Evaluation of Green Agricultural Development and Its Influencing Factors under the Framework of Sustainable Development Goals: Case Study of Lincang City, an Underdeveloped Mountainous Region of China
Abstract
:1. Introduction
2. Materials and Methodology
2.1. Study Area
2.2. Materials
2.3. Methodology
2.3.1. Indicator System for Green Agricultural Development
2.3.2. Panel Grey Correlation Model
2.3.3. Comprehensive Evaluation Model for Green Agricultural Development Sustainability
2.3.4. Coupling Coordination Model
2.3.5. Obstacle Model
2.3.6. Liang-Kleeman Information Flow Method
3. Results
3.1. Panel Grey Correlation Results
3.2. Capability for Green and Sustainable Development in Agriculture
3.3. Coupling Coordination Analysis
3.4. Obstacle Analysis
3.5. Information Transmission between Coupling Coordination Degree and Green Agricultural Development Indicators
4. Discussion
4.1. Temporal and Spatial Changes
4.2. Limitations
4.3. Implications and Recommendations
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Githiru, M.; Njambuya, J.W. Globalization and biodiversity conservation problems: Polycentric REDD+ solutions. Land 2019, 8, 35. [Google Scholar] [CrossRef] [Green Version]
- Godfray, H.C.J.; Beddington, J.R.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Pretty, J.; Robinson, S.; Thomas, S.M.; Toulmin, C. Food security: The challenge of feeding 9 billion people. Science 2010, 327, 812–818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pretty, J.; Sutherland, W.J.; Ashby, J.; Auburn, J.; Baulcombe, D.; Bell, M.; Bentley, J.; Bickersteth, S.; Brown, K.; Burke, J.; et al. The top 100 questions of importance to the future of global agriculture. Int. J. Agric. Sustain. 2010, 8, 219–236. [Google Scholar] [CrossRef]
- Latruffe, L.; Diazabakana, A.; Bockstaller, C.; Desjeux, Y.; Finn, J.; Kelly, E.; Ryan, M.; Uthes, S. Measurement of sustainability in agriculture: A review of indicators. Stud. Agric. Econ. 2016, 118, 123–130. [Google Scholar] [CrossRef]
- Crowder, D.W.; Reganold, J.P. Financial competitiveness of organic agriculture on a global scale. Proc. Natl. Acad. Sci. USA 2015, 112, 7611–7616. [Google Scholar] [CrossRef] [PubMed]
- Rockström, J.; Steffen, W.; Noone, K.; Persson, Å.; Chapin, F.S., III; Lambin, E.F.; Lenton, T.M.; Scheffer, M.; Folke, C.; Schellnhuber, H.J.; et al. A safe operating space for humanity. Nature 2009, 461, 472–475. [Google Scholar] [CrossRef]
- Li, F.F.; Zhou, X.; Zhou, Y.X. Evaluation and regional difference analysis of agricultural green development level in bohal rim region. Chin. J. Agric. Resour. Reg. Plan. 2023, 44, 118–129. (In Chinese) [Google Scholar]
- Avtar, R.; Aggarwal, R.; Kharrazi, A.; Kumar, P.; Kurniawan, T.A. Utilizing geospatial information to implement SDGs and monitor their Progress. Environ. Monit. Assess. 2019, 192, 35. [Google Scholar] [CrossRef]
- Viana, C.M.; Freire, D.; Abrantes, P.; Rocha, J.; Pereira, P. Agricultural land systems importance for supporting food security and sustainable development goals: A systematic review. Sci. Total. Environ. 2021, 806, 150718. [Google Scholar] [CrossRef]
- Zhang, Z.; Shi, K.; Tang, L.; Su, K.; Zhu, Z.; Yang, Q. Exploring the spatiotemporal evolution and coordination of agricultural green efficiency and food security in China using ESTDA and CCD models. J. Clean. Prod. 2022, 374, 133967. [Google Scholar] [CrossRef]
- Barhagh, S.E.; Zarghami, M.; Ghale, Y.A.G.; Shahbazbegian, M.R. System dynamics to assess the effectiveness of restoration scenarios for the Urmia Lake: A prey-predator approach for the human-environment uncertain interactions. J. Hydrol. 2021, 593, 125891. [Google Scholar] [CrossRef]
- Wang, W.; Feng, L.; Zheng, T.; Liu, Y. The sustainability of ecotourism stakeholders in ecologically fragile areas: Implications for cleaner production. J. Clean. Prod. 2021, 279, 123606. [Google Scholar] [CrossRef]
- Xu, X.; Huang, X.; Huang, J.; Gao, X.; Chen, L. Spatial-temporal characteristics of agriculture green total factor productivity in China, 1998–2016: Based on more sophisticated calculations of carbon emissions. Int. J. Environ. Res. Public Health 2019, 16, 3932. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ministry of Ecology and Environment of the Ministry of Ecology and Environment; National Bureau of Statistics; Ministry of Agriculture and Rural Affairs of the Ministry of Agriculture anSSSd Rural Affairs. The Second National Pollution Census Report. 2020. Available online: https://www.mee.gov.cn/xxgk2018/xxgk/xxgk01/202006/t20200610_783547.html (accessed on 29 July 2023). (In Chinese)
- Wang, G.; Wang, S.; Chen, Z. Land-use/land-cover changes in the Yellow River basin. J. Tsinghua Univ. 2004, 44, 1218–1222. [Google Scholar] [CrossRef]
- An, S.; Li, R. Intension and promotion strategy of high-quality development in the Yellow River Basin. Reform 2020, 1, 76–86. [Google Scholar]
- Järnberg, L.; Kautsky, E.E.; Dagerskog, L.; Olsson, P. Green niche actors navigating an opaque opportunity context: Prospects for a sustainable transformation of Ethiopian agriculture. Land Use Policy 2018, 71, 409–421. [Google Scholar] [CrossRef]
- Otsuka, K.; Kijima, Y. Technology policies for a green revolution and agricultural transformation in Africa. J. Afr. Econ. 2010, 19 (Suppl. S2), ii60–ii76. [Google Scholar] [CrossRef]
- Zhang, Q.; Qu, Y.; Zhan, L. Great transition and new pattern: Agriculture and rural area green development and its coordinated relationship with economic growth in China. J. Environ. Manag. 2023, 344, 118563. [Google Scholar] [CrossRef]
- Ali, E.B.; Anufriev, V.P.; Amfo, B. Green economy implementation in Ghana as a road map for a sustainable development drive: A review. Sci. Afr. 2021, 12, e756. [Google Scholar] [CrossRef]
- Yan, J.; Yang, J.; Zhu, F.; Teng, Z. Green city and government ecological environment management based on ZigBee technology. Environ. Technol. Innov. 2021, 23, 101711. [Google Scholar] [CrossRef]
- Yin, C.; Li, F.; Wang, S.; Hao, A. The Concept, connotation and principle of agricultural green development in China. Chin. J. Agric. Resour. Reg. Plan. 2021, 42, 1–6. [Google Scholar]
- Uematsu, H.; Mishra, A.K. Organic farmers or conventional farmers: Where’s the money? Ecol. Econ. 2012, 78, 55–62. [Google Scholar] [CrossRef]
- Yunlong, C.; Smit, B. Sustainability in agriculture: A general review. Agric. Ecosyst. Environ. 1994, 49, 299–307. [Google Scholar] [CrossRef]
- He, K.; Li, F.; Zhang, J. Green development levels and regional differences of culture in the YangtzeRiver Economic Belt. J. Huazhong Agric. Univ. 2021, 40, 43–51. [Google Scholar]
- Department of Economic and Social Affairs. Indicators of Sustainable Development: Guidelines and Methodologies. 2007. Available online: https://sdgs.un.org/sites/default/files/publications/guidelines.pdf (accessed on 29 July 2023).
- Chen, Z.; Sarkar, A.; Rahman, A.; Li, X.; Xia, X. Exploring the drivers of green agricultural development (GAD) in China: A spatial association network structure approaches. Land Use Policy 2022, 112, 105827. [Google Scholar] [CrossRef]
- Liu, J.; Li, Y.; Zheng, Y.; Tong, S.; Zhang, X.; Zhao, Y.; Zheng, W.; Zhai, B.; Wang, Z.; Li, Z.; et al. The spatial and temporal distribution of nitrogen flow in the agricultural system and green development assessment of the Yellow River Basin. Agric. Water Manag. 2022, 263, 107425. [Google Scholar] [CrossRef]
- Bergius, M.; Benjaminsen, T.A.; Widgren, M. Green economy, Scandinavian investments and agricultural modernization in Tanzania. J. Peasant. Stud. 2018, 45, 825–852. [Google Scholar] [CrossRef]
- Chen, Z.; Li, X.; Xia, X. Measurement and spatial convergence analysis of China’s agricultural green development index. Environ. Sci. Pollut. Res. 2021, 28, 19694–19709. [Google Scholar] [CrossRef]
- Han, H.; Ding, T.; Nie, L.; Hao, Z. Agricultural eco-efficiency loss under technology heterogeneity given regional differences in China. J. Clean. Prod. 2020, 250, 119511. [Google Scholar] [CrossRef]
- Liu, Y.; Zou, L.; Wang, Y. Spatial-temporal characteristics and influencing factors of agricultural eco-efficiency in China in recent 40 years. Land Use Policy 2020, 97, 104794. [Google Scholar] [CrossRef]
- Deng, X.; Gibson, J. Improving eco-efficiency for the sustainable agricultural production: A case study in Shandong, China. Technol. Forecast. Soc. Chang. 2019, 144, 394–400. [Google Scholar] [CrossRef]
- Li, S.H.; Yang, P.; Lu, D.C. Research on the Evaluation Index System of Agricultural High—Quality Development—Based on Comparative Analysis of Shandong, Jiangsu, and Zhejiang. Chin. J. Agric. Resour. Reg. Plan. 2023, 44, 66–74. (In Chinese) [Google Scholar]
- Han, X.; Wang, Y.; Yu, W.; Xia, X. Coupling and coordination between green finance and agricultural green development: Evidence from China. Financ. Res. Lett. 2023; in press. [Google Scholar] [CrossRef]
- Xiong, X.; Zhang, T.; Duan, Y.; Fang, X.; Zhou, J. Measurement and comparison of the level of the green development about urban agglomeration in the middle reaches of the Yangtze River. Econ. Geogr. 2019, 39, 96–102. [Google Scholar]
- Shen, Z.; Wang, S.; Boussemart, J.-P.; Hao, Y. Digital transition and green growth in Chinese agriculture. Technol. Forecast. Soc. Chang. 2022, 181, 121742. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, H.; Long, R.; Liu, B.; Jiang, S.; Yang, X.; Yang, M. Evaluating green development level of mineral resource-listed companies: Based on a “dark green” assessment framework. Resour. Policy 2021, 71, 102012. [Google Scholar] [CrossRef]
- Zeng, C.; Yu, L. Do China’s Modern Agricultural Demonstration Zones work? Evidence from agricultural products processing companies. Appl. Econ. 2022, 54, 4310–4323. [Google Scholar] [CrossRef]
- Yang, L.; Yang, Y. Evaluation of eco-efficiency in China from 1978 to 2016: Based on a modified ecological footprint model. Sci. Total Environ. 2019, 662, 581–590. [Google Scholar] [CrossRef]
- Quiroga, S.; Suárez, C.; Fernández-Haddad, Z.; Philippidis, G. Levelling the playing field for European Union agriculture: Does the Common Agricultural Policy impact homogeneously on farm productivity and efficiency? Land Use Policy 2017, 68, 179–188. [Google Scholar] [CrossRef]
- Bell, A.; Parkhurst, G.; Droppelmann, K.; Benton, T.G. Scaling up pro-environmental agricultural practice using agglomeration payments: Proof of concept from an agent-based model. Ecol. Econ. 2016, 126, 32–41. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Li, K.; Liu, Y.; Lian, J.; Hong, S. A system dynamics model analysis for policy impacts on green agriculture development: A case of the Sichuan Tibetan Area. J. Clean. Prod. 2022, 371, 133562. [Google Scholar] [CrossRef]
- Zhou, J. Evaluation of Agricultural Green Development in the Yangtze River Economic Belt, Analysis of Regional Differences, and Optimiz ation Paths. Rural. Econ. 2021, 12, 99–108. (In Chinese) [Google Scholar]
- Zong, X.; Liu, X.; Chen, G.; Yin, Y. A deep-understanding framework and assessment indicator system for climate-resilient agriculture. Ecol. Indic. 2022, 136, 108597. [Google Scholar] [CrossRef]
- Gao, X.; Yin, C.J. Measurement and Evaluation of China’s Agricultural High-Quality Development Level under the New Development Concept. J. China Agric. Resour. Reg. Plan. 2023, 44, 75–83. (In Chinese) [Google Scholar]
- Dang, Y.G.; Shang, Z.J.; Wang, J.J.; Feng, Y. Grey incidence model for relationship between indicators of panel data and its application. Control. Decis 2019, 34, 1077–1084. [Google Scholar]
- Deng, J. Introduction to grey system theory. Grey Syst. 1989, 1, 1–24. [Google Scholar]
- Hu, M.J.; Li, Z.J.; Yu, F.L. Research on spatiotemporal response relationship between urban comprehensive well-being, resource and environment pressure and economic growth in Yangtze River delta city. Resour. Environ. Yangtze Basin 2021, 30, 2336–2346. (In Chinese) [Google Scholar]
- Cui, X.; Fang, C.; Liu, H.; Liu, X. Assessing sustainability of urbanization by a coordinated development index for an Urbanization-Resources-Environment complex system: A case study of Jing-Jin-Ji region, China. Ecol. Indic. 2019, 96, 383–391. [Google Scholar] [CrossRef]
- Liao, C.B. Quantitative judgement and classification system of coordinated development of environment and economy: A case study of the City Group in the Pearl River Delta. Trop. Geogr. 1999, 2, 76–82. (In Chinese) [Google Scholar]
- Wang, Y.; Sun, R.-X. Impact of land use change on coupling coordination degrees of regional water-energy-food system: A case study of Beijing-Tianjin-Hebei Urban Agglomeration. J. Nat. Resour. 2022, 37, 582–599. (In Chinese) [Google Scholar] [CrossRef]
- Pereira, L.S. Water, Agriculture and Food: Challenges and Issues. Water Resour. Manag. 2017, 31, 2985–2999. [Google Scholar] [CrossRef]
- Sun, J.-W.; Cui, Y.-Q.; Zhang, H. Spatio-temporal pattern and mechanism analysis of coupling between ecological protection and economic development of urban agglomerations in the Yellow River Basin. J. Nat. Resour. 2022, 37, 1673–1690. (In Chinese) [Google Scholar] [CrossRef]
- Wang, D.; Shen, Y.; Zhao, Y.; He, W.; Liu, X.; Qian, X.; Lv, T. Intsegrated assessment and obstacle factor diagnosis of China’s scientific coal production capacity based on the PSR sustainability framework. Resour. Policy 2020, 68, 101794. [Google Scholar] [CrossRef]
- Qian, X.-Y.; Liang, Q.-M. Sustainability evaluation of the provincial water-energy-food nexus in China: Evolutions, obstacles, and response strategies. Sustain. Cities Soc. 2021, 75, 103332. [Google Scholar] [CrossRef]
- Liang, X.S. Information flow and causality as rigorous notions ab initio. Phys. Rev. E 2016, 94, 052201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Chen, H. Green Agricultural Development Based on Information Communication Technology and the Panel Space Measurement Model. Sustainability 2021, 13, 1147. [Google Scholar] [CrossRef]
- Lee, C.-C.; Lee, C.-C. How does green finance affect green total factor productivity? Evidence from China. Energy Econ. 2022, 107, 105863. [Google Scholar] [CrossRef]
- Karim, S.; Naeem, M.A.; Hu, M.; Zhang, D.; Taghizadeh, H.F. Determining dependence, centrality, and dynamic networks between green bonds and financial markets. J. Environ. Manag. 2022, 318, 115618. [Google Scholar] [CrossRef]
- Fang, L.; Hu, R.; Mao, H.; Chen, S. How crop insurance influences agricultural green total factor productivity: Evidence from Chinese farmers. J. Clean. Prod. 2021, 321, 128977. [Google Scholar] [CrossRef]
- Zuo, L.; Wang, X.; Zhang, Z.; Zhao, X.; Liu, F.; Yi, L.; Liu, B. Developing grain production policy in terms of multiple cropping systems in China. Land Use Policy 2014, 40, 140–146. [Google Scholar] [CrossRef]
Target | Indicators | Indicator Number | Unit | Indicator Type | Source of Indicators | Indicator Meaning | Corresponding SDG Indicators | Weight (%) |
---|---|---|---|---|---|---|---|---|
Green production | Application intensity of nitrogen, phosphorus, and potassium fertilizers ^ | A1 | Tons/hectare | Negative | [27,45] | Fertilization amount of nitrogen, phosphorus, and potassium fertilizers/planting area of crops | Zero hunger (SDG2.4.1) | 0.76 |
Pesticide application intensity ^ | A2 | Tons/hectare | Negative | [27,44,46] | Pesticide application rate/crop planting area | Zero hunger (SDG2.4.1) | 0.93 | |
Use strength of agricultural plastic film ^ | A3 | Tons/hectare | Negative | [27,44] | Agricultural plastic film usage/crop planting area | Zero hunger (SDG2.4.1) | 0.73 | |
Yield of pollution-free vegetables per unit area ^ | A4 | Tons/hectare | Positive | Total yield of pollution-free vegetables/area of pollution-free vegetables | Zero hunger (SDG2.4.1) | 8.92 | ||
Resource conservation | Farmland Multiple Cropping Index ^ | B1 | % | Negative | [27,44] | Annual crop planting area/cultivated land area * 100% | Zero hunger (SDG2.4.1) | 1.47 |
Water saving irrigation intensity ^ | B2 | - | Positive | [27] | Effective irrigation area/crop planting area | Zero hunger (SDG2.4.1) | 15.05 | |
Annual average growth rate of cultivated land quantity ^ | B3 | % | Positive | (Area of arable land in the following year—Area of arable land in the previous year)/Area of arable land in the previous year * 100% | Zero hunger (SDG2.4.1) | 0.4 | ||
Rural electricity consumption ^ | B4 | 10,000 kWh | Negative | [10] | Rural power consumption | Zero hunger (SDG2.4.1) | 0.77 | |
Environmental friendliness | Agricultural COD emissions ^ | C1 | Ton | Negative | Agricultural COD emissions | Clean water and sanitation (SDG6.5.1) | 0.89 | |
Consumption of ecological water resource ^ | C2 | 100 million m3 | Negative | Ecological environment water consumption | Clean water and sanitation (SDG6.5.1) | 0.16 | ||
The proportion of days with good ambient air quality status a, b # | C3 | % | Positive | Proportion of days with good ambient air quality in a year | Sustainable cities and communities (SDG11.6.2) | 1.42 | ||
Direct economic losses caused by disasters * | C4 | CNY 10,000 | Negative | Direct economic losses caused by disasters | Sustainable cities and communities (SDG11.5.2) | 0.25 | ||
Ecological protection | Drought and flood protection area ^ | D1 | Hectare | Positive | Drought and flood protection area | Zero hunger (SDG2.4.1) | 8.05 | |
Forest coverage a, b * | D2 | % | Positive | [34,44,45,46] | Forest coverage | Life on land (SDG15.1.1) | 0.84 | |
Straw returning area ^ | D3 | Hectare | Positive | Straw returning area | Zero hunger (SDG2.4.1) | 3.76 | ||
Economic growth | Per capita disposable income of rural permanent residents ^ | E1 | CNY | Positive | [27,28] | Per capita disposable income of rural permanent residents | Zero hunger (SDG2.1.1) | 2.95 |
Agricultural population ^ | E2 | person | Positive | [10,27] | Agricultural population | Zero hunger (SDG2.4.1) | 3.87 | |
The proportion of agricultural workers in rural population ^ | E3 | % | Negative | Agricultural employed population/total rural population × 100% | Zero hunger (SDG2.4.1) | 2.33 | ||
The proportion of agricultural workers in rural labor force ^ | E4 | % | Negative | Agricultural employed population/rural labor force population × 100% | Zero hunger (SDG2.4.1) | 1.46 | ||
Per capita possession of food ^ | E5 | kg | Positive | Annual grain production/total population | Zero hunger (SDG2.1.2) | 1.53 | ||
Tea Garden Unit Yield ^ | E6 | Tons/hectare | Positive | Total tea production at the end of the year/actual tea plantation area at the end of the year | Zero hunger (SDG2.4.1) | 1.98 | ||
Engel’s coefficient of rural residents ^ | E7 | % | Negative | Engel’s coefficient of rural residents | Zero hunger (SDG2.1.1) | 3.02 | ||
Value added of the primary industry # | E8 | CNY 10,000 | Positive | Current year’s unit output value of the primary industry—previous year’s unit output value of the primary industry | Zero hunger (SDG2.3.1) | 2.97 | ||
The proportion of the total output value of the primary industry to the regional GDP # | E9 | % | Negative | [34] | Gross output value of the primary industry/Gross regional product × 100% | Zero hunger (SDG2.3.1) | 0.66 | |
Per capita GDP ^ | E10 | CNY 10,000/person | Positive | [28] | Gross Domestic Product/Total Population | Decent work and economic growth (SDG8.4.1) | 1.81 | |
Poverty alleviation rate ^ | E11 | % | Positive | Poverty alleviation population/total population | No poverty (SDG1.1.1) | 5.71 | ||
Social development | Effective irrigation area ^ | F1 | Hectare | Positive | [10,28] | Irrigated Area | Zero hunger (SDG2.4.1) | 15.55 |
Average water consumption per mu for farmland irrigation ^ | F2 | m3/hectare | Negative | Average water consumption per mu for farmland irrigation | Zero hunger (SDG2.4.1) | 1.07 | ||
Promotion area of water-saving irrigation technology in farmland ^ | F3 | hectare | Positive | Promotion area of water-saving irrigation technology in farmland | Zero hunger (SDG2.4.1) | 7.62 | ||
Urbanization level ^ | F4 | % | Negative | [28] | Urban resident population/total population × 100% | Sustainable cities and communities (SDG11.a.1) | 0.9 | |
Urban-rural income gap ^ | F5 | - | Negative | [46] | Per capita disposable income of urban permanent residents/per capita disposable income of rural permanent residents | Sustainable cities and communities (SDG11.a.1) | 1.22 | |
Proportion of villages benefiting from tap water ^ | F6 | % | Positive | Number of villages benefiting from tap water/number of village committees | Sustainable cities and communities (SDG11.a.1) | 0.32 | ||
Proportion of Tongchi Village ^ | F7 | % | Positive | Number of Tongchi Village/Number of Village Committees | Sustainable cities and communities (SDG11.a.1) | 0.32 | ||
Proportion of Telephone Villages ^ | F8 | % | Positive | Number of villages with phone calls/number of village committees | Sustainable cities and communities (SDG11.a.1) | 0.31 |
Year | Green Production | Resource Conservation | Environmental Friendliness | Ecological Protection | Economic Growth | Social Development | Sustainable Development Level Score |
---|---|---|---|---|---|---|---|
2010 | 0.0377 | 0.0180 | 0.0107 | 0.0214 | 0.3227 | 0.0300 | 0.4405 |
2011 | 0.0181 | 0.0176 | 0.0178 | 0.0226 | 0.3342 | 0.0309 | 0.4413 |
2012 | 0.0165 | 0.0179 | 0.0203 | 0.0229 | 0.3357 | 0.0333 | 0.4467 |
2013 | 0.0171 | 0.0263 | 0.0210 | 0.0225 | 0.3836 | 0.0438 | 0.5143 |
2014 | 0.0359 | 0.0171 | 0.0181 | 0.0232 | 0.2980 | 0.0418 | 0.4341 |
2015 | 0.0353 | 0.0170 | 0.0223 | 0.0199 | 0.3004 | 0.0474 | 0.4422 |
2016 | 0.0469 | 0.0179 | 0.0186 | 0.0392 | 0.2401 | 0.0398 | 0.4026 |
2017 | 0.0442 | 0.1226 | 0.0247 | 0.0658 | 0.1965 | 0.1436 | 0.5975 |
2018 | 0.0445 | 0.0178 | 0.0183 | 0.0243 | 0.2401 | 0.0527 | 0.3978 |
2019 | 0.0205 | 0.0172 | 0.0226 | 0.0260 | 0.2925 | 0.0568 | 0.4355 |
Year | Comprehensive Evaluation Index (T) | Coupling Degree (C) | Coupling Coordination Degree (D) | Coupling Coordination Type |
---|---|---|---|---|
2010 | 0.0092 | 0.0577 | 0.1840 | Severe imbalance |
2011 | 0.0735 | 0.4507 | 0.1821 | Severe imbalance |
2012 | 0.0744 | 0.4563 | 0.1843 | Severe imbalance |
2013 | 0.0857 | 0.4558 | 0.1977 | Severe imbalance |
2014 | 0.0724 | 0.5310 | 0.1960 | Severe imbalance |
2015 | 0.0737 | 0.5358 | 0.1987 | Severe imbalance |
2016 | 0.0671 | 0.6327 | 0.2060 | Mild imbalance. |
2017 | 0.0996 | 0.7965 | 0.2816 | Mild imbalance. |
2018 | 0.0663 | 0.6121 | 0.2014 | Mild imbalance. |
2019 | 0.0726 | 0.5349 | 0.1970 | Severe imbalance |
Linxiang | Fengqing | Yun | Yongde | Zhenkang | Shuangjiang | Gengma | Cangyuan | |
---|---|---|---|---|---|---|---|---|
A1 | - | - | - | - | - | - | - | - |
A2 | 0.28 | - | - | - | - | - | - | - |
A3 | - | - | 0.12 | - | - | - | - | 0.31 |
A4 | - | - | 0.39 | - | - | - | 0.07 | |
B1 | 0.08 | - | 0.12 | - | - | - | - | - |
B2 | 0.54 | - | 1.19 | - | - | - | - | - |
B3 | - | - | - | - | - | - | - | - |
B4 | 0.48 | - | 0.32 | - | - | 0.46 | 0.22 | - |
C1 | - | - | - | 0.17 | 0.36 | 0.29 | 0.13 | - |
C2 | - | - | - | - | - | 0.56 | - | 0.10 |
C3 | - | - | - | 0.22 | - | 0.21 | 0.20 | |
C4 | - | - | - | - | - | - | 0.09 | 0.14 |
D1 | 0.75 | - | - | - | 1.86 | - | - | - |
D2 | 0.13 | - | 0.11 | - | 0.01 | 0.21 | 0.13 | 0.07 |
D3 | - | - | 1.29 | - | 0.10 | - | - | - |
E1 | - | - | 0.33 | - | 0.42 | 0.46 | 0.26 | - |
E2 | - | - | 0.07 | - | - | 0.33 | - | - |
E3 | - | - | - | - | - | - | - | - |
E4 | - | - | 0.09 | 0.33 | 0.02 | - | 0.15 | - |
E5 | - | - | 0.22 | - | 0.31 | 0.32 | - | - |
E6 | 0.16 | - | 0.20 | - | - | 0.15 | - | - |
E7 | - | - | - | - | - | - | - | 0.06 |
E8 | - | - | - | - | - | 0.30 | - | - |
E9 | - | - | - | - | - | - | - | |
E10 | - | - | - | - | - | 0.08 | - | - |
E11 | 0.90 | - | 1.62 | - | - | - | - | - |
F1 | 0.55 | - | 1.22 | - | - | - | - | - |
F2 | - | - | - | - | - | 0.21 | 0.21 | - |
F3 | - | - | - | - | 0.41 | 0.40 | 0.53 | - |
F4 | - | - | - | - | - | 0.47 | 0.27 | - |
F5 | 0.33 | - | 0.26 | 0.18 | 0.28 | 0.34 | 0.19 | - |
F6 | - | - | - | - | 0.02 | - | - | - |
F7 | - | - | - | - | - | - | - | - |
F8 | - | - | - | - | - | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zou, Y.; Cheng, Q.; Jin, H.; Pu, X. Evaluation of Green Agricultural Development and Its Influencing Factors under the Framework of Sustainable Development Goals: Case Study of Lincang City, an Underdeveloped Mountainous Region of China. Sustainability 2023, 15, 11918. https://doi.org/10.3390/su151511918
Zou Y, Cheng Q, Jin H, Pu X. Evaluation of Green Agricultural Development and Its Influencing Factors under the Framework of Sustainable Development Goals: Case Study of Lincang City, an Underdeveloped Mountainous Region of China. Sustainability. 2023; 15(15):11918. https://doi.org/10.3390/su151511918
Chicago/Turabian StyleZou, Yongna, Qingping Cheng, Hanyu Jin, and Xuefu Pu. 2023. "Evaluation of Green Agricultural Development and Its Influencing Factors under the Framework of Sustainable Development Goals: Case Study of Lincang City, an Underdeveloped Mountainous Region of China" Sustainability 15, no. 15: 11918. https://doi.org/10.3390/su151511918
APA StyleZou, Y., Cheng, Q., Jin, H., & Pu, X. (2023). Evaluation of Green Agricultural Development and Its Influencing Factors under the Framework of Sustainable Development Goals: Case Study of Lincang City, an Underdeveloped Mountainous Region of China. Sustainability, 15(15), 11918. https://doi.org/10.3390/su151511918