Dynamic Changes and Driving Mechanisms of Net Primary Production (NPP) in a Semi-Arid Region of China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Source and Processing
2.3. Methodology
3. Results
3.1. Spatial Distribution Characteristics of Average Annual NPP during 2001–2020
3.1.1. Average Annual NPP Distribution during 2001–2020
Average Annual NPP in Different Land-Use Types during 2001–2020
3.2. Temporal Variation Characteristics of Average Annual NPP during 2001–2020
3.2.1. Trend Analysis of Annual Average NPP Changes during 2001–2020
3.2.2. Spatial Characteristics of Annual Average NPP Trend Analysis during 2001–2020
3.3. Driving Mechanism Analysis of Average NPP Changes during 2001–2020
4. Discussion
4.1. Temporal and Spatial Variations in NPP
4.2. Driving Mechanism of NPP Changes
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, Y.; Han, X.; Weng, F.; Xu, Y.; Zhang, Y.; Tang, S. Estimation of Terrestrial Net Primary Productivity in China from Fengyun-3D Satellite Data. J. Meteorol. Res. 2022, 36, 401–416. [Google Scholar] [CrossRef]
- Chan, P. Discrepancies between Global Forest Net Primary Productivity Estimates Derived from MODIS and Forest Inventory Data and Underlying Factors. Remote Sens. 2021, 13, 1441. [Google Scholar]
- Ahmad, S.; Pandey, A.C.; Kumar, A.; Lele, N.V.; Bhattacharya, B.K. Primary productivity estimation of forest based on in-situ biophysical parameters and sentinel satellite data using vegetation photosynthesis model in an eastern Indian tropical dry deciduous forest. Trop. Ecol. 2022, 63, 409–422. [Google Scholar] [CrossRef]
- Kato, S. Ten-Year Estimation of Net Primary Productivity in a Mangrove Forest under a Tropical Monsoon Climate in Eastern Thailand: Significance of the Temperature Environment in the Dry Season. Forests 2020, 11, 987. [Google Scholar]
- Yu, R. An improved estimation of net primary productivity of grassland in the Qinghai-Tibet region using light use efficiency with vegetation photosynthesis model. Ecol. Model. 2020, 431, 109121. [Google Scholar] [CrossRef]
- Dong, Y.; Ren, Z.; Fu, Y.; Yang, R.; Sun, H.; He, X. Land Use/Cover Change and Its Policy Implications in Typical Agriculture-forest Ecotone of Cen-tral Jilin Province, China. Chin. Geogr. Sci. 2021, 31, 261–275. [Google Scholar] [CrossRef]
- Li, F.; Meng, J.; Zhu, L.; You, N. Spatial pattern and temporal trend of land degradation in the Heihe River Basin of China using local net primary production scaling. Land Degrad. Dev. 2019, 31, 518–530. [Google Scholar] [CrossRef]
- Vadrevu, K.P.; Justice, C.; Prasad, T.; Prasad, N.; Gutman, G. Land cover/land use change and impacts on environment in South Asia. J. Environ. Manag. 2015, 148, 1–3. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Q.; Wang, Z.; Yang, Y.; Li, J. Impact of human activities and climate change on the grassland dynamics under different regime policies in the Mongolian Plateau. Sci. Total Environ. 2019, 698, 134304. [Google Scholar] [CrossRef]
- Sun, G.; Mu, M. Understanding variations and seasonal characteristics of net primary production under two types of climate change scenarios in China using the LPJ model. Clim. Chang. 2013, 120, 755–769. [Google Scholar] [CrossRef]
- Zhao, Y.; Ju, Z.; Wu, L. Effects of land-use change on net primary productivity. Sci. Surv. Mapp. 2023, 48, 166–175. [Google Scholar]
- Liu, Y.; Ren, H.; Zheng, C.; Zhou, R.; Hu, T.; Yang, P.; Zhang, W.; Wang, Z.; Li, Y.; Zhang, Z.; et al. Untangling the effects of management measures, climate and land use cover change on grassland dy-namics in the Qinghai–Tibet Plateau, China. Land Degrad. Dev. 2021, 32, 4974–4987. [Google Scholar] [CrossRef]
- Yang, H.; Zhong, X.; Deng, S.; Xu, H. Assessment of the impact of LUCC on NPP and its influencing factors in the Yangtze River basin, China. Catena 2021, 206, 105542. [Google Scholar] [CrossRef]
- Luo, Q.; Zhou, J.; Li, Z.; Yu, B. Spatial differences of ecosystem services and their driving factors: A comparation analysis among three urban agglomerations in China’s Yangtze River Economic Belt. Sci. Total Environ. 2020, 725, 138452. [Google Scholar] [CrossRef]
- Houghton, R.A.; House, J.I.; Pongratz, J.; Van Der Werf, G.R.; DeFries, R.S.; Hansen, M.C.; Le Quéré, C.; Ramankutty, N. Carbon emissions from land use and land-cover change. Biogeosciences 2012, 9, 5125–5142. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Pei, F.; Wen, Y.; Li, X.; Wang, S.; Wu, C.; Cai, Y.; Wu, J.; Chen, J.; Feng, K.; et al. Global urban expansion offsets climate-driven increases in terrestrial net primary productivity. Nat. Commun. 2019, 10, 5558. [Google Scholar] [CrossRef] [Green Version]
- Basuki, I.; Kauffman, J.B.; Peterson, J.T.; Anshari, G.Z.; Murdiyarso, D. Land Cover and Land Use Change Decreases Net Ecosystem Production in Tropical Peatlands of West Kalimantan, Indonesia. Forests 2021, 12, 1587. [Google Scholar] [CrossRef]
- Cheng, F.; Liu, S.; Zhang, Y.; Yin, Y.J.; Hou, X.Y. Effects of land-use change on net primary productivity in Beijing based on the MODIS series. Acta Ecol. Sin. 2017, 37, 5924–5934. [Google Scholar]
- Xu, Y.; Lv, Y.; Dai, Q.; Zhao, C.; Huang, W.; Chen, T.; Zhang, Y. Assessment of the Relative Contribution of Climate Change and Land Use Change on Net Primary Productivity Variation in the Middle and Lower Reaches of the Yangtze River Basin. China Environ. Sci. 2023. [Google Scholar] [CrossRef]
- Tian, H.; Bi, R.; Zhu, H.; Yan, J. Driving factors and gradient effect of net primary productivity in Fenhe River Basin. Chin. J. Ecol. 2019, 38, 3066. [Google Scholar]
- Liang, C.; Zhai, G.; Fu, M.; Sun, C. Spatiotemporal Changes and Influencing Facotrs of Net Primary Productivity of Guanzhong Plain City Cluster from 2000 to 2019. Res. Soil Water Conserv. 2023, 30, 293–300. [Google Scholar]
- Ying, H.; Yang, J.; Xia, G.; Lin, T. Spatio-temporal change of ner primary productivity and the evaluation of the importance of biodi-versity maintenance functionas in Manas River Basin. Acta Ecol. Sin. 2023, 43, 4664–4673. [Google Scholar]
- Fan, W.; Wu, H.; Fan, F. Spatial-temporal variation of net primary productivity and its influencing factors in Tibet over past 20 years. Bull. Soil Water Conserv. 2022, 42, 378–386. [Google Scholar]
- Li, C.; Zhao, K. Spatiotemporal variations of vegetation NPP and related driving factors in Shiyang River basin of Northwest China in 2000–2010. Chin. J. Ecol. 2013, 32, 712–718. [Google Scholar]
- Wang, Y.; Yue, H.; Peng, Q.; He, C.; Hong, S.; Bryan, B.A. Recent responses of grassland net primary productivity to climatic and anthropogenic factors in Kyrgyzstan. Land Degrad. Dev. 2020, 31, 2490–2506. [Google Scholar] [CrossRef]
- Wei, X.; Yang, J.; Luo, P.; Lin, L.; Lin, K.; Guan, J. Assessment of the variation and influencing factors of vegetation NPP and carbon sink capacity un-der different natural conditions. Ecol. Indic. 2022, 138, 108834. [Google Scholar] [CrossRef]
- Zhang, M.; Yuan, N.; Lin, H.; Liu, Y.; Zhang, H. Quantitative estimation of the factors impacting spatiotemporal variation in NPP in the Dong-ting Lake wetlands using Landsat time series data for the last two decades. Ecol. Indic. 2022, 135, 108544. [Google Scholar] [CrossRef]
- Chen, S.; Guo, B.; Zhang, R.; Zang, W.; Wei, C.; Wu, H.; Yang, X.; Zhen, X.; Li, X.; Zhang, D.; et al. Quantitatively determine the dominant driving factors of the spatial–temporal changes of vegetation NPP in the Hengduan Mountain area during 2000–2015. J. Mt. Sci. 2021, 18, 19. [Google Scholar] [CrossRef]
- Zhao, P.; Wang, D.; He, S.; Lan, H.; Chen, W.; Qi, Y. Driving forces of NPP change in debris flow prone area: A case study of a typical region in SW China. Ecol. Indic. 2020, 119, 106811. [Google Scholar] [CrossRef]
- Zhang, S.; Li, F.; Zhou, Y.; Hu, Z.; Zhang, R.; Xiang, X.; Zhang, Y. Using Net Primary Productivity to Characterize the Spatio-Temporal Dynamics of Ecological Footprint for a Resource-Based City, Panzhihua in China. Sustainability 2022, 14, 3067. [Google Scholar] [CrossRef]
- Zhuang, Q.; Shao, Z.; Li, D.; Huang, X.; Cai, B.; Altan, O.; Wu, S. Unequal weakening of urbanization and soil salinization on vegetation production capacity. Geoderma 2022, 411, 115712. [Google Scholar] [CrossRef]
- Duarte, C.M.; Gattuso, J.; Hancke, K.; Gundersen, H.; Filbee-Dexter, K.; Pedersen, M.F.; Middelburg, J.J.; Burrows, M.T.; Krumhansl, K.A.; Wernberg, T.; et al. Global estimates of the extent and production of macroalgal forests. Glob. Ecol. Biogeogr. 2022, 31, 1422–1439. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, L.; Sheng, L. Scenario Simulation on Changing Pattern of Land Use for Wetland in the West of Jilin Province. J. Jilin Univ. (Earth Sci. Ed.) 2016, 46, 865–875. [Google Scholar]
- Liu, T.; Yu, L.; Zhang, S. Land Surface Temperature Response to Irrigated Paddy Field Expansion: A Case Study of Semi-arid Western Jilin Province, China. Sci. Rep. 2019, 9, 5278. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Dou, T.; Wang, Y.; Zhu, T.; Yin, H.; Zhou, M.; Liu, L.; Wu, X. A Method for Quantifying the Impacts of Human Activities on Net Primary Production of Grasslands in Northwest China. Remote Sens. 2021, 13, 2479. [Google Scholar] [CrossRef]
- Cheng, Z.; Zhang, Y.; Wang, L.; Wei, L.; Wu, X. An Analysis of Land-Use Conflict Potential Based on the Perspective of Production–Living–Ecological Function. Sustainability 2022, 14, 5936. [Google Scholar] [CrossRef]
- Zou, T.; Chang, Y.; Chen, P.; Liu, J. Spatial-temporal variations of ecological vulnerability in Jilin Province (China), 2000 to 2018. Ecol. Indic. 2021, 133, 108429. [Google Scholar] [CrossRef]
- Luo, L.; Wang, Z.; Mao, D.; Lou, Y.; Ren, C.; Song, K. Temporal and Spatial Pattern of Grassland Net Primary Productivity in Westerrn Songnen Plain. Chin. J. Grassl. 2012, 34, 5–11. [Google Scholar]
- Liu, S. Study on the Spatial and Temporal Dynamic Changes of Wetland and Its NPP in the West of Jilin Province Based on Remote Sensing Techniques. Doctoral Thesis, Jilin University, Changchun, China, 2018. [Google Scholar]
- Lee, X. Estimate of Da’an Saline-Alkali Region Grassland NPP in West of Jilin and Spatial-Temporal Characteris-tics Analysis. Master’s Thesis, Jilin University, Changchun, China, 2017. [Google Scholar]
- Yan, J.; Hao, H.; Gao, Y.; Wang, T.; Zhang, Y. Estimation and Spatial-Temporal Dynamics of Long-term Sequenced Vegetation Net Primary Productivity in Jilin Provience. J. Soil Water Conserv. 2021, 35, 172–180. [Google Scholar]
- Shang, Y.; Wang, D.; Liu, S.; Li, H. Stability of Land-use/Land-cover in National Nature Reserves of Jilin Province, China. Chin. Geogr. Sci. 2022, 32, 324–339. [Google Scholar] [CrossRef]
- Zhang, D.; Wang, X.; Bao, G.; Fu, S.; Zhou, X.; Sun, Y.; Wang, D. The land types change and driving factor analysis of western of Jilin province based on landscape index. J. Jilin For. Sci. Technol. 2016, 2016, 41–47. [Google Scholar]
Source Type | Specific Contents | Data Sources | Resolution |
---|---|---|---|
Land use/ Land cover | 2020 | Resource and Environment Science and Data Center of China (http://www.resdc.cn (accessed on 5 December 2022)) | 30 m |
NPP | 2001–2020 | National Aeronautics and Space Administration (https://earthdata.nasa.gov (accessed on 30 November 2022)) | 500 m |
Driving factors | Population, GDP | Geographical Information Monitoring Cloud Platform (http://www.dsac.cn/ (accessed on 5 December 2022)) | prefecture-level city |
Average annual temperature, annual precipitation, hours of sunshine, average annual wind speed | China Meteorological Data Sharing Network (http://data.cma.cn/ (accessed on 5 December 2022)) | prefecture-level city | |
Carbon dioxide emission | China City Greenhouse Gas Working Group (http://www.cityghg.com/ (accessed on 5 December 2022)) | prefecture-level city |
Average Annual Temperature (°C) | Annual Precipitation (mm) | Average Wind Speed (m/s) | CO2 Emission (t) | Hours of Sunshine (h) | Population | GDP (105 Million) | |
---|---|---|---|---|---|---|---|
Pearson correlation coefficient | 0.07 | 0.744 ** | −0.371 | 0.739 ** | −0.502 * | −0.28 | 0.645 ** |
Significance | 0.77 | 0 | 0.107 | 0 | 0.024 | 0.232 | 0.002 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, D.; Jia, W.; Liu, J. Dynamic Changes and Driving Mechanisms of Net Primary Production (NPP) in a Semi-Arid Region of China. Sustainability 2023, 15, 11829. https://doi.org/10.3390/su151511829
Zhao D, Jia W, Liu J. Dynamic Changes and Driving Mechanisms of Net Primary Production (NPP) in a Semi-Arid Region of China. Sustainability. 2023; 15(15):11829. https://doi.org/10.3390/su151511829
Chicago/Turabian StyleZhao, Dandan, Wenyue Jia, and Jiping Liu. 2023. "Dynamic Changes and Driving Mechanisms of Net Primary Production (NPP) in a Semi-Arid Region of China" Sustainability 15, no. 15: 11829. https://doi.org/10.3390/su151511829
APA StyleZhao, D., Jia, W., & Liu, J. (2023). Dynamic Changes and Driving Mechanisms of Net Primary Production (NPP) in a Semi-Arid Region of China. Sustainability, 15(15), 11829. https://doi.org/10.3390/su151511829