Assessment of Outdoor Thermal Comfort in Urban Public Space, during the Hottest Period in Annaba City, Algeria
Abstract
:1. Introduction
2. Materials and Methods
2.1. Case Study
2.2. Field Measurements
2.3. Numerical Simulations
2.4. Questionnaire Survey
3. Results
3.1. Field Measurements and Numerical Simulation
3.2. Comparison between the Two Plazas
3.3. Evaluation of the Outdoor Thermal Comfort Using Questionnaire Survey
4. Discussion
4.1. Comparison between the In Situ Measurements Data, the Simulation Data and the Meteorological Station
4.2. Comparison between the Two Studied Plazas, with and without Vegetation
4.2.1. Air Temperature
4.2.2. Relative Humidity
4.2.3. Mean Radiant Temperature
4.2.4. The Physiological Equivalent Temperature (PET)
4.2.5. Standard Effective Temperature (SET)
4.2.6. UTCI
4.3. Questionnaire
5. Conclusions
- -
- The ENVI-met software is a reliable tool for studying the urban microclimate. The results of the numerical simulations have proven to be close to the data measured in situ, knowing that the input data concerning the meteorological boundary conditions used in this study is simple forcing. The coefficient of determination R2 was calculated for the air temperature and the relative humidity in the two plazas, to find the precision between the measured data and the simulated data. Results showed that the ENVI-met model provided values close to the measured data concerning the air temperature with the coefficient of determination R2 = 0.87 in the El Bouni plazas, and R2 = 0.70 in the Revolution plazas. This accuracy is less concerning humidity (R2 = 0.82 in the El Bouni plazas and R2 = 0.63 in the Revolution plazas). The proximity to the sea could explain this difference recorded between the measured and simulated humidity values. In addition, some more information about the surrounding meteorology could further improve the results of the simulations and best results can be expected by using the full forcing option.
- -
- The less dense urban fabric (the El Bouni plazas) has higher air temperatures and mean radiant temperatures compared to the denser urban fabric (the Revolution plazas). The temperature difference between the two plazas can vary by 0.4 °C for Tair and 1.1 °C for Tmrt. Thus, the density contributes to the improvement of thermal comfort during the day and especially between 4:00 p.m. and 6:00 p.m.
- -
- The results of the questionnaire survey allowed us to calculate the neutral PET for each studied plaza, and in vegetated and non-vegetated areas. The neutral PET in the Revolution plazas is 22.3 °C in the vegetated area and 24.16 °C in the non-vegetated area. Neutral PET in the El Bouni plazas is 25.11 °C in the vegetated space and 25.95 °C in the non-vegetated space. It can therefore be seen that the urban morphology and the vegetation influenced the neutral values of the comfort indexes (Table 4).
- -
- The vegetation participates in the reduction of the air temperature and the mean radiant temperature. This decrease can reach 1 °C in the Tair and 20 °C in the Tmrt. The improvement of thermal comfort through vegetation can also indirectly affect non-vegetated areas. The improvement of thermal comfort by vegetation decreases at the end of the day. Thus, a comparative study between the impact of vegetation during the daytime and nighttime could be an interesting study subject for further future studies.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lopes, H.S.; Remoal do, P.C.; Ribeiro, V.; Martín-Vide, J. A Comprehensive Methodology for Assessing Outdoor Thermal Comfort in Touristic City of Porto (Portugal). Urban Clim. 2022, 45, 101264. [Google Scholar] [CrossRef]
- Wilson, E.; Nicol, F.; Nanayakkara, L.; Ueberjahn-Tritta, A. Public Urban Open Space and Human Thermal Comfort: The Implications of Alternative Climate Change and Socio-Economic Scenarios. J. Environ. Policy Plan. 2008, 10, 31–45. [Google Scholar] [CrossRef]
- Rupp, R.F.; Vásquez, N.G.; Lamberts, R. A Review of Human Thermal Comfort in the Built Environment. Energy Build. 2015, 105, 178–205. [Google Scholar] [CrossRef]
- Elnabawi, M.H.; Hamza, N. Behavioural Perspectives of Outdoor Thermal Comfort in Urban Areas: A Critical Review. Atmosphere 2019, 11, 51. [Google Scholar] [CrossRef] [Green Version]
- Oke, T.R. Boundary Layer Climates; Methuen [usw.]: London, UK, 1978; ISBN 978-0-416-70530-0. [Google Scholar]
- Martin-Vide, J.; Moreno-Garcia, M.C. Probability Values for the Intensity of Barcelona’s Urban Heat Island (Spain). Atmos. Res. 2020, 240, 104877. [Google Scholar] [CrossRef]
- Oke, T.R. The Distinction between Canopy and Boundary-layer Urban Heat Islands. Atmosphere 1976, 14, 268–277. [Google Scholar] [CrossRef] [Green Version]
- Oke, T.R.; Mills, G.; Christen, A.; Voogt, J.A. Urban Climates, 1st ed.; Cambridge University Press: Cambridge, UK, 2017; ISBN 978-1-139-01647-6. [Google Scholar]
- Ahmed, K.S. Comfort in Urban Spaces: Defining the Boundaries of Outdoor Thermal Comfort for the Tropical Urban Environments. Energy Build. 2003, 35, 103–110. [Google Scholar] [CrossRef]
- Ali-Toudert, F.; Mayer, H. Numerical Study on the Effects of Aspect Ratio and Orientation of an Urban Street Canyon on Outdoor Thermal Comfort in Hot and Dry Climate. Build. Environ. 2006, 41, 94–108. [Google Scholar] [CrossRef]
- Amindeldar, S.; Heidari, S.; Khalili, M. The Effect of Personal and Microclimatic Variables on Outdoor Thermal Comfort: A Field Study in Tehran in Cold Season. Sustain. Cities Soc. 2017, 32, 153–159. [Google Scholar] [CrossRef]
- Chen, L.; Ng, E. Outdoor Thermal Comfort and Outdoor Activities: A Review of Research in the Past Decade. Cities 2012, 29, 118–125. [Google Scholar] [CrossRef]
- Höppe, P. Different Aspects of Assessing Indoor and Outdoor Thermal Comfort. Energy Build. 2002, 34, 661–665. [Google Scholar] [CrossRef]
- Tseliou, A.; Tsiros, I.X.; Lykoudis, S.; Nikolopoulou, M. An Evaluation of Three Biometeorological Indices for Human Thermal Comfort in Urban Outdoor Areas under Real Climatic Conditions. Build. Environ. 2010, 45, 1346–1352. [Google Scholar] [CrossRef]
- Nikolopoulou, M.; Baker, N.; Steemers, K. Thermal Comfort in Outdoor Urban Spaces: Understanding the Human Parameter. Sol. Energy 2001, 70, 227–235. [Google Scholar] [CrossRef]
- Mayer, H.; Höppe, P. Thermal Comfort of Man in Different Urban Environments. Theor. Appl. Climatol. 1987, 38, 43–49. [Google Scholar] [CrossRef]
- Svensson, M.K.; Thorsson, S.; Lindqvist, S. A Geographical Information System Model for Creating Bioclimatic Maps–Examples from a High, Mid-Latitude City. Int. J. Biometeorol. 2003, 47, 102–112. [Google Scholar] [CrossRef] [PubMed]
- Thorsson, S.; Honjo, T.; Lindberg, F.; Eliasson, I.; Lim, E.-M. Thermal Comfort and Outdoor Activity in Japanese Urban Public Places. Environ. Behav. 2007, 39, 660–684. [Google Scholar] [CrossRef]
- Lynch, K. The Image of the City; Publication of the Joint Center for Urban studies; M.I.T. Press: Cambridge, UK, 2008; ISBN 978-0-262-12004-3. [Google Scholar]
- Lai, D.; Zhou, C.; Huang, J.; Jiang, Y.; Long, Z.; Chen, Q. Outdoor Space Quality: A Field Study in an Urban Residential Community in Central China. Energy Build. 2014, 68, 713–720. [Google Scholar] [CrossRef]
- Nikolopoulou, M.; Lykoudis, S. Thermal Comfort in Outdoor Urban Spaces: Analysis across Different European Countries. Build. Environ. 2006, 41, 1455–1470. [Google Scholar] [CrossRef] [Green Version]
- Kumar, P.; Sharma, A. Study on Importance, Procedure, and Scope of Outdoor Thermal Comfort–A Review. Sustain. Cities Soc. 2020, 61, 102297. [Google Scholar] [CrossRef]
- Lai, D.; Lian, Z.; Liu, W.; Guo, C.; Liu, W.; Liu, K.; Chen, Q. A Comprehensive Review of Thermal Comfort Studies in Urban Open Spaces. Sci. Total Environ. 2020, 742, 140092. [Google Scholar] [CrossRef]
- Givoni, B.; Noguchi, M.; Saaroni, H.; Pochter, O.; Yaacov, Y.; Feller, N.; Becker, S. Outdoor Comfort Research Issues. Energy Build. 2003, 35, 77–86. [Google Scholar] [CrossRef]
- Nikolopoulou, M.; Steemers, K. Thermal Comfort and Psychological Adaptation as a Guide for Designing Urban Spaces. Energy Build. 2003, 35, 95–101. [Google Scholar] [CrossRef]
- Sadeghi, A.R.; Bahadori, Y. Urban Sustainability and Climate Issues: The Effect of Physical Parameters of Streetscape on the Thermal Comfort in Urban Public Spaces; Case Study: Karimkhan-e-Zand Street, Shiraz, Iran. Sustainability 2021, 13, 10886. [Google Scholar] [CrossRef]
- Djongyang, N.; Tchinda, R.; Njomo, D. Thermal Comfort: A Review Paper. Renew. Sustain. Energy Rev. 2010, 14, 2626–2640. [Google Scholar] [CrossRef]
- Hensen, J.L.M. On the Thermal Interaction of Building Structure and Heating and Ventilating System. Ph.D. Thesis, Technische Universiteit Eindhoven, Eindhoven, The Netherlands, 1991. [Google Scholar]
- ANSI/ASHRAE Standard 55-2017; Thermal Environmental Conditions for Human Occupancy. ASHRAE: Peachtree Corners, GA, USA, 2017.
- Pantavou, K.; Santamouris, M.; Asimakopoulos, D.; Theoharatos, G. Empirical Calibration of Thermal Indices in an Urban Outdoor Mediterranean Environment. Build. Environ. 2014, 80, 283–292. [Google Scholar] [CrossRef]
- Potchter, O.; Cohen, P.; Lin, T.-P.; Matzarakis, A. Outdoor Human Thermal Perception in Various Climates: A Comprehensive Review of Approaches, Methods and Quantification. Sci. Total Environ. 2018, 631–632, 390–406. [Google Scholar] [CrossRef]
- Blazejczyk, K.; Epstein, Y.; Jendritzky, G.; Staiger, H.; Tinz, B. Comparison of UTCI to Selected Thermal Indices. Int. J. Biometeorol. 2012, 56, 515–535. [Google Scholar] [CrossRef] [Green Version]
- Li, K.; Liu, X.; Bao, Y. Evaluating the Performance of Different Thermal Indices on Quantifying Outdoor Thermal Sensation in Humid Subtropical Residential Areas of China. Front. Environ. Sci. 2022, 10, 1071668. [Google Scholar] [CrossRef]
- Ballinas, M.; Morales-Santiago, S.I.; Barradas, V.L.; Lira, A.; Oliva-Salinas, G. Is PET an Adequate Index to Determine Human Thermal Comfort in Mexico City? Sustainability 2022, 14, 12539. [Google Scholar] [CrossRef]
- Pantavou, K.; Lykoudis, S.; Michael, N.; Stylianou, E.; Christou, R.; Giallouros, G.; Kouis, P.; Tymvios, F.; Nicolaides, K.; Cartalis, C.; et al. Thermal Sensation and Indices in the Urban Outdoor Hot Mediterranean Environment of Cyprus. Theor. Appl. Climatol. 2020, 140, 1315–1329. [Google Scholar] [CrossRef]
- Krüger, E.; Rossi, F.; Drach, P. Calibration of the Physiological Equivalent Temperature Index for Three Different Climatic Regions. Int. J. Biometeorol. 2017, 61, 1323–1336. [Google Scholar] [CrossRef] [PubMed]
- Ali-Toudert, F.; Djenane, M.; Bensalem, R.; Mayer, H. Outdoor Thermal Comfort in the Old Desert City of Beni-Isguen, Algeria. Clim. Res. 2005, 28, 243–256. [Google Scholar] [CrossRef] [Green Version]
- Shashua-Bar, L.; Tsiros, I.X.; Hoffman, M. Passive Cooling Design Options to Ameliorate Thermal Comfort in Urban Streets of a Mediterranean Climate (Athens) under Hot Summer Conditions. Build. Environ. 2012, 57, 110–119. [Google Scholar] [CrossRef]
- Salata, F.; Golasi, I.; de Lieto Vollaro, R.; de Lieto Vollaro, A. Outdoor Thermal Comfort in the Mediterranean Area. A Transversal Study in Rome, Italy. Build. Environ. 2016, 96, 46–61. [Google Scholar] [CrossRef]
- Chatzidimitriou, A.; Yannas, S. Street Canyon Design and Improvement Potential for Urban Open Spaces; the Influence of Canyon Aspect Ratio and Orientation on Microclimate and Outdoor Comfort. Sustain. Cities Soc. 2017, 33, 85–101. [Google Scholar] [CrossRef]
- Lai, D.; Liu, W.; Gan, T.; Liu, K.; Chen, Q. A Review of Mitigating Strategies to Improve the Thermal Environment and Thermal Comfort in Urban Outdoor Spaces. Sci. Total Environ. 2019, 661, 337–353. [Google Scholar] [CrossRef] [PubMed]
- Grifoni, R.C.; Passerini, G.; Pierantozzi, M. Assessment of Outdoor Thermal Comfort and Its Relation to Urban Geometry; WIT Press: Kos, Greece, 2013; pp. 3–14. [Google Scholar]
- Voogt, J.A.; Oke, T.R. Thermal Remote Sensing of Urban Climates. Remote Sens. Environ. 2003, 86, 370–384. [Google Scholar] [CrossRef]
- Abd Elraouf, R.; Elmokadem, A.; Megahed, N.; Abo Eleinen, O.; Eltarabily, S. The Impact of Urban Geometry on Outdoor Thermal Comfort in a Hot-Humid Climate. Build. Environ. 2022, 225, 109632. [Google Scholar] [CrossRef]
- Mahmoud, H.; Ghanem, H. Urban Geometry Mitigation Guidelines to Improve Outdoor Thermal Performance in Egyptian Hot Arid New Cities. JES J. Eng. Sci. 2019, 47, 172–193. [Google Scholar] [CrossRef]
- Bröde, P.; Krüger, E.; Fiala, D. UTCI: Validation and Practical Application to the Assessment of Urban Outdoor Thermal Comfort. Geogr. Pol. 2013, 86, 11–20. [Google Scholar] [CrossRef]
- Lee, H.; Mayer, H.; Kuttler, W. Impact of the Spacing between Tree Crowns on the Mitigation of Daytime Heat Stress for Pedestrians inside E-W Urban Street Canyons under Central European Conditions. Urban For. Urban Green. 2020, 48, 126558. [Google Scholar] [CrossRef]
- Silva, T.J.V.; Hirashima, S.Q.S. Predicting Urban Thermal Comfort from Calibrated UTCI Assessment Scale-A Case Study in Belo Horizonte City, Southeastern Brazil. Urban Clim. 2021, 36, 100652. [Google Scholar] [CrossRef]
- Boutellis, T.; Bouchair, A. Investigation expérimentale sur l’évaluation du confort thermique dans les espaces publics ouverts: Cas de Jijel, Algérie. J. Mater. Eng. Struct. 2022, 9, 371–387. [Google Scholar]
- Mouada, N. Etude de l’impact de La Morphologie Urbaine Sur Le Confort Thermique et La Marchabilité Dans Les Espaces Publics Extérieurs Cas de La Ville de Sidi Okba. Ph.D. Thesis, Université Mohamed Khider, Biskra, Algeria, 2019. [Google Scholar]
The Public Space | Aspect Ratio H/W | Sky View Factor | Surface Density of the Building |
---|---|---|---|
Plazas of Revolution | 0.28 | 0.43 | 0.5 |
Plazas of El Bouni | 0.15 | 0.49 | 0.32 |
Input File | Settings | El Bouni Plazas | Revolution Plazas | ||||
---|---|---|---|---|---|---|---|
Current State | Scenarios | Curent State | Scenarios | ||||
ENVI-guide | simulation date | 29 July 2019 and 2 August 2019 | 1 August 2019 | 28 July 2019 and 1 August 2019 | 1 August 2019 | ||
Simulation time | 6:00–18:00 | ||||||
Meteorological boundary conditions | Simple forcing by integrating data from the weather station of the simulation date | ||||||
Spaces | Grid | Dimension: (117 × 227 × 40) m Resolution: (1 × 1 × 2) m | Dimension: (108 × 319 × 40) m Resolution: (1 × 1 × 2) m | ||||
Paving material | Road: Asphalt (0100 ST), Curb: Pavement concrete used/dirty (0100 PP), Ground: loamy soil (000000) | ||||||
Build material | Wall: default brick aerated (0100B1) Roof: concrete wall (0100C1) | Wall: brick reinforced (0100B3) Roof: roofing terracotta (0100R2) | Wall: default brick aerated (0100B1) Roof: concrete wall (0100C1) | Wall: (0100B1) Roof: concrete wall (0100C1) | |||
Vegetation | Ficus, deciduous tree and palm | with végétation: Ficus, deciduous tree and palm | without végétation | Ficus and palm | with végétation (Figus, and Palm) | without végétation |
Part 01 | Part 02 |
---|---|
Sex | At the moment, how do you feel about the thermal environment in this place? |
Age | |
Residence | Hot |
How long have you been in this place? | Warm |
Less than 10 min | Slightly warm |
A half hour | Comfortable, neutral |
More than an hour | Slightly cool |
Your location before coming here (last hour) | Cool |
In the street | Cold |
In a building | Do you feel a thermal variation from your previous feeling? |
At home | cooler |
Own car | No variation |
Taxi | Hotter |
Bus | How are you feeling overall? |
Other (Please specify) | Very uncomfortable |
What have you consumed recently? | Uncomfortable |
Ice cream | Comfortable |
A cold drink | Very comfortable |
A cigarette | Do you feel the thermal environment comfortable or not? |
A hot drink | Yes |
Cold meal | No |
Hot meal | In your opinion, at what temperature we feel Comfortable in summer |
Other (Please specify) |
Neutral PET | Neutral SET | Neutral UTCI | Neutral Tair | Neutral Tmrt | |
---|---|---|---|---|---|
Receptor 2 The Revolution | 22.3 °C | 28.58 °C | 25.80 °C | 26.87 °C | 20.93 °C |
Receptor 3 The Revolution | 24.16 °C | 29.33 °C | 27.01 °C | 27.51 °C | 23.76 °C |
Receptor 2 El Bouni | 25.11 °C | 29.72 °C | 27.63 °C | 27.84 °C | 25.44 °C |
Receptor 3 El Bouni | 25.95 °C | 30.06 °C | 28.18 °C | 28.13 °C | 26.79 °C |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boussaidi, K.; Djaghrouri, D.; Benabbas, M.; Altan, H. Assessment of Outdoor Thermal Comfort in Urban Public Space, during the Hottest Period in Annaba City, Algeria. Sustainability 2023, 15, 11763. https://doi.org/10.3390/su151511763
Boussaidi K, Djaghrouri D, Benabbas M, Altan H. Assessment of Outdoor Thermal Comfort in Urban Public Space, during the Hottest Period in Annaba City, Algeria. Sustainability. 2023; 15(15):11763. https://doi.org/10.3390/su151511763
Chicago/Turabian StyleBoussaidi, Karima, Djamila Djaghrouri, Moussadek Benabbas, and Hasim Altan. 2023. "Assessment of Outdoor Thermal Comfort in Urban Public Space, during the Hottest Period in Annaba City, Algeria" Sustainability 15, no. 15: 11763. https://doi.org/10.3390/su151511763
APA StyleBoussaidi, K., Djaghrouri, D., Benabbas, M., & Altan, H. (2023). Assessment of Outdoor Thermal Comfort in Urban Public Space, during the Hottest Period in Annaba City, Algeria. Sustainability, 15(15), 11763. https://doi.org/10.3390/su151511763