Saving Energy in Biological Wastewater Treatment by Using Extremely Low-Frequency Electric Field—Pilot-Scale Study
Abstract
:1. Introduction
2. Materials and Methods
- -
- Dissolved oxygen—DO [mg/L] with a portable meter HQ40d, Intellical™ LDO101 Probe (Hach-Langhe);
- -
- Chemical oxygen demand—COD [mg/L], in accordance with [74] ISO 6060-1989 (Dichromate method), with an LCK 114/Cuvette Test (Hach-Langhe);
- -
- -
- Phosphate (ortho/total)—Pt [mg/L]—in accordance with ISO 6878-1-1986 [78], (Phosphormolybdenum Blue method), with an LCK 348, 350/Cuvette Test (Hach-Langhe).
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Paltineanu, C.; Dumitru, S.I.; Lăcătușu, A.R. Assessing Land Susceptibility for Possible Groundwater Pollution due to Leaching—A Case Study on Romania. Carpathian J. Earth Environ. Sci. 2022, 17, 49–57. [Google Scholar] [CrossRef]
- Olichwer, T. Long-term variability of water resources in mountainous areas: Case study-Kłodzko region (SW Poland). Carpathian J. Earth Environ. Sci. 2019, 14, 29–38. [Google Scholar] [CrossRef]
- Burcă, S.; Indolean, C. The water quality of some shallow wells from Harghita county (Sâdominic commune), Romania. Stud. UBB Chem. 2021, LXVI, 115–125. [Google Scholar] [CrossRef]
- Mbaka, P.K.; Mwangi, J.K.; Kiptum, C.K. Assessment of water quality in selected shallow wells of Keiyo Highlands, Kenya. Afr. J. Sci. Technol. Innov. Dev. 2017, 9, 329–338. [Google Scholar] [CrossRef]
- Zubair, S.; Faridi, T.A.; Rana, M.S.; Raza, S.A.; Arshad, M. Physicochemical Analysis of Drinking Water for the Detection of Arsenic from Manga Mandi Punjab, Pakistan. Carpathian J. Earth Environ. Sci. 2022, 17, 267–274. [Google Scholar] [CrossRef]
- Popescu, F.; Trumic, M.; Cioabla, A.E.; Vujic, B.; Stoica, V.; Trumic, M.; Opris, C.; Bogdanovic, G.; Trif-Tordai, G. Analysis of Surface Water Quality and Sediments Content on Danube Basin in Djerdap-Iron Gate Protected Areas. Water 2022, 14, 2991. [Google Scholar] [CrossRef]
- Angelidaki, I.; Ahring, B.K. Thermophilic anaerobic digestion of livestock waste: The effect of ammonia. Appl. Microbiol. Biotechnol. 1993, 38, 560–564. [Google Scholar] [CrossRef]
- Muntenita, C.; Dragomir Balanica, C.M.; Simionescu, A.G.; Stanciu, S.; Popa, C.L. The efficiency of biological total phosphorus removal process. Rev. Chim. 2019, 70, 1920–1923. [Google Scholar] [CrossRef]
- Rangabhashiyam, S.; dos Santos Lins, P.V.; de Magalhães Oliveira, L.M.T.; Sepulveda, P.; Ighalo, J.O.; Rajapaksha, A.U.; Meili, L. Sewage sludge-derived biochar for the adsorptive removal of wastewater pollutants: A critical review. Environ. Pollut. 2022, 293, 118581. [Google Scholar] [CrossRef]
- Sun, J.; Dai, X.; Wang, Q.; Mark, C.M.; van Loosdrecht, M.C.; Ni, B.J. Microplastics in wastewater treatment plants: Detection, occurrence and removal. Water Res. 2019, 152, 21–37. [Google Scholar] [CrossRef]
- Sierra, I.; Chialanza, M.R.; Faccio, R.; Carrizo, D.; Fornaro, L.; Pérez-Parada, A. Identification of microplastics in wastewater samples by means of polarized light optical microscopy. Environ Sci Pollut Res. 2020, 27, 7409–7419. [Google Scholar] [CrossRef] [PubMed]
- Caramitu, A.R.; Butoi, N.; Rus, T.; Luchian, A.M.; Mitrea, S. The resistance to the action of molds of some painting materials aged by thermal cycling and exposed to an electrical field of 50 Hz. Mater. Plast. 2017, 54, 331–337. [Google Scholar] [CrossRef]
- Bors, A.M.; Butoi, N.; Caramitu, A.R.; Marinescu, V.; Lingvay, I. The thermooxidation and resistance to moulds action of some polyethylene sorts used at anticorrosive insulation of the underground pipelines. Mater. Plast. 2017, 54, 447–452. [Google Scholar] [CrossRef]
- Cooman, K.; Gajardo, M.; Nieto, J.; Bornhardt, C.; Vidal, G. Tannery wastewater characterization and toxicity effects on Daphnia spp. Environ. Toxicol. 2003, 18, 45–51. [Google Scholar] [CrossRef]
- Haydar, S.; Aziz, J.A. Characterization and treatability studies of tannery wastewater using chemically enhanced primary treatment (CEPT)—A case study of Saddiq leather works. J. Hazard. Mater. 2009, 163, 1076–1083. [Google Scholar] [CrossRef]
- Moldovan, A.; Török, A.I.; Cadar, O.; Roman, M.; Roman, C.; Micle, V. Assessment of toxic elements contamination in surface water and sediments in a mining affected area. Studia UBB Chem. 2021, LXVI, 189–196. [Google Scholar] [CrossRef]
- Watkinson, A.J.; Murby, E.J.; Costanzo, S.D. Removal of antibiotics in conventional and advanced wastewater treatment: Implications for environmental discharge and wastewater recycling. Water Res. 2007, 41, 4164–4176. [Google Scholar] [CrossRef]
- Zheng, W.; Wen, X.; Zhang, B.; Qiu, Y. Selective effect and elimination of antibiotics in membrane bioreactor of urban wastewater treatment plant. Sci. Total Environ. 2019, 646, 1293–1303. [Google Scholar] [CrossRef]
- Victoria-Salinas, R.E.; Martínez-Miranda, V.; Linares-Hernández, I.; Vázquez-Mejía, G.; Castañeda-Juárez, M.; Almazán-Sánchez, P.T. Pre-treatment of soft drink wastewater with a calcium-modified zeolite to improve electrooxidation of organic matter. J. Environ. Sci. Health Part A 2019, 54, 617–627. [Google Scholar] [CrossRef]
- Yapicioğlu, P.S. Energy cost estimation for a dairy wastewater treatment plant in terms of organic load. Acad. Perspect. Procedia 2019, 2, 859–864. [Google Scholar] [CrossRef] [Green Version]
- Akshaya, K.V.; Rajesh, R.D.; Puspendu, B. A review on chemical coagulation/flocculation technologies for removal of colour from textile wastewaters. J. Environ. Manag. 2012, 93, 154–168. [Google Scholar] [CrossRef]
- Bulc, T.G.; Ojstrsek, A. The use of constructed wetland for dye-rich textile wastewater treatment. J. Hazard. Mater. 2008, 155, 76–82. [Google Scholar] [CrossRef]
- Haroun, M.; Idris, A. Treatment of textile wastewater with an anaerobic fluidized bed reactor. Desalination 2009, 237, 357–366. [Google Scholar] [CrossRef]
- Frîncu, R.M.; Iulian, O. Impact of Bucharest wastewater on Dâmbovita River water quality (2010–2015). Carpathian J. Earth Environ. Sci. 2021, 16, 47–58. [Google Scholar] [CrossRef]
- Stevanović, Z.; Kovačevi, R.; Marković, R.; Gardić, V.; Vulpe, B.C.; Boros, B.; Menghiu, G. State of the surface waters in cross borderregion of eastern Serbia and Caras Severin county—Moldova Noua in Romania. Studia UBB Chem. 2021, LXVI, 309–328. [Google Scholar] [CrossRef]
- Nováková, J.; Švehláková, H.; Kučerová, R.; Matějová, T.; Andráš, P. The Behaviour of Phosphorus in an Old Parallel Channel Slaňáky in the Poodří (Czech Republic). Carpathian J. Earth Environ. Sci. 2022, 17, 199–205. [Google Scholar] [CrossRef]
- Frîncu, R.M. Long-Term Trends in Water Quality Indices in the Lower Danube and Tributaries in Romania (1996–2017). Int. J. Environ. Res. Public Health 2021, 18, 1665. [Google Scholar] [CrossRef]
- Ionescu, P.; Ivanov, A.A.; Radu, V.M.; Deak, G.; Diacu, E.; Marcu, E.; Anghel, A.M. Quality assessment of some freshwater resources located in Bucharest and surrounding areas II. Water quality assessment of Arges and Dambovita rivers. Rev. Chim. 2019, 70, 3638–3643. [Google Scholar] [CrossRef]
- Bacosa, H.P.; Ancla, S.M.B.; Arcadio, C.G.L.A.; Dalogdog, J.R.A.; Ellos, D.M.C.; Hayag, H.D.A.; Jarabe, J.G.P.; Karim, A.J.T.; Navarro, C.K.P.; Palma, M.P.I.; et al. From Surface Water to the Deep Sea: A Review on Factors Affecting the Biodegradation of Spilled Oil in Marine Environment. J. Mar. Sci. Eng. 2022, 10, 426. [Google Scholar] [CrossRef]
- Byrns, G. The fate of xenobiotic organic compounds in wastewater treatment plants. Water Res. 2001, 35, 2523–2533. [Google Scholar] [CrossRef]
- D’Andrea, M.F.; Letourneau, G.; Rousseau, A.N.; Brodeur, J.C. Sensitivity analysis of the pesticide in water calculator model for applications in the Pampa Region of Argentina. Sci. Total Environ. 2020, 698, 134232. [Google Scholar] [CrossRef] [PubMed]
- Kay, P.; Hiscoe, R.; Moberley, I.; Bajic, L.; McKenna, N. Wastewater treatment plants as a source of microplastics in river catchments. Environ. Sci. Pollut. Res. 2018, 25, 20264–20267. [Google Scholar] [CrossRef] [Green Version]
- Conley, K.; Clum, A.; Deepe, J.; Lane, H.; Beckingham, B. Wastewater treatment plants as a source of microplastics to an urban estuary: Removal efficiencies and loading per capita over one year. Water Research X 2019, 3, 100030. [Google Scholar] [CrossRef] [PubMed]
- Covaliu, C.I.; Stoian, O.; Matei, E.; Paraschiv, G.; Tanasa, E.; Catrina (Traistaru), G.A. Research on Copper Ions Removal from Wastewater Using Fe3O4 and Fe3O4- PVP Hybrid Nanomaterials. Mater. Plast. 2021, 58, 154–166. [Google Scholar] [CrossRef]
- Vaiopoulou, E.; Gikas, P. Effects of chromium on activated sludge and on the performance of wastewater treatment plants: A review. Water Res. 2012, 46, 549–570. [Google Scholar] [CrossRef]
- Banciu, A.R.; Ionescu, L.; Ionica, D.L.; Vaideanu, M.A.; Calinescu, S.M.; Nita Lazar, M.; Marutescu, L.; Popa, M.; Chifiriuc, M.C. The evolution of the bacterial community between hospitals, wastewater treatment plants and the aquatic environment. Rev. Chim. 2020, 71, 313–316. [Google Scholar] [CrossRef]
- Earar, K.; Ciuca, I.; Antohe, M.E.; Harabor, V.R.; Constantin, I.; Calin, A.M.; Tiutiuca, C.; Bratu, A.M.; Beznea, A.; Olteanu, C. Medical Waste Water Treatment by Membrane Filtration. Mater. Plast. 2022, 59, 188–193. [Google Scholar] [CrossRef]
- Dragomir Balanica, C.M.; Muntenita, C.; Zeca, D.E.; Stoica, M. Statistical analysis of the physicochemical characteristics of urban wastewater treatment plants from Romania. Rev. Chim. 2020, 71, 100–107. [Google Scholar] [CrossRef]
- Beenen, A.; Langeveld, J.; Liefting, H.; Aalderink, R.; Velthorst, H. An integrated approach for urban water quality assessment. Water Sci. Technol. 2011, 64, 1519–1526. [Google Scholar] [CrossRef] [Green Version]
- Mincu, M.; Marcus, M.; Mitiu, M.A.; Raischi, N.S. Increasing the efficiency of pollutants removal from municipal wastewater using biological filters. Rev. Chim. 2018, 69, 3553–3556. [Google Scholar] [CrossRef]
- Castellet Viciano, L.; Torregrossa, D.; Hernandez Sancho, F. The relevance of the design characteristics to the optimal operation of wastewater treatment plants: Energy cost assessment. J. Environ. Manag. 2018, 222, 275–283. [Google Scholar] [CrossRef] [PubMed]
- Torregrossa, D.; Leopold, U.; Hernández Sancho, F.; Hansen, J. Machine learning for energy cost modelling in wastewater treatment plants. J. Environ. Manag. 2018, 223, 1061–1067. [Google Scholar] [CrossRef]
- Cardoso, B.J.; Rodrigues, E.; Gaspar, A.R.; Gomes, Á. Energy performance factors in wastewater treatment plants: A review. J. Clean. Prod. 2021, 322, 129107. [Google Scholar] [CrossRef]
- Żyłka, R.; Karolinczak, B.; Dąbrowski, W. Structure and indicators of electric energy consumption in dairy wastewater treatment plant. Sci. Total Environ. 2021, 782, 146599. [Google Scholar] [CrossRef] [PubMed]
- Soares, R.B.; Memelli, M.S.; Roque, R.P.; Gonçalves, R.F. Comparative Analysis of the Energy Consumption of Different Wastewater Treatment Plants. Int. J. Archit. Arts Appl. 2017, 3, 79–86. [Google Scholar] [CrossRef] [Green Version]
- Shen, Y.; Linville, J.L.; Urgun Demirtas, M.; Mintz, M.M.; Snyder, S.W. An overview of biogas production and utilization at full-scale wastewater treatment plants (WWTPs) in the United States: Challenges and opportunities towards energy-neutral WWTPs. Renew. Sust. Energ. Rev. 2015, 50, 346–362. [Google Scholar] [CrossRef] [Green Version]
- Gupta, A.S. Feasibility Study for Production of Biogas from Wastewater and Sewage Sludge—Development of a Sustainability Assessment Framework and Its Application. Master Thesis, KTH School of Industrial Engineering and Management, Energy Technology, Stockholm, Sweden, 2020. [Google Scholar]
- Bumbac, C.; Manea, E.; Banciu, A.; Stoica, C.; Ionescu, I.; Badescu, V.; Nita-Lazar, M. Identification of physical, morphological and chemical particularities of mixed microalgae-bacteria granules. Rev. Chim. 2019, 70, 275–277. [Google Scholar] [CrossRef]
- Manea, E.; Bumbac, C.; Banciu, A.; Stoica, C.; Nita-Lazar, M. Kinetical Parameters Evaluation for Microalgae-Bacteria Granules used for Waste Water Treatment. Rev. Chim. 2020, 71, 88–92. [Google Scholar] [CrossRef]
- Gherman, V.D.; Molnar, P.; Motoc, M.; Negrea, A. Pretreatments testing of high biodiversity inocula with simultaneous biohydrogen production and wastewater treatment. Rev. Chim. 2018, 69, 806–808. [Google Scholar] [CrossRef]
- Biris-Dorhoi, E.S.; Tofana, M.; Chis, S.M.; Lupu, C.E.; Negreanu-Pirjol, T. Wastewater Treatment Using Marine Algae Biomass as Pollutants Removal. Rev. Chim. 2018, 69, 1089–1098. [Google Scholar] [CrossRef]
- Mirel, O.S.; Florescu, C. Simulation of wastewater depolution processes by advanced biological methods. Rev. Chim. 2020, 71, 150–160. [Google Scholar] [CrossRef]
- Nwankwegu, A.S.; Zhang, L.; Xie, D.T.; Onwosi, C.O.; Muhammad, W.I.; Odoh, C.K.; Sam, K.; Idenyi, J.N. Bioaugmentation as a green technology for hydrocarbon pollution remediation. Problems and prospects J. Environ. Manag. 2022, 304, 114313. [Google Scholar] [CrossRef]
- Riffo, B.; Henríquez, C.; Chávez, R.; Peña, R.; Sangorrín, M.; Gil-Duran, C.; Rodríguez, A.; Ganga, M.A. Nonionizing Electromagnetic Field: A Promising Alternative for Growing Control Yeast. J. Fungi. 2021, 7, 281. [Google Scholar] [CrossRef] [PubMed]
- Ferencz, C.M.; Petrovszki, P.; Dér, A.; Sebők-Nagy, K.; Kóta, Z.; Páli, T. Oscillating electric field measures the rotation rate in a native Rotary enzyme. Sci. Rep. 2017, 7, 45309. [Google Scholar] [CrossRef] [Green Version]
- Lingvay, M.; Caramitu, A.R.; Borș, A.M.; Lingvay, I. Dielectric spectroscopic evaluation in the extremely low frequency range of an Aspergillus niger culture. Stud. UBB Chem. 2019, 64, 279–288. [Google Scholar] [CrossRef]
- Gao, M.; Zhang, J.; Feng, H. Extremely Low Frequency Magnetic Field Effects on Metabolite of Aspergillus niger. Bioelectromagnetics 2011, 32, 73–78. [Google Scholar] [CrossRef] [PubMed]
- Mokhtar, N.M.; Omar, R.; Mohammad Salleh, M.A.; Idris, A. Characterization of sludge from the wastewater-treatment plant of a refinery. Int. J. Eng. Tech. 2011, 8, 48–56. [Google Scholar]
- Tókos, A.; Bartha, C.; Jipa, M.; Micu, D.D.; Caramitu, A.R.; Lingvay, I. Interactions of Extremely Low-Frequency Electric Field with the Active Sludge Live Materia from Wastewater Treatments. In Proceedings of the 12th International Symposium on Advanced Topics in Electrical Engineering (ATEE), Bucharest, Romania, 25–27 May 2021. [Google Scholar] [CrossRef]
- Nanping, W.; Qian, Z.; Bin, T.; Junhao, S.; Jiapeng, F.; Yunjie, Z.; Jing, H.; Meng, L.; Qi, H. Understanding the impacts of intermittent electro field on the bioelectrochemical aniline degradation system: Performance, microbial community and functional enzyme. Environ. Res. 2023, 231, 116039. [Google Scholar] [CrossRef]
- Shuang, L.; Zhi-Yuan, Z.; Ying, L.; Ran, L.; Wen-Zong, L.; Xiao-Chi, F.; Ai-Jie, W.; Hong-Cheng, W. Recent advancements in antibiotics containing wastewater treatment by integrated bio-electrochemical-constructed wetland systems (BES-CWs). Chem. Eng. J. 2023, 457, 141133. [Google Scholar] [CrossRef]
- Ameer, A.K.; Nana, J.; Yi, C.; Xinjuan, H.; Jingya, Q.; Xinyi, Z.; Cunsheng, Z.; Feifei, Z.; Santosh, K.; Shuhao, H. Magnetic/electric field intervention on oil-rich filamentous algae production in the application of acrylonitrile butadiene styrene based wastewater treatment. Bioresour. Technol. 2022, 356, 127272. [Google Scholar] [CrossRef]
- Bartha, C.; Jipa, M.; Caramitu, A.R.; Voina, A.; Tókos, A.; Circiumaru, G.; Micu, D.D.; Lingvay, I. Behavior of Microorganisms from Waste water Treatments in Extremely Low-Frequency Electric Field. Biointerface Res. Appl. Chem. 2022, 12, 5071–5080. [Google Scholar] [CrossRef]
- Hunt, R.W.; Zavalin, A.; Bhatnagar, A.; Chinnasamy, S.; Das, K.C. Electromagnetic Biostimulation of Living Cultures for Biotechnology, Biofuel and Bioenergy Applications. Int. J. Mol. Sci. 2009, 10, 4515–4558. [Google Scholar] [CrossRef] [Green Version]
- Lingvay, I.; Bors, A.M.; Lingvay, D.; Radermacher, L.; Neagu, V. Electromagnetic Pollution of the Environment and its Effects on the Materials from the Built up Media. Rev. Chim. 2018, 69, 3593–3599. [Google Scholar] [CrossRef]
- Oprina, G.; Radermacher, L.; Lingvay, D.; Marin, D.; Voina, A.; Mitrea, S. Bituminous Insulations Durability of Underground Metallic Pipelines I Field investigations. Rev. Chim. 2017, 68, 581–585. [Google Scholar] [CrossRef]
- Lingvay, I.; Radu, E.; Caramitu, A.R.; Pătroi, D.; Oprina, G.; Radermacher, L.; Mitrea, S. Bituminous insulations durability of underground metallic pipelines 2—Laboratory study on the aging of bituminous material. Rev. Chim. 2017, 68, 646–651. [Google Scholar] [CrossRef]
- Aronsson, K.; Rfnner, U.; Borch, E. Inactivation of Escherichia coli, Listeria innocua and Saccharomyces cerevisiae in relation to membrane permeabilization and subsequent leakage of intracellular compounds due to pulsed electric field processing. Int. J. Food Microbiol. 2005, 99, 19–32. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Jin, W.; Zhou, X.; Han, W.; Gao, S.; Chen, C.; Chen, Y.; Yin, S.; Che, L.; Jiang, G. Enhancing biomass and lipid yield of microalga Scenedesmus obliquus by the periodic direct current. J. Water Process Eng. 2022, 48, 102872. [Google Scholar] [CrossRef]
- Beretta, G.; Mastorgio, A.F.; Pedrali, L.; Saponaro, S.; Sezenna, E. The effects of electric, magnetic and electromagnetic fields on microorganisms in the perspective of bioremediation. Rev. Env. Sci. Biotechnol. 2019, 18, 29–75. [Google Scholar] [CrossRef] [Green Version]
- Tókos, A.; Jipa, M.; Círciumaru, G.; Bartha, C.; Voina, A.; Caramitu, R.A.; Micu, D.D.; Lingvay, I. Contributions to Energy Saving in Wastewater Treatment Plants. In Proceedings of the International Conference on Electrical, Computer and Energy Technologies (ICECET), Prague, Czech Republic, 20–22 July 2022. [Google Scholar] [CrossRef]
- Singh, P.; Carliell-Marquet, C.; Kansal, A. Energy pattern analysis of a wastewater treatment plant. Appl. Water Sci. 2012, 2, 221–226. [Google Scholar] [CrossRef] [Green Version]
- Bartha, C.; Marinescu, V.; Jipa, M.; Sbarcea, B.G.; Tókos, A.; Caramitu, A.R.; Lingvay, I. Behavior in AC polarization of high-silicon cast irons. Studia UBB Chem. 2021, LXVI, 49–61. [Google Scholar] [CrossRef]
- ISO 6060:1989; Water Quality—Determination of the Chemical Oxygen Demand. ISO/TC 147/SC 2: Geneva, Switzerland, 1989.
- ISO 7150-1:1984; Water Quality—Determination of Ammonium—Part 1: Manual Spectrometric Method. ISO/TC 147/SC 2: Geneva, Switzerland, 1984.
- DIN 38406 E5-1; Deutsche Einheitsverfahren zur Wasser-, Abwasser- und Schlammuntersuchung; Kationen (Gruppe E); Bestimmung des Ammonium-Stickstoffs (E 5). Deutsches Institut fur Normung E.V. (DIN): Berlin, Germany, 1983.
- UNI 11669:2017; Qualità Dell’acqua—Determinazione Dell’azoto Ammoniacale (N-NH4) in Acque di Diversa Natura Mediante prova (Test) in Cuvette. Ente Italiano del Normazioni: Milano, Italy, 2017.
- ISO 6878-1-1986; Water Quality—Determination of Phosphorus—Part 1: Ammonium Molybdate Spectrometric Method. ISO/TC 147/SC 2: Geneva, Switzerland, 1986.
- Rui, D.; Yongzhen, P.; Shenbin, C.; Chengcheng, W.; Dongchen, W.; Shuying, W.; Jianzhong, H. Advanced nitrogen removal with simultaneaus Anammox and denitrification in sequencing batch reactor. Bioresurce Tehnol. 2014, 162, 316–322. [Google Scholar] [CrossRef]
- Rossi, F.; Motta, O.; Matrella, S.; Proto, A.; Vigliotta, G. Nitrate Removal from Wastewater through Biological Denitrification with OGA 24 in a Batch Reactor. Water 2015, 7, 51–62. [Google Scholar] [CrossRef]
0 | Sampling | Parameter | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DO [mg/L] | COD [mg/L] | N-NH4 [mg/L] | Pt [mg/L] | ||||||||||
1 | Temperature [°C] | 5 | 9 | 15 | 5 | 9 | 15 | 5 | 9 | 15 | 5 | 9 | 15 |
2 | Wastewater (inlet) | 0 | 0 | 0 | 1340 | 1490 | 1550 | 43.9 | 40.2 | 40.5 | 4.4 | 5.7 | 6.1 |
3 | BgT-1 exit (reference) | 1.9 | 2.4 | 2.9 | 125 | 123 | 121 | 15.1 | 15.0 | 14.8 | 2.1 | 1.8 | 1.9 |
4 | BgT-2 exit (ELF stimulated) | 5.5 | 6.2 | 7.8 | 42 | 41 | 40 | 7.5 | 7.4 | 7.3 | 1.1 | 0.9 | 0.9 |
Speed of DO Decreasing—Vox = ΔDO/Δt [mg/L/min] | ||||
---|---|---|---|---|
Minimum (at 4.7 °C) | Medium (at 5.2 °C) | Maximum (at 5.7 °C) | Weighted Average (at 5.4 °C) | |
BgT-1 (reference) | 0.0305 | 0.0409 | 0.0504 | 0.0498 |
BgT-2 (ELF stimulated) | 0.0620 | 0.0975 | 0.1072 | 0.1003 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bartha, C.; Tókos, A.; Jipa, M.; Caramitu, A.; Voina, A.; Circiumaru, G.; Micu, D.-D.; Lingvay, I. Saving Energy in Biological Wastewater Treatment by Using Extremely Low-Frequency Electric Field—Pilot-Scale Study. Sustainability 2023, 15, 11670. https://doi.org/10.3390/su151511670
Bartha C, Tókos A, Jipa M, Caramitu A, Voina A, Circiumaru G, Micu D-D, Lingvay I. Saving Energy in Biological Wastewater Treatment by Using Extremely Low-Frequency Electric Field—Pilot-Scale Study. Sustainability. 2023; 15(15):11670. https://doi.org/10.3390/su151511670
Chicago/Turabian StyleBartha, Csaba, Attila Tókos, Monica Jipa, Alina Caramitu, Andreea Voina, Gabriela Circiumaru, Dan-Doru Micu, and Iosif Lingvay. 2023. "Saving Energy in Biological Wastewater Treatment by Using Extremely Low-Frequency Electric Field—Pilot-Scale Study" Sustainability 15, no. 15: 11670. https://doi.org/10.3390/su151511670
APA StyleBartha, C., Tókos, A., Jipa, M., Caramitu, A., Voina, A., Circiumaru, G., Micu, D.-D., & Lingvay, I. (2023). Saving Energy in Biological Wastewater Treatment by Using Extremely Low-Frequency Electric Field—Pilot-Scale Study. Sustainability, 15(15), 11670. https://doi.org/10.3390/su151511670