3. Performance of Genotypes by Traits, Estimation of Phenotypic Variability, and Heritability on the Two Tillage Systems
3.4. Phenotypic Correlations between All Traits and the Contribution of Each Trait to Grain Yield in Each System
3.5. Variation in the Phenotypic Response of All Genotypes in the Two Tillage Systems
3.6. Selection in the Two Tillage Systems with the MGIDI
4. Discussion
4.1. Genotype × System Interaction and Effect of Genotype on All the Traits Studied
4.2. Effect of Tillage on Grain Yield and All Other Traits
4.3. Heritability and Potential of Improvement for Adaptation to Conservation Agriculture
4.4. Relationship between the Traits and Grouping of Genotypes for Selection
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Muñoz-Romero, V.; López-Bellido, L.; López-Bellido, R.J. The Effects of the Tillage System on Chickpea Root Growth. Field Crops Res. 2012, 128, 76–81. [Google Scholar] [CrossRef]
- Rathore, A.L.; Pal, A.R.; Sahu, K.K. Tillage and Mulching Effects on Water Use, Root Growth and Yield of Rainfed Mustard and Chickpea Grown after Lowland Rice. J. Sci. Food Agric. 1998, 78, 149–161. [Google Scholar] [CrossRef]
- Chaghazardi, H.R.; Jahansouz, M.R.; Ahmadi, A.; Gorji, M. Effects of Tillage Management on Productivity of Wheat and Chickpea under Cold, Rainfed Conditions in Western Iran. Soil Tillage Res. 2016, 162, 26–33. [Google Scholar] [CrossRef]
- Husnjak, S.; Filipović, D.; Košutić, S. Influence of Different Tillage Systems on Soil Physical Properties and Crop Yield. Plant Soil Environ. 2002, 48, 249–254. [Google Scholar] [CrossRef] [Green Version]
- Lafond, G.P.; Loeppky, H.; Derksen, D.A. The Effects of Tillage Systems and Crop Rotations on Soil Water Conservation, Seedling Establishment and Crop Yield. Can. J. Plant Sci. 1992, 72, 103–115. [Google Scholar] [CrossRef]
- Höflich, G.; Tauschke, M.; Kühn, G.; Werner, K.; Frielinghaus, M.; Höhn, W. Influence of Long-Term Conservation Tillage on Soil and Rhizosphere Microorganisms. Biol. Fertil. Soils 1999, 29, 81–86. [Google Scholar] [CrossRef]
- Lembaid, I.; Moussadek, R.; Mrabet, R.; Douaik, A.; Bouhaouss, A. Modeling the Effects of Farming Management Practices on Soil Organic Carbon Stock under Two Tillage Practices in a Semi-Arid Region, Morocco. Heliyon 2021, 7, e05889. [Google Scholar] [CrossRef]
- Moussadek, R.; Mrabet, R.; Dahan, R. Effet de l’agriculture de Conservation Sur La Qualité Des Sols Au Maroc. Rev. HT E 2011, 149, 25–28. [Google Scholar]
- Alves, B.J.R.; Boddey, R.M.; Urquiaga, S. The Success of BNF in Soybean in Brazil. Plant Soil 2003, 252, 1–9. [Google Scholar] [CrossRef]
- Dalal, R.; Weston, E.J.; Strong, W.M.; Probert, M.E.; Lehane, K.J.; Cooper, J.E.; King, A.; Holmes, C.J. Sustaining Productivity of a Vertosol at Warra, Queensland, with Fertilisers, No-Tillage or Legumes. 8. Effect of Duration of Lucerne Ley on Soil Nitrogen and Water, Wheat Yield and Protein. Aust. J. Exp. Agric. 2004, 44, 1013–1024. [Google Scholar] [CrossRef] [Green Version]
- Omondi, J. Effect of Tillage on Biological Nitrogen Fixation and Yield of Soybean (Glycine max L. Merril) Varieties. Aust. J. Crop Sci. 2014, 8, 1140–1146. [Google Scholar]
- Johnson, J.M.F.; Strock, J.S.; Tallaksen, J.E.; Reese, M. Corn Stover Harvest Changes Soil Hydrology and Soil Aggregation. Soil Tillage Res. 2016, 161, 106–115. [Google Scholar] [CrossRef] [Green Version]
- Ouassou, A.; Amziane, T.H.; Lajouad, L. State of natural resources degradation in morocco and plan of action for desertification and drought control. In Desertification in the Mediterranean Region. A Security Issue; Kepner, W.G., Rubio, J.L., Mouat, D.A., Pedrazzini, F., Eds.; NATO Security Through Science Series; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2006; Volume 3, pp. 251–268. ISBN 978-1-4020-3758-0. [Google Scholar]
- Rachid, D.; Mohamed, B.; Rachid, M.; Laamari, A.; Riad, B.; Lahcen, L. A Review of Available Knowledge on Land Degradation in Morocco; International Center for Agricultural Research in the Dry Areas (ICARDA): Rabat, Morocco; Aleppo, Syria, 2012. [Google Scholar]
- Beroho, M.; Briak, H.; El Halimi, R.; Ouallali, A.; Boulahfa, I.; Mrabet, R.; Kebede, F.; Aboumaria, K. Analysis and Prediction of Climate Forecasts in Northern Morocco: Application of Multilevel Linear Mixed Effects Models Using R Software. Heliyon 2020, 6, e05094. [Google Scholar] [CrossRef]
- Brouziyne, Y.; Abouabdillah, A.; Hirich, A.; Bouabid, R.; Rashyd, Z.; Benaabidate, L. Modeling Sustainable Adaptation Strategies toward a Climate-Smart Agriculture in a Mediterranean Watershed under Projected Climate Change Scenarios. Agric. Syst. 2018, 162, 154–163. [Google Scholar] [CrossRef]
- Schilling, J.; Freier, K.P.; Hertig, E.; Scheffran, J. Climate Change, Vulnerability and Adaptation in North Africa with Focus on Morocco. Agric. Ecosyst. Environ. 2012, 156, 12–26. [Google Scholar] [CrossRef]
- Al-Kaisi, M.M.; Yin, X. Stepwise Time Response of Corn Yield and Economic Return to No Tillage. Soil Tillage Res. 2004, 78, 91–101. [Google Scholar] [CrossRef]
- Morell, F.J.; Lampurlanés, J.; Álvaro-Fuentes, J.; Cantero-Martínez, C. Yield and Water Use Efficiency of Barley in a Semiarid Mediterranean Agroecosystem: Long-Term Effects of Tillage and N Fertilization. Soil Tillage Res. 2011, 117, 76–84. [Google Scholar] [CrossRef] [Green Version]
- Mrabet, R. The Future of Farming: Profitable and Sustainable Farming with Conservation Agriculture Promoting Ca-Based Knowledge and Innovation Systems and Information Sharing and Communication. In Proceedings of the 8 World Congress on Conservation Agriculture, Bern, Switzerland, 21–23 June 2021. [Google Scholar] [CrossRef]
- Pittelkow, C.M.; Liang, X.; Linquist, B.A.; van Groenigen, K.J.; Lee, J.; Lundy, M.E.; van Gestel, N.; Six, J.; Venterea, R.T.; van Kessel, C. Productivity Limits and Potentials of the Principles of Conservation Agriculture. Nature 2015, 517, 365–368. [Google Scholar] [CrossRef]
- Seif-Ennasr, M.; Zaaboul, R.; Hirich, A.; Caroletti, G.N.; Bouchaou, L.; El Morjani, Z.E.A.; Beraaouz, E.H.; McDonnell, R.A.; Choukr-Allah, R. Climate Change and Adaptive Water Management Measures in Chtouka Aït Baha Region (Morocco). Sci. Total Environ. 2016, 573, 862–875. [Google Scholar] [CrossRef] [PubMed]
- Erkut, P.; Tariq, A. Drought Stress: Impacts on Grain Legumes, Ways to Mitigate Negative Effects and Its Management; Iksad Publications: Ankara, Turkey, 2021. [Google Scholar]
- Dang, Y.P.; Page, K.L.; Dalal, R.C.; Menzies, N.W. No-till Farming Systems for Sustainable Agriculture: An Overview. In No-till Farming Systems for Sustainable Agriculture: Challenges and Opportunities; Dang, Y.P., Dalal, R.C., Menzies, N.W., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 3–20. ISBN 978-3-030-46409-7. [Google Scholar]
- Akesbi, N. Évolution et Perspectives de L’agriculture Marocaine; Rapport 50 ans du Développement Humain et Perspectives 2025; Editions Maghrébines: Casablanca, Morocco, 2006; pp. 85–198. [Google Scholar]
- Mrabet, R.; Moussadek, R.; Fadlaoui, A.; van Ranst, E. Conservation Agriculture in Dry Areas of Morocco. Field Crops Res. 2012, 132, 84–94. [Google Scholar] [CrossRef]
- Bonfil, D.J.; Mufradi, I.; Klitman, S.; Asido, S. Wheat Grain Yield and Soil Profile Water Distribution in a No-Till Arid Environment. Agron. J. 1999, 91, 368–373. [Google Scholar] [CrossRef]
- Mupangwa, W.; Twomlow, S.; Walker, S.; Hove, L. Effect of Minimum Tillage and Mulching on Maize (Zea mays L.) Yield and Water Content of Clayey and Sandy Soils. Phys. Chem. Earth Parts A/B/C 2007, 32, 1127–1134. [Google Scholar] [CrossRef]
- Chafika, H.; Nsarellah, N.; Keltoum, E.; Said, M.; Udupa, S. Effet du stress hydrique sur les critères physiologiques et biochimiques chez neuf génotypes de pois chiche (Cicer arietinum L.). Nat. Technol. B Sci. Agron. Biol. 2014, 6, 8–16. [Google Scholar]
- Crop Descriptors. Available online: https://cropgenebank.sgrp.cgiar.org/index.php/learning-space-mainmenu-455/manuals-and-handbooks-mainmenu-533/descriptors-mainmenu-547 (accessed on 2 July 2023).
- Yuan, Z.; Cao, Q.; Zhang, K.; Ata-Ul-Karim, S.T.; Tian, Y.; Zhu, Y.; Cao, W.; Liu, X. Optimal Leaf Positions for SPAD Meter Measurement in Rice. Front. Plant Sci. 2016, 7, 719. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barrs, H.; Weatherley, P. A Re-Examination of the Relative Turgidity Technique for Estimating Water Deficits in Leaves. Aust. Jnl. Biol. Sci. 1962, 15, 413–428. [Google Scholar] [CrossRef] [Green Version]
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting Linear Mixed-Effects Models Using Lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Olivoto, T.; Lúcio, A.D. Metan: An R Package for Multi-Environment Trial Analysis. Methods Ecol. Evol. 2020, 11, 783–789. [Google Scholar] [CrossRef] [Green Version]
- Kassambara, A.; Mundt, F. Factoextra: Extract and Visualize the Results of Multivariate Data Analyses. R Package Version 1.4.1717. 2021. Available online: https://cran.r-project.org/package=factoextra (accessed on 15 June 2021).
- Olivoto, T.; Nardino, M. MGIDI: Toward an Effective Multivariate Selection in Biological Experiments. Bioinformatics 2021, 37, 1383–1389. [Google Scholar] [CrossRef]
- Kassam, A.; Friedrich, T.; Derpsch, R.; Kienzle, J. Overview of the Worldwide Spread of Conservation Agriculture. Field Actions Sci. Rep. 2015, 8, 1867–8521. [Google Scholar]
- Montemurro, F.; Maiorana, M. Agronomic Practices at Low Environmental Impact for Durum Wheat in Mediterranean Conditions. J. Plant Nutr. 2015, 38, 624–638. [Google Scholar] [CrossRef]
- Yau, S.K.; Sidahmed, M.; Haidar, M. Conservation versus Conventional Tillage on Performance of Three Different Crops. Agron. J. 2010, 102, 269–276. [Google Scholar] [CrossRef]
- Honsdorf, N.; Verhulst, N.; Crossa, J.; Vargas, M.; Govaerts, B.; Ammar, K. Durum Wheat Selection under Zero Tillage Increases Early Vigor and Is Neutral to Yield. Field Crops Res. 2020, 248, 107675. [Google Scholar] [CrossRef]
- Kharub, A.; Chatrath, R.; Shoran, J. Performance of Wheat (Triticum aestivum) Genotypes in Alternate Tillage Environments. Indian J. Agric. Sci. 2008, 78, 884–886. [Google Scholar]
- Piggin, C.; Haddad, A.; Khalil, Y.; Loss, S.; Pala, M. Effects of Tillage and Time of Sowing on Bread Wheat, Chickpea, Barley and Lentil Grown in Rotation in Rainfed Systems in Syria. Field Crops Res. 2015, 173, 57–67. [Google Scholar] [CrossRef]
- Roohi, E.; Mohammadi, R.; Niane, A.A.; Niazian, M.; Niedbała, G. Agronomic Performance of Rainfed Barley Genotypes under Different Tillage Systems in Highland Areas of Dryland Conditions. Agronomy 2022, 12, 1070. [Google Scholar] [CrossRef]
- Volpi, I.; Antichi, D.; Ambus, P.L.; Bonari, E.; Nassi o Di Nasso, N.; Bosco, S. Minimum Tillage Mitigated Soil N2O Emissions and Maximized Crop Yield in Faba Bean in a Mediterranean Environment. Soil Tillage Res. 2018, 178, 11–21. [Google Scholar] [CrossRef]
- Naderi, R.; Bijanzadeh, E.; Egan, T.P. Short-Term Response of Chickpea Yield, Total Soil Carbon, and Soil Nitrogen to Different Tillage and Organic Amendment Regimes. Commun. Soil Sci. Plant Anal. 2021, 52, 998–1007. [Google Scholar] [CrossRef]
- Devkota, M.; Patil, S.B.; Kumar, S.; Kehel, Z.; Wery, J. Performance of Elite Genotypes of Barley, Chickpea, Lentil, and Wheat under Conservation Agriculture in Mediterranean Rainfed Conditions. Exp. Agric. 2021, 57, 126–143. [Google Scholar] [CrossRef]
- Martinrueda, I.; Munozguerra, L.; Yunta, F.; Esteban, E.; Tenorio, J.; Lucena, J. Tillage and Crop Rotation Effects on Barley Yield and Soil Nutrients on a Calciortidic Haploxeralf. Soil Tillage Res. 2007, 92, 1–9. [Google Scholar] [CrossRef]
- Mishra, J.P.; Praharaj, C.S.; Singh, K.K.; Kumar, N. Impact of Conservation Practices on Crop Water Use and Productivity in Chickpea under Middle Indo-Gangetic Plains. J. Food Legumes 2012, 25, 41–44. [Google Scholar]
- Herrera, J.M.; Verhulst, N.; Trethowan, R.M.; Stamp, P.; Govaerts, B. Insights into Genotype × Tillage Interaction Effects on the Grain Yield of Wheat and Maize. Crop Sci. 2013, 53, 1845–1859. [Google Scholar] [CrossRef]
- Hemmat, A.; Eskandari, I. Tillage System Effects upon Productivity of a Dryland Winter Wheat–Chickpea Rotation in the Northwest Region of Iran. Soil Tillage Res. 2004, 78, 69–81. [Google Scholar] [CrossRef]
- Lopez-Bellido, R.J.; Lopez-Bellido, L.; Castillo, J.E.; Lopez-Bellido, F.J. Chickpea Response to Tillage and Soil Residual Nitrogen in a Continuous Rotation with Wheat II. Soil Nitrate, N Uptake and Influence on Wheat Yield. Field Crops Res. 2004, 88, 201–210. [Google Scholar] [CrossRef]
- Kayan, N.; Kutlu, I.; Gozde Ayter, N.; Adak, M.S. Effects of Different Tillage Systems and Soil Residual Nitrogen on Chickpea Yield and Yield Components in Rotation with Wheat under Dry Farming Areas. Int. J. Agric. Biol. 2017, 19, 517–522. [Google Scholar] [CrossRef]
- Jan, A.; Amanullah; Akbar, H.; Blaser, B.C. Chickpea response to tillage system and phosphorus management under dryland conditions. J. Plant Nutr. 2012, 35, 64–70. [Google Scholar] [CrossRef]
- Sidiras, N.; Avgoulas, C.; Bilalis, D.; Tsougrianis, N. Effects of Tillage and Fertilization on Biomass, Roots, N-Accumulation and Nodule Bacteria of Vetch (Vicia sativa Cv. Alexander). J. Agron. Crop Sci. 1999, 182, 209–216. [Google Scholar] [CrossRef]
- Horn, C.; Birch, C.; Dalal, R.; Doughton, J. Sowing Time and Tillage Practice Affect Chickpea Yield and Nitrogen Fixation. 1. Dry Matter Accumulation and Grain Yield. Aust. J. Exp. Agric. 1996, 36, 695–700. [Google Scholar] [CrossRef]
- Barzegar, A.R.; Asoodar, M.A.; Khadish, A.; Hashemi, A.M.; Herbert, S.J. Soil Physical Characteristics and Chickpea Yield Responses to Tillage Treatments. Soil Tillage Res. 2003, 71, 49–57. [Google Scholar] [CrossRef]
- Gediya, L.N.; Patel, D.A.; Kumar, S.; Kumar, D.; Parmar, D.J.; Patel, S.S. Phenotypic Variability, Path Analysis and Molecular Diversity Analysis in Chickpea (Cicer arietinum L.). Vegetos 2019, 32, 167–180. [Google Scholar] [CrossRef]
- Borojevic, K. Principles of Plant Breeding, 2nd Ed. J. Hered. 2002, 93, 229. [Google Scholar] [CrossRef]
- Belay, T. Genetic Variability, Correlation and Path Analysis for Quantitative Traits of Seed Yield, and Yield Components in Chickpea (Cicer arietinum L.) at Maichew, Northern Ethiopia. Afr. J. Plant Sci. 2018, 12, 58–64. [Google Scholar] [CrossRef]
- Hussain, T.; Akram, Z.; Shabbir, G.; Manaf, A.; Ahmed, M. Identification of Drought Tolerant Chickpea Genotypes through Multi Trait Stability Index. Saudi J. Biol. Sci. 2021, 28, 6818–6828. [Google Scholar] [CrossRef]
- Yücel, D.; Anlarsal, A.E.; Yucel, C. Genetic Variability, Correlation and Path Analysis of Yield, and Yield Components in Chickpea (Cicer arietinum L.). Turk. J. Agric. For. 2006, 30, 183–188. [Google Scholar]
- Bos, I.; Caligari, P. Selection Methods in Plant Breeding; Springer: Dordrecht, The Netherlands, 2008; ISBN 978-1-4020-6369-5. [Google Scholar]
- Edalat, M.; Dadkhodaie, A.; Kharraji, R.N. The Interrelationships of Chickpea (Cicera rietinum L.) Seed Yield and Its Components under Rainfed Conditions. Iran Agric. Res. 2015, 34, 56–62. [Google Scholar]
- Benakanahalli, N.K.; Sridhara, S.; Ramesh, N.; Olivoto, T.; Sreekantappa, G.; Tamam, N.; Abdelbacki, A.M.M.; Elansary, H.O.; Abdelmohsen, S.A.M. A Framework for Identification of Stable Genotypes Basedon MTSI and MGDII Indexes: An Example in Guar (Cymopsis tetragonoloba L.). Agronomy 2021, 11, 1221. [Google Scholar] [CrossRef]
- Pour-Aboughadareh, A.; Sanjani, S.; Nikkhah-Chamanabad, H.; Mehrvar, M.R.; Asadi, A.; Amini, A. Identification of Salt-Tolerant Barley Genotypes Using Multiple-Traits Index and Yield Performance at the Early Growth and Maturity Stages. Bull. Natl. Res. Cent. 2021, 45, 117. [Google Scholar] [CrossRef]
- Moussadek, R.; Mrabet, R.; Dahan, R.; Zouahri, A.; El Mourid, M.; Van Ranst, E. Tillage System Affects Soil Organic Carbon Storage and Quality in Central Morocco. Appl. Environ. Soil Sci. 2014, 2014, 654796. [Google Scholar] [CrossRef] [Green Version]
- Devkota, M.; Devkota, K.P.; Kumar, S. Conservation Agriculture Improves Agronomic, Economic, and Soil Fertility Indicators for a Clay Soil in a Rainfed Mediterranean Climate in Morocco. Agric. Syst. 2022, 201, 103470. [Google Scholar] [CrossRef]
- Ram, H.; Singh, Y.; Saini, K.S.; Kler, D.S.; Timsina, J.; Humphreys, E.J. Agronomic and Economic Evaluation of Permanent Raised Beds, No Tillage and Straw Mulching for An Irrigated Maize-Wheat System in Northwest India. Exp. Agric. 2012, 48, 21–38. [Google Scholar] [CrossRef]
- Fischer, R.A.; Santiveri, F.; Vidal, I.R. Crop Rotation, Tillage and Crop Residue Management for Wheat and Maize in the Sub-Humid Tropical Highlands: I. Wheat and Legume Performance. Field Crops Res. 2002, 79, 107–122. [Google Scholar] [CrossRef]
Meansq | ||||||||
EV | DF | DPF | PH | NPB | NSB | NPd5P | ||
TillSystem | 0.01703 ns | 11.363 ns | 27.585 * | 43.429 * | 0.20237 ns | 33.330 ns | 19,330.4 ** | |
Entry | 1.17538 *** | 114.567 *** | 36.382 *** | 103.300 *** | 0.30195 *** | 16.132 *** | 12,068.2 *** | |
TillSystem: Entry | 1.00289 *** | 67.453 *** | 32.190 *** | 52.918 *** | 0.25761 *** | 15.633 *** | 7391.2 *** | |
Meansq | ||||||||
NEPd5P | NS5P | HSW | SW5P | BY5P | GY | RWC | Chl | |
TillSystem | 1645.09 ** | 4211.1 * | 61.121 *** | 414.26 ns | 5328.6 * | 97.62 ns | 2491.27 *** | 16.60 ns |
Entry | 182.77 *** | 16,575.4 *** | 224.362 *** | 991.07 *** | 5572.7 *** | 1240.71 *** | 59.90 *** | 542.24 ** |
TillSystem: Entry | 160.83 *** | 9991.7 *** | 16.783 *** | 633.86 *** | 4636.7 *** | 1078.36 *** | 49.48 *** | 179.20 ** |
Source | Df | BY5P | Chl | DF | DPF | EV | GY | HSW | NEPd5P |
---|---|---|---|---|---|---|---|---|---|
Genotypes (G) | 219 | 5977.32 * | 218.53 ns | 42.92 ns | 51.14 ns | 0.59 * | 1812.12 ns | 127.55 ** | 272.56 * |
Checks (C) | 5 | 4495.63 ns | 458.25 * | 71.04 ns | 50.53 ns | 0.38 ns | 8647.12 ** | 384.63 ** | 376.67 * |
(G) versus (C) | 214 | 6011.94 * | 212.93 ns | 42.26 ns | 51.16 ns | 0.6 * | 1652.43 ns | 121.54 ** | 270.12 * |
Residuals | 25 | 2814.79 | 175.51 | 32.27 | 40.4 | 0.34 | 1500.65 | 7.45 | 126.87 |
Source | Df | NPB | NPd5P | NS5P | NSB | PH | RWC | SW5P | |
Genotypes (G) | 219 | 0.31 * | 12,811.74 ** | 17,397.51 ** | 17.89 * | 71.17 ** | 58.57 ns | 1238.4 ns | |
Checks (C) | 5 | 0.85 ** | 13,056.45 * | 9442.83 ns | 22.14 ns | 54.01 ns | 165.55 ns | 921.27 ns | |
(G) versus (C) | 214 | 0.29 * | 12,806.02 ** | 17,583.37 ** | 17.79 * | 71.57 ** | 56.07 ns | 1245.81 ns | |
Residuals | 25 | 0.16 | 4515.26 | 4760.52 | 9.36 | 29.2 | 79.3 | 964.67 |
Source | Df | BY5P | Chl | DF | DPF | EV | GY | HSW | NEPd5P |
---|---|---|---|---|---|---|---|---|---|
Genotypes (G) | 219 | 4252.91 ns | 202.57 ns | 139.38 ns | 55.4 ns | 1.59 ns | 870.33 ns | 112.96 ** | 74.49 ** |
Checks (C) | 5 | 866.96 ns | 730.75 ** | 248.64 * | 66.51 ns | 0.38 ns | 5586.45 ** | 346 ** | 22.49 ns |
(G) versus (C) | 214 | 4332.02 ns | 190.23 ns | 136.83 ns | 55.14 ns | 1.62 ns | 760.14 ns | 107.52 ** | 75.7 ** |
Residuals | 25 | 5659.78 | 171.47 | 91.42 | 48.14 | 1.28 | 1148.63 | 5.71 | 30.91 |
Source | Df | NPB | NPd5P | NS5P | NSB | PH | RWC | SW5P | |
Genotypes (G) | 219 | 0.25 ns | 6628.57 ** | 9173.5 ns | 13.88 ns | 62.06 * | 42.86 ** | 389.42 ns | |
Checks (C) | 5 | 0.17 ns | 8907.53 * | 6609.83 ns | 36.17 * | 117.25 * | 8.93 ns | 418.19 ns | |
(G) versus (C) | 214 | 0.25 ns | 6575.32 ** | 9233.4 ns | 13.36 ns | 60.78 * | 43.65 ** | 388.75 ns | |
Residuals | 25 | 0.35 | 2492.75 | 6695.09 | 10.11 | 32.14 | 11.61 | 443.69 |
Trait | Till System | Mean | Std.Deviation | Min | Max | CV | CV.Category | hBS | hBS.Category |
---|---|---|---|---|---|---|---|---|---|
EV | NT | 3.32 a | 1.36 | 0.11 | 6.11 | 33.89 | Medium | 21.63 | Low |
T | 3.21 a | 0.78 | 1.22 | 5.22 | 17.89 | Low | 43.68 | Medium | |
DF | NT | 116.3 a | 12.33 | 83.56 | 140.22 | 8.22 | Low | 32.75 | Medium |
T | 118.96 a | 6.51 | 86.89 | 135.06 | 4.79 | Low | 30.47 | Medium | |
DPF | NT | 137.56 a | 8.17 | 116.44 | 164.94 | 5.06 | Low | 7.68 | Low |
T | 133.25 b | 6.96 | 117.33 | 154.17 | 4.8 | Low | 26.02 | Low | |
PH | NT | 42.09 b | 7.88 | 18.04 | 64.61 | 13.26 | High | 46.69 | Medium |
T | 44.23 a | 10.19 | 20.59 | 67.13 | 12 | Low | 56.5 | Medium | |
NPB | NT | 1.76 a | 0.58 | 0.6 | 3.23 | 33.13 | Medium | ||
T | 1.93 b | 0.56 | 0.86 | 7.86 | 20.85 | Low | 46.99 | Medium | |
NSB | NT | 12.55 a | 3.83 | 4.52 | 24.72 | 25.62 | Medium | 30.16 | Medium |
T | 14.05 a | 4.37 | 5.18 | 29.98 | 22.14 | Low | 45.82 | Medium | |
NPd5P | NT | 191.83 a | 83.72 | 35.83 | 484.17 | 26.86 | Medium | 61.79 | High |
T | 247.45 b | 115.45 | 19.25 | 595.42 | 27.93 | Medium | 66.03 | High | |
NEPd5P | NT | 16.2 a | 9.01 | 0 | 42.86 | 35.19 | Medium | 58.39 | Medium |
T | 28.84 b | 17.25 | 3 | 106.83 | 39.65 | Low | 55.62 | Medium | |
NS5P | NT | 198.47 a | 98.27 | 3.47 | 554.14 | 42.36 | Medium | 29.93 | Low |
T | 240.89 b | 133.86 | 0 | 648.69 | 29.58 | Medium | 73.35 | High | |
HSW | NT | 27.05 a | 9.63 | 10.54 | 50.77 | 8.41 | Low | 93.69 | High |
T | 27.79 b | 10.37 | 11.21 | 53.4 | 9.34 | Low | 92.91 | High | |
SW5P | NT | 48.98 a | 21.1 | 0.12 | 112.17 | 42.48 | Medium | ||
T | 64.36 a | 37.43 | 0 | 228.01 | 47.96 | High | 25.09 | Low | |
BY5P | NT | 203.77 a | 69.28 | 0 | 397.44 | 36.85 | Medium | ||
T | 160.67 b | 81.1 | 0 | 458.07 | 32.63 | Medium | 54.27 | Medium | |
GY | NT | 52.57 a | 29.66 | 0 | 130.73 | 62.06 | High | ||
T | 63.14 a | 38.98 | 0 | 169.06 | 59.67 | High | 15.02 | Low | |
RWC | NT | 62.77 a | 6.66 | 24.22 | 86.65 | 5.45 | Low | 73.68 | High |
T | 67.5 b | 7.53 | 51.97 | 91.88 | 13.27 | Low | |||
Chl | NT | 35.27 a | 14.1 | 5.61 | 78.81 | 36.65 | Medium | 15.69 | Low |
T | 38.44 a | 15.08 | 0.25 | 86.23 | 34.01 | Medium | 22.94 | Low |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abderemane, B.A.; Fakiri, M.; Idrissi, O.; Baidani, A.; Zeroual, A.; Mazzucotelli, E.; Özkan, H.; Marcotuli, I.; Gadaleta, A.; Houasli, C. Evaluation of the Productive Potential of a World Collection of Chickpeas (Cicer arietinum L.) for the Initiation of Breeding Programs for Adaptation to Conservation Agriculture. Sustainability 2023, 15, 11927. https://doi.org/10.3390/su151511927
Abderemane BA, Fakiri M, Idrissi O, Baidani A, Zeroual A, Mazzucotelli E, Özkan H, Marcotuli I, Gadaleta A, Houasli C. Evaluation of the Productive Potential of a World Collection of Chickpeas (Cicer arietinum L.) for the Initiation of Breeding Programs for Adaptation to Conservation Agriculture. Sustainability. 2023; 15(15):11927. https://doi.org/10.3390/su151511927
Chicago/Turabian StyleAbderemane, Bacar Abdallah, Malika Fakiri, Omar Idrissi, Aziz Baidani, Abdelmonim Zeroual, Elisabetta Mazzucotelli, Hakan Özkan, Ilaria Marcotuli, Agata Gadaleta, and Chafika Houasli. 2023. "Evaluation of the Productive Potential of a World Collection of Chickpeas (Cicer arietinum L.) for the Initiation of Breeding Programs for Adaptation to Conservation Agriculture" Sustainability 15, no. 15: 11927. https://doi.org/10.3390/su151511927
APA StyleAbderemane, B. A., Fakiri, M., Idrissi, O., Baidani, A., Zeroual, A., Mazzucotelli, E., Özkan, H., Marcotuli, I., Gadaleta, A., & Houasli, C. (2023). Evaluation of the Productive Potential of a World Collection of Chickpeas (Cicer arietinum L.) for the Initiation of Breeding Programs for Adaptation to Conservation Agriculture. Sustainability, 15(15), 11927. https://doi.org/10.3390/su151511927