Sustainable Use of Treated Municipal Wastewater after Chlorination: Short-Term Effects on Crops and Soils
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Experimental Design
2.3. Irrigation Tests
2.4. Measurement of Physico-Chemical Characteristics of Wastewater
2.5. Plant Surveys and Analysis
2.6. Soil Surveys and Analysis
2.7. Statistical Processing
3. Results
3.1. Plant Response to Irrigation
3.1.1. Growth Parameters
3.1.2. Morphological Parameters
3.1.3. Physiological Parameters
3.1.4. Efficiency of Energy Transfer
3.2. Effects of Irrigation on Soils
Factor | Degrees of Freedom | Sum of Squares | Mean Squares | F | Pr > F |
---|---|---|---|---|---|
TOC | |||||
Treatment | 2 | 0.053 | 0.027 | 1.072 | 0.353 |
Sampling date | 1 | 0.002 | 0.002 | 0.097 | 0.758 |
Treatment × sampling date | 2 | 0.003 | 0.001 | 0.052 | 0.949 |
P | |||||
Treatment | 2 | 0.000 | 0.000 | 4.154 | 0.024 |
Sampling date | 1 | 0.000 | 0.000 | 17.382 | 0.000 |
Treatment × sampling date | 2 | 0.000 | 0.000 | 1.476 | 0.242 |
TN | |||||
Treatment | 2 | 0.000 | 0.000 | 0.026 | 0.974 |
Sampling date | 1 | 0.005 | 0.005 | 26.827 | <0.0001 |
Treatment × sampling date | 2 | 0.000 | 0.000 | 0.337 | 0.716 |
pH | |||||
Treatment | 2 | 1.219 | 0.609 | 3.574 | 0.038 |
Sampling date | 1 | 0.068 | 0.068 | 0.400 | 0.531 |
Treatment × sampling date | 2 | 0.155 | 0.078 | 0.455 | 0.638 |
EC | |||||
Treatment | 2 | 491,911.000 | 245,955.500 | 72.732 | <0.0001 |
Sampling date | 1 | 7656.463 | 7656.463 | 2.264 | 0.141 |
Treatment × sampling date | 2 | 7578.037 | 3789.019 | 1.120 | 0.337 |
3.3. Analysis of Combined Effects of Irrigation on Plants and Soils Using Multivariate Statistical Techniques
4. Discussion
4.1. Effects of Non-Chlorinated Wastewater on Plants
4.2. Effects of Chlorinated Wastewater on Plants
4.3. Effects of Wastewater Application on Soils
4.4. Analysis of Relationships among Plant and Soil Parameters among the Irrigation Conditions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kesari, K.K.; Soni, R.; Jamal, Q.M.S.; Tripathi, P.; Lal, J.A.; Jha, N.K.; Siddiqui, M.H.; Kumar, P.; Tripathi, V.; Ruokolainen, J. Wastewater Treatment and Reuse: A Review of Its Applications and Health Implications. Water. Air. Soil Pollut. 2021, 232, 1–28. [Google Scholar] [CrossRef]
- Minhas, P.S.; Saha, J.K.; Dotaniya, M.L.; Sarkar, A.; Saha, M. Wastewater Irrigation in India: Current Status, Impacts and Response Options. Sci. Total Environ. 2022, 808, 152001. [Google Scholar] [CrossRef]
- Moretti, M.; Van Passel, S.; Camposeo, S.; Pedrero, F.; Dogot, T.; Lebailly, P.; Vivaldi, G.A. Modelling Environmental Impacts of Treated Municipal Wastewater Reuse for Tree Crops Irrigation in the Mediterranean Coastal Region. Sci. Total Environ. 2019, 660, 1513–1521. [Google Scholar] [CrossRef] [PubMed]
- Janeiro, C.N.; Arsénio, A.M.; Brito, R.; Van Lier, J.B. Use of (Partially) Treated Municipal Wastewater in Irrigated Agriculture; Potentials and Constraints for Sub-Saharan Africa. Phys. Chem. Earth Parts ABC 2020, 118, 102906. [Google Scholar] [CrossRef]
- Lyu, S.; Wu, L.; Wen, X.; Wang, J.; Chen, W. Effects of Reclaimed Wastewater Irrigation on Soil-Crop Systems in China: A Review. Sci. Total Environ. 2022, 813, 152531. [Google Scholar] [CrossRef]
- Jiménez, B.; Asano, T. Water Reuse: An International Survey of Current Practice, Issues and Needs; IWA Publishing: London, UK, 2008. [Google Scholar]
- Pedrero, F.; Allende, A.; Gil, M.I.; Alarcón, J.J. Soil Chemical Properties, Leaf Mineral Status and Crop Production in a Lemon Tree Orchard Irrigated with Two Types of Wastewater. Agric. Water Manag. 2012, 109, 54–60. [Google Scholar] [CrossRef]
- Jiménez-González, M.A.; De la Rosa, J.M.; Jiménez-Morillo, N.T.; Almendros, G.; González-Pérez, J.A.; Knicker, H. Post-Fire Recovery of Soil Organic Matter in a Cambisol from Typical Mediterranean Forest in Southwestern Spain. Sci. Total Environ. 2016, 572, 1414–1421. [Google Scholar] [CrossRef]
- Collins, M.; Knutti, R.; Arblaster, J.; Dufresne, J.-L.; Fichefet, T.; Friedlingstein, P.; Gao, X.; Gutowski, W.J.; Johns, T.; Krinner, G. Long-Term Climate Change: Projections, Commitments and Irreversibility. In Climate Change 2013—The Physical Science Basis: Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2013; pp. 1029–1136. [Google Scholar]
- Suri, M.R.; Dery, J.L.; Pérodin, J.; Brassill, N.; He, X.; Ammons, S.; Gerdes, M.E.; Rock, C.; Goldstein, R.E.R. US Farmers’ Opinions on the Use of Nontraditional Water Sources for Agricultural Activities. Environ. Res. 2019, 172, 345–357. [Google Scholar] [CrossRef]
- Ungureanu, N.; Vlăduț, V.; Voicu, G. Water Scarcity and Wastewater Reuse in Crop Irrigation. Sustainability 2020, 12, 9055. [Google Scholar] [CrossRef]
- Biswas, A.; Mailapalli, D.R.; Raghuwanshi, N.S. Treated Municipal Wastewater to Fulfil Crop Water Footprints and Irrigation Demand–A Review. Water Supply 2021, 21, 1398–1409. [Google Scholar] [CrossRef]
- WANG, H.; Jingjing, W.; Xiaohua, Y.U. Wastewater Irrigation and Crop Yield: A Meta-Analysis. J. Integr. Agric. 2022, 21, 1215–1224. [Google Scholar] [CrossRef]
- Gatta, G.; Libutti, A.; Gagliardi, A.; Disciglio, G.; Tarantino, E.; Beneduce, L.; Giuliani, M.M. Wastewater Reuse in Agriculture: Effects on Soil-Plant System Properties. Interact. Fate Pharm. Soil-Crop Syst. Impact Reclaimed Wastewater 2021, 103, 79–102. [Google Scholar]
- Cirelli, G.L.; Consoli, S.; Licciardello, F.; Aiello, R.; Giuffrida, F.; Leonardi, C. Treated Municipal Wastewater Reuse in Vegetable Production. Agric. Water Manag. 2012, 104, 163–170. [Google Scholar] [CrossRef]
- Tak, H.I.; Babalola, O.O.; Huyser, M.H.; Inam, A. Urban Wastewater Irrigation and Its Effect on Growth, Photosynthesis and Yield of Chickpea under Different Doses of Potassium. Soil Sci. Plant Nutr. 2013, 59, 156–167. [Google Scholar] [CrossRef] [Green Version]
- Uzen, N.; Cetin, O.; Unlu, M. Effects of Domestic Wastewater Treated by Anaerobic Stabilization on Soil Pollution, Plant Nutrition, and Cotton Crop Yield. Environ. Monit. Assess. 2016, 188, 1–11. [Google Scholar] [CrossRef]
- Poustie, A.; Yang, Y.; Verburg, P.; Pagilla, K.; Hanigan, D. Reclaimed Wastewater as a Viable Water Source for Agricultural Irrigation: A Review of Food Crop Growth Inhibition and Promotion in the Context of Environmental Change. Sci. Total Environ. 2020, 739, 139756. [Google Scholar] [CrossRef]
- Zema, D.A.; Bombino, G.; Andiloro, S.; Zimbone, S.M. Irrigation of Energy Crops with Urban Wastewater: Effects on Biomass Yields, Soils and Heating Values. Agric. Water Manag. 2012, 115, 55–65. [Google Scholar] [CrossRef]
- Hussain, M.I.; Muscolo, A.; Farooq, M.; Ahmad, W. Sustainable Use and Management of Non-Conventional Water Resources for Rehabilitation of Marginal Lands in Arid and Semiarid Environments. Agric. Water Manag. 2019, 221, 462–476. [Google Scholar] [CrossRef]
- Bedbabis, S.; Trigui, D.; Ahmed, C.B.; Clodoveo, M.L.; Camposeo, S.; Vivaldi, G.A.; Rouina, B.B. Long-Terms Effects of Irrigation with Treated Municipal Wastewater on Soil, Yield and Olive Oil Quality. Agric. Water Manag. 2015, 160, 14–21. [Google Scholar] [CrossRef]
- Singh, A. A Review of Wastewater Irrigation: Environmental Implications. Resour. Conserv. Recycl. 2021, 168, 105454. [Google Scholar] [CrossRef]
- Manasfi, R.; Brienza, M.; Ait-Mouheb, N.; Montemurro, N.; Perez, S.; Chiron, S. Impact of Long-Term Irrigation with Municipal Reclaimed Wastewater on the Uptake and Degradation of Organic Contaminants in Lettuce and Leek. Sci. Total Environ. 2021, 765, 142742. [Google Scholar] [CrossRef] [PubMed]
- Aiello, R.; Cirelli, G.L.; Consoli, S. Effects of Reclaimed Wastewater Irrigation on Soil and Tomato Fruits: A Case Study in Sicily (Italy). Agric. Water Manag. 2007, 93, 65–72. [Google Scholar] [CrossRef]
- Stanfield, G.; Lechevallier, M.; Snozzi, M. Treatment Efficiency. Assess. Microb. Saf. Drink. Water 2003, 159. [Google Scholar]
- Ammeri, R.W.; Hidri, Y.; Souid, F.; Simeone, G.D.R.; Hajjaji, F.; Moussa, M.; Hassen, A.; Eturki, S. Improvement of Degraded Agricultural Soil in an Arid Zone Following Short-and Long-Term Treated Municipal Wastewater Application: A Case Study of Gabes Perimeter, Tunisia. Appl. Soil Ecol. 2023, 182, 104685. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency. Guidelines for Water Reuse; US Environmental Protection Agency: Washington, DC, USA, 2004. [Google Scholar]
- Mara, D.; Cairncross, S. Health Guidelines for the Use of Wastewater in Agriculture and Aquaculture. Geneva Switz. World Health Organ 1989, 778, 1–14. [Google Scholar]
- Norton-Brandão, D.; Scherrenberg, S.M.; van Lier, J.B. Reclamation of Used Urban Waters for Irrigation Purposes—A Review of Treatment Technologies. J. Environ. Manag. 2013, 122, 85–98. [Google Scholar] [CrossRef] [PubMed]
- Lonigro, A.; Montemurro, N.; Laera, G. Effects of Residual Disinfectant on Soil and Lettuce Crop Irrigated with Chlorinated Water. Sci. Total Environ. 2017, 584–585, 595–602. [Google Scholar] [CrossRef]
- Gori, R.; Ferrini, F.; Nicese, F.P.; Lubello, C. Effect of Reclaimed Wastewater on the Growth and Nutrient Content of Three Landscape Shrubs. J. Environ. Hortic. 2000, 18, 108–114. [Google Scholar] [CrossRef]
- Karaivazoglou, N.A.; Papakosta, D.K.; Divanidis, S. Effect of Chloride in Irrigation Water and Form of Nitrogen Fertilizer on Virginia (Flue-Cured) Tobacco. Field Crops Res. 2005, 92, 61–74. [Google Scholar] [CrossRef]
- Pedrero, F.; Alarcón, J.J. Effects of Treated Wastewater Irrigation on Lemon Trees. Desalination 2009, 246, 631–639. [Google Scholar] [CrossRef]
- Wang, J.; Wang, G.; Wanyan, H. Treated Wastewater Irrigation Effect on Soil, Crop and Environment: Wastewater Recycling in the Loess Area of China. J. Environ. Sci. 2007, 19, 1093–1099. [Google Scholar] [CrossRef]
- Shahalam, A.; Zahra, B.M.A.; Jaradat, A. Wastewater Irrigation Effect on Soil, Crop and Environment: A Pilot Scale Study at Irbid, Jordan. Water Air Soil Pollut. 1998, 106, 425–445. [Google Scholar] [CrossRef]
- Kalavrouziotis, I.K.; Kokkinos, P.; Oron, G.; Fatone, F.; Bolzonella, D.; Vatyliotou, M.; Fatta-Kassinos, D.; Koukoulakis, P.H.; Varnavas, S.P. Current Status in Wastewater Treatment, Reuse and Research in Some Mediterranean Countries. Desalinat. Water Treat. 2015, 53, 2015–2030. [Google Scholar] [CrossRef]
- Pedrero, F.; Kalavrouziotis, I.; Alarcón, J.J.; Koukoulakis, P.; Asano, T. Use of Treated Municipal Wastewater in Irrigated Agriculture—Review of Some Practices in Spain and Greece. Agric. Water Manag. 2010, 97, 1233–1241. [Google Scholar] [CrossRef]
- Zammit, I.; Marano, R.B.; Vaiano, V.; Cytryn, E.; Rizzo, L. Changes in Antibiotic Resistance Gene Levels in Soil after Irrigation with Treated Wastewater: A Comparison between Heterogeneous Photocatalysis and Chlorination. Environ. Sci. Technol. 2020, 54, 7677–7686. [Google Scholar] [CrossRef] [PubMed]
- Geilfus, C.-M. Review on the Significance of Chlorine for Crop Yield and Quality. Plant Sci. 2018, 270, 114–122. [Google Scholar] [CrossRef]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World Map of the Köppen-Geiger Climate Classification Updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- APHA, AWWA, WEF. Standard Methods for the Examination of Water and Wastewater; American Public Health Association: Washington, DC, USA, 2012. [Google Scholar]
- Mingorance, M.D.; Barahona, E.; Fernández-Gálvez, J. Guidelines for Improving Organic Carbon Recovery by the Wet Oxidation Method. Chemosphere 2007, 68, 409–413. [Google Scholar] [CrossRef]
- Olsen, S.R.; Watanabe, F.S. A Method to Determine a Phosphorus Adsorption Maximum of Soils as Measured by the Langmuir Isotherm. Soil Sci. Soc. Am. J. 1957, 21, 144–149. [Google Scholar] [CrossRef]
- Johnson, G.D.; Sims, J.L.; Grove, J.H. Distribution of Potassium and Chloride in Two Soils as Influenced by Rates and Time of KCl Application and Soil PH. Tob. Sci. 1989, 33, 35–39. [Google Scholar]
- Mengel, K.; Kirkby, E.A. Principles of Plant Nutrition; International Potash Institute: Worblaufen-Bern, Switzerland, 1978. [Google Scholar]
- Gatta, G.; Libutti, A.; Beneduce, L.; Gagliardi, A.; Disciglio, G.; Lonigro, A.; Tarantino, E. Reuse of Treated Municipal Wastewater for Globe Artichoke Irrigation: Assessment of Effects on Morpho-Quantitative Parameters and Microbial Safety of Yield. Sci. Hortic. 2016, 213, 55–65. [Google Scholar] [CrossRef]
- Cole, P.J. Chloride Toxicity in Citrus. Irrig. Sci. 1985, 6, 63–71. [Google Scholar] [CrossRef]
- Wu, L.; Chen, J.; Lin, H.; Van Mantgem, P.; Ali Harivandi, M.; Harding, J.A. Effects of Regenerant Wastewater Irrigation on Growth and Ion Uptake of Landscape Plants. J. Environ. Hortic. 1995, 13, 92–96. [Google Scholar] [CrossRef]
- Reboll, V.; Cerezo, M.; Roig, A.; Flors, V.; Lapeña, L.; García-Agustín, P. Influence of Wastewater vs. Groundwater on Young Citrus Trees. J. Sci. Food Agric. 2000, 80, 1441–1446. [Google Scholar] [CrossRef]
- Walker, R.R.; Torokfalvy, E.; Downton, W.J.S. Photosynthetic Responses of the Citrus Varieties Rangpur Lime and Etrog Citron to Salt Treatment. Funct. Plant Biol. 1982, 9, 783–790. [Google Scholar] [CrossRef]
- Segal, E.; Dag, A.; Ben-Gal, A.; Zipori, I.; Erel, R.; Suryano, S.; Yermiyahu, U. Olive Orchard Irrigation with Reclaimed Wastewater: Agronomic and Environmental Considerations. Agric. Ecosyst. Environ. 2011, 140, 454–461. [Google Scholar] [CrossRef]
- Marschner, H. Mineral Nutrition of Higher Plants, 2nd ed.; Academic Press: New York, NY, USA, 1995; pp. 15–22. [Google Scholar]
- Christou, A.; Maratheftis, G.; Eliadou, E.; Michael, C.; Hapeshi, E.; Fatta-Kassinos, D. Impact Assessment of the Reuse of Two Discrete Treated Wastewaters for the Irrigation of Tomato Crop on the Soil Geochemical Properties, Fruit Safety and Crop Productivity. Agric. Ecosyst. Environ. 2014, 192, 105–114. [Google Scholar] [CrossRef]
Parameters | Wastewater Type | |
---|---|---|
Before Chlorination | After Chlorination | |
Sampling date: 14 July 2022 | ||
COD (mg/L) | 42.6 | 43.6 |
Phosphorous (mg/L) | 2.37 | 1.58 |
Total nitrogen (mg/L) | 14.8 | 15.2 |
Chlorine (mg/L) | - | 0.02 |
Sampling date: 28 July 2022 | ||
COD (mg/L) | 45.7 | 46.5 |
Phosphorous (mg/L) | 1.05 | 2.18 |
Total nitrogen (mg/L) | 14.8 | 11.2 |
Chlorine (mg/L) | - | 0.03 |
Sampling date: 14 September 2022 | ||
COD (mg/L) | 44.6 | 46.1 |
Phosphorous (mg/L) | 2.02 | 1.98 |
Total nitrogen (mg/L) | 20.5 | 22.6 |
Chlorine (mg/L) | - | 0.02 |
Factor | Variable | Sampling Time (Days) | Degrees of Freedom | Sum of Squares | Mean Squares | F | Pr > F |
---|---|---|---|---|---|---|---|
Tomato | |||||||
Treatment | Fresh weight (plant) | 60 | 2 | 13.942 | 6.971 | 0.557 | 0.600 |
Fresh weight (stem) | 60 | 98.353 | 49.176 | 4.611 | 0.061 | ||
Fresh weight (leaves) | 60 | 77.428 | 38.714 | 4.267 | 0.070 | ||
Dry weight (plant) | 60 | 0.295 | 0.147 | 0.087 | 0.918 | ||
Dry weight (stem) | 60 | 0.096 | 0.048 | 0.116 | 0.893 | ||
Dry weight (leaves) | 60 | 0.106 | 0.053 | 0.112 | 0.896 | ||
RGR plant height | 60 | 0.000 | 0.000 | 2.385 | 0.173 | ||
RGR number of leaves | 60 | 0.000 | 0.000 | 1.036 | 0.411 | ||
RGR stem diameter | 60 | 0.000 | 0.000 | 6.020 | 0.037 | ||
Net photosynthesis | 0 | 50.180 | 25.090 | 5.868 | 0.039 | ||
Net photosynthesis | 6 | 23.619 | 11.809 | 1.346 | 0.329 | ||
Net photosynthesis | 17 | 18.705 | 9.352 | 0.743 | 0.515 | ||
Stomatal conductance | 0 | 0.000 | 0.000 | 4.957 | 0.044 | ||
Stomatal conductance | 6 | 0.000 | 0.000 | 1.754 | 0.251 | ||
Stomatal conductance | 17 | 0.000 | 0.000 | 0.054 | 0.948 | ||
Transpiration rate | 0 | 0.215 | 0.108 | 5.029 | 0.042 | ||
Transpiration rate | 6 | 0.230 | 0.115 | 1.276 | 0.345 | ||
Transpiration rate | 17 | 0.009 | 0.005 | 0.064 | 0.939 | ||
Intrinsic WUE | 0 | 20,727.186 | 10,363.593 | 7.407 | 0.024 | ||
Intrinsic WUE | 6 | 2520.163 | 1260.082 | 0.655 | 0.553 | ||
Intrinsic WUE | 17 | 14,207.267 | 7103.633 | 6.304 | 0.034 | ||
Fv/Fm | 0 | 0.001 | 0.000 | 0.128 | 0.882 | ||
Fv/Fm | 6 | 0.004 | 0.002 | 0.213 | 0.814 | ||
Fv/Fm | 17 | 0.009 | 0.005 | 0.632 | 0.564 | ||
Cabbage | |||||||
Treatment | Plant weight (fresh) | 60 | 2 | 276.781 | 138.391 | 2.667 | 0.148 |
Plant weight (dry) | 60 | 5.722 | 2.861 | 2.330 | 0.178 | ||
RGR plant height | 60 | 0.000 | 0.000 | 0.452 | 0.657 | ||
RGR number of leaves | 60 | 0.000 | 0.000 | 2.216 | 0.190 | ||
Net photosynthesis | 0 | 27.334 | 13.667 | 0.330 | 0.731 | ||
Net photosynthesis | 18 | 230.149 | 115.074 | 8.561 | 0.018 | ||
Net photosynthesis | 26 | 13.556 | 6.778 | 0.489 | 0.636 | ||
Net photosynthesis | 42 | 66.072 | 33.036 | 2.159 | 0.197 | ||
Stomatal conductance | 0 | 0.001 | 0.001 | 0.599 | 0.579 | ||
Stomatal conductance | 18 | 0.005 | 0.003 | 5.569 | 0.043 | ||
Stomatal conductance | 26 | 0.000 | 0.000 | 0.196 | 0.827 | ||
Stomatal conductance | 42 | 0.002 | 0.001 | 5.317 | 0.047 | ||
Transpiration rate | 0 | 0.386 | 0.193 | 0.500 | 0.630 | ||
Transpiration rate | 18 | 3.000 | 1.500 | 6.098 | 0.036 | ||
Transpiration rate | 26 | 0.160 | 0.080 | 0.450 | 0.658 | ||
Transpiration rate | 42 | 1.145 | 0.572 | 5.305 | 0.047 | ||
Intrinsic WUE | 0 | 3502.908 | 1751.454 | 2.476 | 0.165 | ||
Intrinsic WUE | 18 | 2359.618 | 1179.809 | 0.437 | 0.665 | ||
Intrinsic WUE | 26 | 151.802 | 75.901 | 0.191 | 0.831 | ||
Intrinsic WUE | 42 | 19,237.228 | 9618.614 | 12.116 | 0.008 | ||
Fv/Fm | 0 | 0.053 | 0.027 | 4.181 | 0.073 | ||
Fv/Fm | 18 | 0.043 | 0.021 | 2.521 | 0.160 | ||
Fv/Fm | 26 | 0.003 | 0.002 | 0.581 | 0.588 | ||
Fv/Fm | 42 | 0.006 | 0.003 | 5.792 | 0.040 | ||
Bergamot | |||||||
Treatment | New sprouts | 60 | 2 | 20.667 | 10.333 | 0.846 | 0.475 |
RGR sprout diameter | 60 | 0.000 | 0.000 | 5.719 | 0.041 | ||
RGR sprout length | 60 | 0.000 | 0.000 | 1.865 | 0.235 | ||
Net photosynthesis | 0 | 4.747 | 2.374 | 1.721 | 0.195 | ||
Net photosynthesis | 30 | 15.519 | 7.759 | 4.356 | 0.021 | ||
Stomatal conductance | 0 | 0.000 | 0.000 | 13.729 | <0.0001 | ||
Stomatal conductance | 30 | 0.000 | 0.000 | 15.546 | <0.0001 | ||
Transpiration rate | 0 | 0.187 | 0.094 | 12.067 | 0.000 | ||
Transpiration rate | 30 | 0.165 | 0.083 | 16.352 | <0.0001 | ||
Intrinsic WUE | 0 | 397,197.650 | 198,598.825 | 1657.266 | <0.0001 | ||
Intrinsic WUE | 30 | 224,959.271 | 112,479.635 | 28.285 | <0.0001 |
Variables | PS | SC | TR | WUE | RGR | TOC | P | TN | pH | EC |
---|---|---|---|---|---|---|---|---|---|---|
PS | 1 | 0.90 | 0.89 | −0.39 | 0.58 | −0.39 | −0.66 | 0.63 | 0.69 | 0.01 |
SC | 1 | 0.99 | −0.72 | 0.55 | −0.50 | −0.75 | 0.56 | 0.61 | 0.25 | |
TR | 1 | −0.73 | 0.54 | −0.50 | −0.76 | 0.56 | 0.61 | 0.26 | ||
WUE | 1 | −0.37 | 0.55 | 0.65 | −0.36 | −0.36 | −0.51 | |||
RGR | 1 | −0.59 | −0.64 | 0.62 | 0.41 | −0.01 | ||||
TOC | 1 | 0.78 | −0.54 | −0.28 | −0.25 | |||||
P | 1 | −0.68 | −0.54 | −0.31 | ||||||
TN | 1 | 0.45 | −0.04 | |||||||
pH | 1 | 0.26 | ||||||||
EC | 1 |
Variables | Principal Components (PCs) | |
---|---|---|
PC1 | PC2 | |
PS | 0.852 | −0.315 |
SC | 0.929 | 0.023 |
TR | 0.929 | 0.037 |
WUE | −0.728 | −0.506 |
RGR | 0.717 | −0.327 |
TOC | −0.704 | −0.105 |
P | −0.899 | −0.061 |
TN | 0.731 | −0.377 |
pH | 0.689 | −0.045 |
EC | 0.297 | 0.866 |
Author(s) | Year | Geographical Area | Climate | Municipal Wastewater Treatment Type | Irrigated Crop | Soil Type | Monitoring Period | Effects on Plants * | Effects on Soils * |
---|---|---|---|---|---|---|---|---|---|
[47] | 1985 | Southern Australia | Semi-arid | Chlorination | Orange | Sand | 5 years | Yield decrease | No effects on soil salinity |
[48] | 1995 | California (USA) | Semi-arid | Chlorination | Hydrangea, Nandina, Lace fern, Rhaphiolepis, hedge rose, Pittosporum, jasmine, Japanese boxwood and azalea | Fine textured | 6 months | Significant differences in chloride tolerance among the species | Not evaluated |
[49] | 2000 | Southern Spain | Semi-arid | Not specified | Orange | Clay | 3 years | Same growth and fruit quality, no toxicity | Not evaluated |
[32] | 2005 | Northern Greece | Semi-arid | Chlorination | Tobacco | Clay loam | 3 months | Lower plant height and number of leaves, symptoms of toxicity | Not evaluated |
[35] | 2007 | Jordan | Semi-arid | Rotating biological contactors | Alfalfa, radish and tomato | Silty loam | 3 months | Non-significant | Slight changes in porosity and salinity |
[34] | 2007 | North-western China | Semi-arid | High load biological adsorption and chlorination | Celery, wheat, maize, millet, rapeseed, yellow beans and apples | Not specified | 14 months | Higher production in weight, no effect on quality | Non-significant |
[33] | 2009 | Southern Spain | Semi-arid | Secondary and tertiary treatments | Lemon | Silty loam | 12 months | Lower vegetative growth and leaf gas exchange, no toxicity | Higher salinity and B accumulation |
[7] | 2012 | Southern Spain | Semi-arid | Secondary | Citrus | Clay loam | 2 years | Lower growth, no toxicity | Higher salinity, Cl and B concentrations |
[39] | 2014 | Cyprus | Semi-arid | Secondary and tertiary treatments | Tomato | Sandy clay loam | 150 days | No effect on crop yield | Noticeable variation in EC, no effect on pH and organic matter |
[46] | 2016 | Southern Italy | Semi-arid | Secondary and tertiary | Artichokes | Loam | 2 years | Higher yield | No effects on microbial population |
[30] | 2017 | Southern Italy | Semi-arid | Chlorination | Lettuce | Sandy | 2 months | Chlorosis, leaf necrosis and reduced crop yield | Accumulation of extractable organo-halogenated compounds (EOX) |
This study | 2023 | Southern Italy | Semi-arid | Secondary treatment | Tomato, cabbage, bergamot tree | Loam | 2 months | No effects on crop growth, morphology and physiology | Non-significant effects on pH, OC, N and P, decrease in EC for irrigation with chlorinated wastewater |
Chlorination |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zema, D.A.; Carrà, B.G.; Sorgonà, A.; Zumbo, A.; Lucas-Borja, M.E.; Miralles, I.; Ortega, R.; Soria, R.; Zimbone, S.M.; Calabrò, P.S. Sustainable Use of Treated Municipal Wastewater after Chlorination: Short-Term Effects on Crops and Soils. Sustainability 2023, 15, 11801. https://doi.org/10.3390/su151511801
Zema DA, Carrà BG, Sorgonà A, Zumbo A, Lucas-Borja ME, Miralles I, Ortega R, Soria R, Zimbone SM, Calabrò PS. Sustainable Use of Treated Municipal Wastewater after Chlorination: Short-Term Effects on Crops and Soils. Sustainability. 2023; 15(15):11801. https://doi.org/10.3390/su151511801
Chicago/Turabian StyleZema, Demetrio Antonio, Bruno Gianmarco Carrà, Agostino Sorgonà, Antonino Zumbo, Manuel Esteban Lucas-Borja, Isabel Miralles, Raúl Ortega, Rocío Soria, Santo Marcello Zimbone, and Paolo Salvatore Calabrò. 2023. "Sustainable Use of Treated Municipal Wastewater after Chlorination: Short-Term Effects on Crops and Soils" Sustainability 15, no. 15: 11801. https://doi.org/10.3390/su151511801
APA StyleZema, D. A., Carrà, B. G., Sorgonà, A., Zumbo, A., Lucas-Borja, M. E., Miralles, I., Ortega, R., Soria, R., Zimbone, S. M., & Calabrò, P. S. (2023). Sustainable Use of Treated Municipal Wastewater after Chlorination: Short-Term Effects on Crops and Soils. Sustainability, 15(15), 11801. https://doi.org/10.3390/su151511801