Drought Characterization and Potential of Nature-Based Solutions for Drought Risk Mitigation in Eastern Ethiopia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Study Area
2.2. Data Set
2.2.1. Meteorological Data
2.2.2. Soil Moisture Data
2.2.3. Focus Group Discussions
2.3. Determination of Drought Indices
2.3.1. Standardized Precipitation Evapotranspiration Index (SPEI)
2.3.2. Soil Moisture Deficit Index (SMDI)
2.3.3. Estimation of Drought Characteristics
2.4. Stakeholder Perspectives on Drought Risk Reduction Using NbS
2.5. Drought and Nature-Based Solutions
3. Results and Discussion
3.1. Variation of Drought under SPEI and SMDI
3.2. The Relationship between SPEI and SMDI
3.3. Nature-Based Solutions and Stakeholder Perspectives
Findings from the Stakeholders’ Interview
4. Conclusions and Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hamal, K.; Sharma, S.; Khadka, N.; Haile, G.G.; Joshi, B.B.; Xu, T.; Dawadi, B. Assessment of drought impacts on crop yields across Nepal during 1987–2017. Meteorol. Appl. 2020, 27, e1950. [Google Scholar] [CrossRef]
- Pais, I.P.; Reboredo, F.H.; Ramalho, J.C.; Pessoa, M.F.; Lidon, F.C.; Silva, M.M. Potential impacts of climate change on agriculture—A review. Emir. J. Food Agric. 2020, 32, 397–407. [Google Scholar] [CrossRef]
- Bowling, L.C.; Cherkauer, K.A.; Lee, C.I.; Beckerman, J.L.; Brouder, S.; Buzan, J.R.; Doering, O.C.; Dukes, J.S.; Ebner, P.D.; Frankenberger, J.R.; et al. Agricultural impacts of climate change in Indiana and potential adaptations. Clim. Chang. 2020, 163, 2005–2027. [Google Scholar] [CrossRef]
- Montiel-González, C.; Montiel, C.; Ortega, A.; Pacheco, A.; Bautista, F. Development and validation of climatic hazard indicators for roselle (Hibiscus sabdariffa L.) crop in dryland agriculture. Ecol. Indic. 2021, 121, 107140. [Google Scholar] [CrossRef]
- Zarei, A.R.; Moghimi, M.M. Modified version for SPEI to evaluate and modeling the agricultural drought severity. Int. J. Biometeorol. 2019, 63, 911–925. [Google Scholar] [CrossRef] [PubMed]
- Aghili, F.; Gamper, H.A.; Eikenberg, J.; Khoshgoftarmanesh, A.H.; Afyuni, M.; Schulin, R.; Jansa, J.; Frossard, E. Green Manure Addition to Soil Increases Grain Zinc Concentration in Bread Wheat. PLoS ONE 2014, 9, e101487. [Google Scholar] [CrossRef]
- Camaille, M.; Fabre, N.; Clément, C.; Barka, E.A. Advances in Wheat Physiology in Response to Drought and the Role of Plant Growth Promoting Rhizobacteria to Trigger Drought Tolerance. Microorganisms 2021, 9, 687. [Google Scholar] [CrossRef]
- Daryanto, S.; Wang, L.; Jacin, P.A. Global Synthesis of Drought Effects on Maize and Wheat Production. PLoS ONE 2016, 11, e0156362. [Google Scholar] [CrossRef] [Green Version]
- Madadgar, S.; AghaKouchak, A.; Farahmand, A.; Davis, S.J. Probabilistic estimates of drought impacts on agricultural production. Geophys. Res. Lett. 2017, 44, 7799–7807. [Google Scholar] [CrossRef]
- Araneda-Cabrera, R.J.; Bermúdez, M.; Puertas, J. Assessment of the performance of drought indices for explaining crop yield variability at the national scale: Methodological framework and application to Mozambique. Agric. Water Manag. 2020, 246, 106692. [Google Scholar] [CrossRef]
- Araya, A.; Stroosnijder, L. Assessing drought risk and irrigation need in northern Ethiopia. Agric. For. Meteorol. 2011, 151, 425–436. [Google Scholar] [CrossRef]
- Belayneh, A.; Adamowski, J. Drought forecasting using new machine learning methods. J. Water Land Dev. 2013, 18, 3–12. [Google Scholar] [CrossRef] [Green Version]
- Haile, G.G.; Tang, Q.; Sun, S.; Huang, Z.; Zhang, X.; Liu, X. Droughts in East Africa: Causes, impacts and resilience. Earth-Science Rev. 2019, 193, 146–161. [Google Scholar] [CrossRef]
- Łabędzki, L.; Bąk, B. Meteorological and agricultural drought indices used in drought monitoring in Poland: A review. Meteorol. Hydrol. Water Manag. 2014, 2, 3–14. [Google Scholar] [CrossRef] [Green Version]
- Keshavarz, M.R.; Vazifedoust, M.; Alizadeh, A. Drought monitoring using a Soil Wetness Deficit Index (SWDI) derived from MODIS satellite data. Agric. Water Manag. 2014, 132, 37–45. [Google Scholar] [CrossRef]
- Anderson, M.C.; Hain, C.; Wardlow, B.; Pimstein, A.; Mecikalski, J.R.; Kustas, W.P. Evaluation of Drought Indices Based on Thermal Remote Sensing of Evapotranspiration over the Continental United States. J. Clim. 2011, 24, 2025–2044. [Google Scholar] [CrossRef]
- Wang, A.; Lettenmaier, D.P.; Sheffield, J. Soil Moisture Drought in China, 1950–2006. J. Clim. 2011, 24, 3257–3271. [Google Scholar] [CrossRef]
- Dai, A. Drought under global warming: A review. Wiley Interdiscip. Rev. Clim. Chang. 2011, 2, 45–65. [Google Scholar] [CrossRef] [Green Version]
- Palmer, W.C. Keeping Track of Crop Moisture Conditions, Nationwide: The New Crop Moisture Index. Weatherwise 1968, 21, 156–161. [Google Scholar] [CrossRef]
- Pauwels, V.R.N.; Wood, E.F. The Importance of Classification Differences and Spatial Resolution of Land Cover Data in the Uncertainty in Model Results over Boreal Ecosystems. J. Hydrometeorol. 2000, 1, 255–266. [Google Scholar] [CrossRef]
- Dutra, E.; Viterbo, P.; Miranda, P.M.A. ERA-40 reanalysis hydrological applications in the characterization of regional drought. Geophys. Res. Lett. 2008, 35, 116–122. [Google Scholar] [CrossRef]
- Sheffield, J.; Andreadis, K.M.; Wood, E.F.; Lettenmaier, D.P. Global and Continental Drought in the Second Half of the Twentieth Century: Severity–Area–Duration Analysis and Temporal Variability of Large-Scale Events. J. Clim. 2009, 22, 1962–1981. [Google Scholar] [CrossRef]
- Köksal, E.S. Irrigation water management with water deficit index calculated based on oblique viewed surface temperature. Irrig. Sci. 2008, 27, 41–56. [Google Scholar] [CrossRef]
- Chen, X.; Li, Y.; Yao, N.; Liu, D.L.; Javed, T.; Liu, C.; Liu, F. Impacts of multi-timescale SPEI and SMDI variations on winter wheat yields. Agric. Syst. 2020, 185, 102955. [Google Scholar] [CrossRef]
- Mehari, G.; Asfaw, K.; Kibrom, A.; Girma, B. Analyzing Drought Conditions, Interventions and Mapping of Vulnerable Areas Using NDVI and SPI Indices in Eastern Ethiopia, Somali Region. Ethiop. J. Environ. Stud. Manag. 2017, 10, 1137–1150. [Google Scholar]
- Smith, D.M.; Matthews, J.H.; Bharati, L.; Borgomeo, E.; McCartney, M.P.; Mauroner, A.; Anisha, N. Adaptation’s Thirst: Accelerating the Convergence of Water and Climate Action; Background Paper Prepared for the 2019 Report of the Global Commission on Adaptation; IWMI: Manila, Philippines, 2019. [Google Scholar]
- Klüver, H.; Mahoney, C.; Opper, M. Framing in context: How interest groups employ framing to lobby the European Commission. J. Eur. Public Policy 2015, 22, 481–498. [Google Scholar] [CrossRef]
- Cohen-Shacham, E.; Walters, G.; Janzen, C.; Maginnis, S. (Eds.) Nature-Based Solutions to Address Global Societal Challenges; IUCN: Gland, Switzerland, 2016; p. xiii+97. [Google Scholar] [CrossRef] [Green Version]
- Carsten, N.; Timo, A.; Katherine, N.I.; Graciela, M.R.; Kerry, A.W.; Ben, D.; Dagmar, H.; Lawrence, J.-W.; Hans, K.; Eszter, K.; et al. The science, policy and practice of nature-based solutions: An interdisciplinary perspective. Sci. Total Environ. 2017, 579, 1215–1227. [Google Scholar] [CrossRef]
- Somarakis, G.; Stagakis, S.; Chrysoulakis, N. (Eds.) Thinknature Nature-Based Solutions Handbook; Think Nature Project funded by the EU Horizon 2020 Research and Innovation Programme; European Union: Brussels, Belgium, 2019. [Google Scholar]
- Eggermont, H.; Balian, E.; Azevedo, J.M.N.; Beumer, V.; Brodin, T.; Claudet, J.; Fady, B.; Grube, M.; Keune, H.; Lamarque, P.; et al. Nature-based solutions: New influence for environmental management and research in Europe. GAIA-Ecol. Perspect. Sci. Soc. 2015, 24, 243–248. [Google Scholar] [CrossRef]
- Maes, J.; Jacobs, S. Nature-based solutions for Europe’s sustainable development. Conserv. Lett. 2017, 10, 121–124. [Google Scholar] [CrossRef] [Green Version]
- Shi, W.; Cao, J.; Zhang, Q.; Li, Y.; Xu, L. Edge Computing: Vision and Challenges. IEEE Internet Things J. 2016, 3, 637–646. [Google Scholar] [CrossRef]
- Debortoli, D.; Nunes, R.; Yared, P. Optimal Time-Consistent Government Debt Maturity. Q. J. Econ. 2017, 132, 55–102. [Google Scholar] [CrossRef] [Green Version]
- Feroz, R.A.; Rouf, A.M.; Uddin, K. Groundwater situations and IWRM to overcome climate change induced challenges in a drought prone area of Bangladesh. J. Environ. Agric. Sci. 2015, 2, 14. [Google Scholar]
- Zeleke, T.T.; Giorgi, F.; Diro, G.T.; Zaitchik, B.F. Trend and periodicity of drought over Ethiopia. Int. J. Climatol. 2017, 37, 4733–4748. [Google Scholar] [CrossRef]
- Ministry of Agriculture and Livestock Resources. DRSLP-II: Feasibility Study, Design, and Preparation of Contract Documents for Various Multipurpose Community Water Distribution Systems in SNNP Region, Volume-V Environmental and Social Impact Assessment Study (Annual Report). 2021. Available online: https://www.afdb.org/sites/default/files/final.revised.esia_main_report-regional_water_distribution_system_in_snnp_region.pdf (accessed on 12 January 2023).
- Rasul, G.; Thapa, G.B. Sustainability of ecological and conventional agricultural systems in Bangladesh: An assessment based on environmental, economic and social perspectives. Agric. Syst. 2004, 79, 327–351. [Google Scholar] [CrossRef]
- Shiferaw, B.; Tesfaye, K.; Kassie, M.; Abate, T.; Prasanna, B.; Menkir, A. Managing vulnerability to drought and enhancing livelihood resilience in sub-Saharan Africa: Technological, institutional and policy options. Weather. Clim. Extrem. 2014, 3, 67–79. [Google Scholar] [CrossRef] [Green Version]
- Alemu, T.; Mengistu, A. Impacts of Climate Change on Food Security in Ethiopia: Adaptation and Mitigation Options: A Review. In Climate Change-Resilient Agriculture and Agroforestry: Ecosystem Services and Sustainability; Springer: Berlin/Heidelberg, Germany, 2019; pp. 397–412. [Google Scholar] [CrossRef]
- Tazeze, A.; Haji, J.; Ketema, M. Climate Change Adaptation Strategies of Smallholder Farmers: The Case of Babilie District, East Harerghe Zone of Oromia Regional State of Ethiopia. J. Econ. Sustain. Dev. 2012, 3, 1–12. [Google Scholar]
- Tessema, Y.A.; Aweke, C.S.; Endris, G.S. Understanding the process of adaptation to climate change by small-holder farmers: The case of east Hararghe Zone, Ethiopia. Agric. Food Econ. 2013, 1, 13. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, V.; Barreira, A.P.; Loures, L.; Antunes, D.; Panagopoulos, T. Stakeholders’ Engagement on Nature-Based Solutions: A Systematic Literature Review. Sustainability 2020, 12, 640. [Google Scholar] [CrossRef] [Green Version]
- Gebre, A.B. Potential effects of agroforestry practices on climate change mitigation and adaptation strategies: A review. J. Nat. Sci. Res. 2016, 6, 83–89. [Google Scholar]
- National Meteorological Agency (NMA). Mean Monthly Rainfall Data; NMA: Addis Ababa, Ethiopia, 2015. [Google Scholar]
- Ministry of Agriculture (MOA). Agroecological Zones of Ethiopia; MOA: Addis Ababa, Ethiopia, 2000. [Google Scholar]
- Subramanya, D.K. Engineering Hydrology. In The McGraw-Hilll, 3rd ed.; Tata McGraw Hill Publishing Co., Ltd.: New Delhi, India, 2016. [Google Scholar]
- Kang, H.M.; Fadhilah, Y. Homogeneity Tests on Daily Rainfall Series in Peninsular Malaysia. Int. J. Contemp. Math. Math. Sci. 2012, 7, 9–22. [Google Scholar]
- Dai, Y.; Shangguan, W.; Duan, Q.; Liu, B.; Fu, S.; Niu, G. Development of a China Dataset of Soil Hydraulic Parameters Using Pedotransfer Functions for Land Surface Modeling. J. Hydrometeorol. 2013, 14, 869–887. [Google Scholar] [CrossRef] [Green Version]
- Girma, M.; Tasisa, T. Irrigation Water Potential and Land Suitability Assessment in Kurfa Chele-Girawa Watershed, Wabe Shebelle River Basin, Ethiopia. Turk. J. Agric. Food Sci. Technol. 2020, 8, 139–146. [Google Scholar] [CrossRef] [Green Version]
- Testa, G.; Gresta, F.; Cosentino, S.L. Dry matter and qualitative characteristics of alfalfa as affected by harvest times and soil water content. Eur. J. Agron. 2011, 34, 144–152. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef] [Green Version]
- Palmer, W.C. Meteorological Drought; US Department of Commerce Weather Bureau Research Paper: Washington, DC, USA, 1965; 59p.
- Hou, M.; Yao, N.; Li, Y.; Liu, F.; Biswas, A.; Pulatov, A.; Hassan, I. Better Drought Index between SPEI and SMDI and the Key Parameters in Denoting Drought Impacts on Spring Wheat Yields in Qinghai, China. Agronomy 2022, 12, 1552. [Google Scholar] [CrossRef]
- Zhang, Q.; Qi, T.; Singh, V.P.; Chen, Y.D.; Xiao, M. Regional Frequency Analysis of Droughts in China: A Multivariate Perspective. Water Resour. Manag. 2015, 29, 1767–1787. [Google Scholar] [CrossRef]
- Xu, K.; Yang, D.; Yang, H.; Li, Z.; Qin, Y.; Shen, Y. Spatio-temporal variation of drought in China during 1961–2012: A climatic perspective. J. Hydrol. 2015, 526, 253–264. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, N.; Ji, Z.; Gu, X.; Fan, B. Temporal and Spatial Patterns of Droughts Based on Standard Precipitation Index (SPI) in Inner Mongolia during 1981–2010. J. Nat. Resour. 2013, 28, 1694–1706. [Google Scholar]
- Haile, G.G.; Tang, Q.; Leng, G.; Jia, G.; Wang, J.; Cai, D.; Sun, S.; Baniya, B.; Zhang, Q. Long-term spatiotemporal variation of drought patterns over the Greater Horn of Africa. Sci. Total Environ. 2020, 704, 135299. [Google Scholar] [CrossRef]
- Spinoni, J.; Naumann, G.; Carrao, H.; Barbosa, P.; Vogt, J. World drought frequency, duration, and severity for 1951–2010. Int. J. Clim. 2014, 34, 2792–2804. [Google Scholar] [CrossRef] [Green Version]
- Marshall, C.; Rossman, G.B. Designing Qualitative Research; SAGE: Thousand Oaks, CA, USA, 1998; p. 321. [Google Scholar]
- Zingraff-Hamed, A.; Hüesker, F.; Lupp, G.; Begg, C.; Huang, J.; Oen, A. Stakeholder Mapping to Co-Create Nature-Based Solutions: Who Is on Board? Sustainability 2020, 12, 8625. [Google Scholar] [CrossRef]
- Strauss, A.; Corbin, J. Basics of Qualitative Research, Grounded Theory Procedures, and Techniques, 336; SAGE: New Bury Park, CA, USA; London, UK; New Delhi, India, 1990. [Google Scholar]
- Reed, M.S.; Graves, A.; Dandy, N.; Posthumus, H.; Hubacek, K.; Morris, J.; Prell, C.; Quinn, C.H.; Stringer, L.C. Who’s in and why? A typology of stakeholder analysis methods for natural resource management. J. Environ. Manag. 2009, 90, 1933–1949. [Google Scholar] [CrossRef] [PubMed]
- Murray-Webster, R.; Simon, P. Making Sense of Stakeholder Mapping. In PM World Today Tips and Techniques; Connecting the World of Project Management; PM World Today: Addison, TX, USA, 2006; Volume VIII. [Google Scholar]
- Hunziker, M. Einstellung der Bevölkerung zu Möglichen Land Schaftsentwicklungen in den Alpen; Eidgenössische Forschungsanstalt WSL: Birmensdorf, Switzerland, 2000; p. 157. [Google Scholar]
- Mayring, P.; Brunner, E. Qualitative Inhaltsanalyse. In Handbuch Qualitative Forschungsmethoden in der Erziehungswissenschaft, 3rd ed.; Boller, H., Friebertshäuser, B., LangerPrengel, A.A., Richter, S., Eds.; Juventa: Weinheim, Germany, 2010; pp. 323–334. [Google Scholar] [CrossRef] [Green Version]
- Hong, M.; Lee, S.H.; Lee, S.J.; Choi, J.Y. Application of high-resolution meteorological data from NCAM-WRF to characterize agricultural drought in small-scale farmlands based on soil moisture deficit. Agric. Water Manag. 2021, 243, 106494. [Google Scholar] [CrossRef]
- Edossa, D.C.; Babel, M.S.; Das Gupta, A. Drought Analysis in the Awash River Basin, Ethiopia. Int. J. Water Resour. Manag. 2010, 24, 1441–1460. [Google Scholar] [CrossRef]
- Gebrehiwot, T.; Van der Veen, A.; Maathuis, B. Spatial and temporal assessment of drought in the Northern highlands of Ethiopia. Int. J. Appl. Earth Obs. Geoinf. 2010, 13, 309–321. [Google Scholar] [CrossRef]
- Viste, E.; Diriba, K.; Asgeir, S. Recent drought and precipitation tendencies in Ethiopia. In Theoretical Application of Climatology; Springer Verlag: Berlin/Heidelberg, Germany, 2013; Volume 112, pp. 535–551. [Google Scholar]
- Feyisa, S. Climate Variability and Drought in the Past 30 Years in Central Rift Valley of Ethiopia. J. Nat. Sci. Res. 2017, 7, 18–26. [Google Scholar]
- Yimer, M.; Fantaw, Y.; Menfese, T.; Kindie, T. Meteorological drought assessment in north east highlands of Ethiopia. Int. J. Clim. Chang. Strateg. Manag. 2018, 10, 142–160. [Google Scholar] [CrossRef] [Green Version]
- Bayissa, Y.; Maskey, S.; Tadesse, T.; Van Andel, S.J.; Moges, S.A.; Van Griensven, A.; Solomatine, D. Comparison of the Performance of Six Drought Indices in Characterizing Historical Drought for the Upper Blue Nile Basin, Ethiopia. Geosciences 2018, 8, 81. [Google Scholar] [CrossRef] [Green Version]
- Fan, Z.X.; Bräuning, A.; Xu, C.X.; Liu, W.J.; Gaire, N.P.; Than, K.Z. Drought reconstruction over the past two centuries in southern Myanmar using teak tree-rings: Linkages to the Pacific and Indian Oceans. Geophys. Res. Lett. 2020, 47, e2020GL087627. [Google Scholar]
- Buchecker, M.; Salvini, G.; Di Baldassarre, G.; Semenzin, E.; Maidl, E.; Marcomini, A. The role of risk perception in making flood risk management more effective. Nat. Hazards Earth Syst. Sci. 2013, 13, 3013–3030. [Google Scholar] [CrossRef] [Green Version]
- Han, S.; Kuhlicke, C. Reducing Hydro-Meteorological Risk by Nature-Based Solutions: What Do We Know about People’s Perceptions? Water 2019, 11, 2599. [Google Scholar] [CrossRef] [Green Version]
- Piacentini, S.M.; Rossetto, R. Attitude and Actual Behaviour towards Water-Related Green Infrastructures and Sustainable Drainage Systems in Four North-Western Mediterranean Regions of Italy and France. Water 2020, 12, 1474. [Google Scholar] [CrossRef]
- Pagano, A.; Pluchinotta, I.; Pengal, P.; Cokan, B.; Giordano, R. Engaging stakeholders in the assessment of NBS effectiveness in flood risk reduction: A participatory System Dynamics Model for benefits and co-benefits evaluation. Sci. Total Environ. 2019, 690, 543–555. [Google Scholar] [CrossRef] [PubMed]
- Heitz, C.; Spaeter, S.; Auzet, A.-V.; Glatron, S. Local Stakeholders’ Perception of Muddy Flood Risk and Implications for Management Approaches: A Case Study in Alsace (France). Land Use Policy 2009, 26, 443–451. [Google Scholar] [CrossRef]
- Gebrechorkos, S.H.; Hülsmann, S.; Bernhofer, C. Changes in temperature and precipitation extremes in Ethiopia, Kenya, and Tanzania. Int. J. Clim. 2019, 39, 18–30. [Google Scholar] [CrossRef] [Green Version]
- Gidey, E.; Mhangara, P.; Gebregergs, T.; Zeweld, W.; Gebretsadik, H.; Dikinya, O.; Mussa, S.; Zenebe, A.; Girma, A.; Fisseha, G.; et al. Analysis of drought coping strategies in northern Ethiopian highlands. SN Appl. Sci. 2023, 5, 195. [Google Scholar] [CrossRef]
- Bark, R.H.; Martin-Ortega, J.; Waylen, K.A. Stakeholders’ views on natural flood management: Implications for the nature-based solutions paradigm shift? Environ. Sci. Policy 2021, 115, 91–98. [Google Scholar] [CrossRef]
- Pagliacci, F.; Defrancesco, E.; Bettella, F.; D’Agostino, V. Mitigation of Urban Pluvial Flooding: What Drives Residents’ Willingness to Implement Green or Grey Stormwater Infrastructures on Their Property? Water 2020, 12, 3069. [Google Scholar] [CrossRef]
- Hoyle, H.; Jorgensen, A.; Warren, P.; Dunnett, N.; Evans, K. “Not in their front yard” The opportunities and challenges of introducing perennial urban meadows: A local authority stakeholder perspective. Urban For. Urban Green. 2017, 25, 139–149. [Google Scholar] [CrossRef]
- Venkataramanan, V.; Lopez, D.; McCuskey, D.J.; Kiefus, D.; McDonald, R.I.; Miller, W.M.; Packman, A.I.; Young, S.L. Knowledge, attitudes, intentions, and behavior related to green infrastructure for flood management: A systematic literature review. Sci. Total Environ. 2020, 720, 137606. [Google Scholar] [CrossRef]
- Wamsler, C.; Alkan-Olsson, J.; Björn, H.; Falck, H.; Hanson, H.; Oskarsson, T.; Simonsson, E.; Zelmerlow, F. Beyond participation: When citizen engagement leads to undesirable outcomes for nature-based solutions and climate change adaptation. Clim. Chang. 2020, 158, 235–254. [Google Scholar] [CrossRef] [Green Version]
S/N | Station Name | Lat. | Long. | Time Series | Missed (%) | Remark |
---|---|---|---|---|---|---|
1 | Harar | 9.31 | 42.10 | 1981–2020 | 4.38 | Filled |
2 | Haramaya | 9.40 | 42.03 | 1981–2020 | 5.63 | Filled |
3 | Kombolcha | 9.36 | 42.12 | 1981–2020 | 9.83 | Filled |
4 | Babile | 9.22 | 42.32 | 1981–2020 | 3.88 | Filled |
5 | Eerer | 9.33 | 41.22 | 1981–2020 | 5.68 | Filled |
Dry/Wet Severity Level | Range of SPEI | Range of SMDI |
---|---|---|
Extreme wet | 2 ≤ SPEI | 2 ≤ SMDI |
Severe wet | 1.5 ≤ SPEI < 2 | 1.5 ≤ SMDI < 2 |
Moderate wet | 1 ≤ SPEI < 1.5 | 1 ≤ SMDI < 1.5 |
Mild wet | 0.5 ≤ SPEI < 1 | 0.5 ≤ SMDI < 1 |
Normal | −0.5 < SPEI < 0.5 | −0.5 < SMDI < 0.5 |
Mild dry | −1 < SPEI ≤ −0.5 | −1 < SMDI ≤ −0.5 |
Moderate dry | −1.5 < SPEI ≤ −1 | −1.5 < SMDI ≤ −1 |
Severe dry | −2 < SPEI≤ −1.5 | −2 < SMDI ≤ −1.5 |
Extreme | SPEI ≤ −2 | SMDI ≤ −2 |
Babile | SMDI-1 (0–5 cm) | SMDI-1 (5–100 cm) | SPEI_1 |
SMDI-1 (0–5 cm) | 1 | ||
SMDI-1 (5–100 cm) | 0.97 | 1 | |
SPEI_1 | 0.91 | 0.91 | 1 |
Babile | SMDI-3 (0–5 cm) | SMDI-3 (5–100 cm) | SPEI_3 |
SMDI-3 (0–5 cm) | 1 | ||
SMDI-3 (5–100 cm) | 0.87 | 1 | |
SPEI_3 | 0.93 | 0.92 | 1 |
Babile | SMDI (0–5 cm) | SMDI (5–100 cm) | SPEI_6 |
SMDI_6 (0–5 cm) | 1 | ||
SMDI_6 (5–100 cm) | 0.93 | 1 | |
SPEI_6 | 0.88 | 0.91 | 1 |
Babile | SMDI-3 (0–5 cm) | SMDI-6 (5–100 cm) | SPEI_1 |
SMDI-3 (0–5 cm) | 1 | ||
SMDI-6 (5–100 cm) | 0.88 | 1 | |
SPEI_1 | 0.89 | 0.87 | 1 |
Eerer | SMDI-1 (0–5 cm) | SMDI-1 (5–100 cm) | SPEI_1 |
SMDI-1 (0–5 cm) | 1 | ||
SMDI-1 (5–100 cm) | 0.96 | 1 | |
SPEI_1 | 0.84 | 0.83 | 1 |
Eerer | SMDI-3 (0–5 cm) | SMDI-3 (5–100 cm) | SPEI_3 |
SMDI-3 (0–5 cm) | 1 | ||
SMDI-3 (5–100 cm) | 0.98 | 1 | |
SPEI_3 | 0.88 | 0.93 | 1 |
Eerer | SMDI-6 (0–5 cm) | SMDI-6 (5–100 cm) | SPEI-6 |
SMDI-6 (0–5 cm) | 1 | ||
SMDI-6 (5–100 cm) | 0.93 | 1 | |
SPEI–6 | 0.84 | 0.80 | 1 |
Eerer | SMDI-3 (0–5 cm) | SMDI-6 (5–100 cm) | SPEI_1 |
SMDI-3 (0–5 cm) | 1 | ||
SMDI-6 (5–100 cm) | 0.93 | 1 | |
SPEI_1 | 0.87 | 0.89 | 1 |
Haramaya | SMDI-3 (0–5 cm) | SMDI-6 (5–100 cm) | SPEI_1 |
SMDI-3 (0–5 cm) | 1 | ||
SMDI-6 (5–100 cm) | 0.97 | 1 | |
SPEI_1 | 0.86 | 0.87 | 1 |
Haramaya | SMDI-1 (0–5 cm) | SMDI-1 (5–100 cm) | SPEI_1 |
SMDI-1 (0–5 cm) | 1 | ||
SMDI-1 (5–100 cm) | 0.86 | 1 | |
SPEI_1 | 0.87 | 0.89 | 1 |
Haramaya | SMDI-3 (0–5 cm) | SMDI-3 (5–100 cm) | SPEI_3 |
SMDI-3 (0–5 cm) | 1 | ||
SMDI-3 (5–100 cm) | 0.94 | 1 | |
SPEI_3 | 0.86 | 0.91 | 1 |
Haramaya | SMDI-6 (0–5 cm) | SMDI-6 (5–100 cm) | SPEI_6 |
SMDI-6 (0–5 cm) | 1 | ||
SMDI-6 (5–100 cm) | 0.99 | 1 | |
SPEI_6 | 0.89 | 0.89 | 1 |
Harar | SMDI-1 (0–5 cm) | SMDI-1 (5–100 cm) | SPEI_1 |
SMDI-1 (0–5 cm) | 1 | ||
SMDI-1 (5–100 cm) | 0.96 | 1 | |
SPEI_1 | 0.88 | 0.85 | 1 |
Harar | SMDI-3 (0–5 cm) | SMDI-3 (5–100 cm) | SPEI_3 |
SMD I -3 (0–5 cm) | 1.00 | ||
SMD I -3 (5–100 cm) | 0.94 | 1.00 | |
SPEI_3 | 0.86 | 0.91 | 1.00 |
Harar | SMDI-6 (0–5 cm) | SMDI-6 (5–100 cm) | SPEI_6 |
SMDI-6 (0–5 cm) | 1 | ||
SMDI-6 (5–100 cm) | 0.99 | 1 | |
SPEI_6 | 0.80 | 0.89 | 1 |
Harar | SMDI-3 (0–5 cm) | SMDI-6 (5–100 cm) | SPEI_1 |
SMDI-3 (0–5 cm) | 1 | ||
SMDI-6 (5–100 cm) | 0.93 | 1 | |
SPEI_1 | 0.89 | 0.93 | 1 |
Kombolcha | SMDI-1 (0–5 cm) | SMDI (5–100 cm) | SPEI_1 |
SMDI-1 (0–5 cm) | 1 | ||
SMDI-1 (5–100 cm) | 0.94 | 1 | |
SPEI_1 | 0.87 | 0.88 | 1 |
Kombolcha | SMDI-3 (0–5 cm) | SMDI-3 (5–100 cm) | SPEI_3 |
SMDI-3 (0–5 cm) | 1 | ||
SMDI-3 (5–100 cm) | 0.91 | 1 | |
SPEI_3 | 0.87 | 0.86 | 1 |
Kombolcha | SMDI-6 (0–5 cm) | SMDI-6 (5–100 cm) | SPEI_6 |
SMDI-6 (0–5 cm) | 1 | ||
SMDI-6 (5–100 cm) | 0.97 | 1 | |
SPEI_6 | 0.96 | 0.87 | 1 |
Kombolcha | SMDI-3 (0–5 cm) | SMDI-6 (5–100 cm) | SPEI_1 |
SMDI-3 (0–5 cm) | 1 | ||
SMDI-6 (5–100 cm) | 0.94 | 1 | |
SPEI_1 | 0.86 | 0.87 | 1 |
Description | FGD Participants Perspectives | Findings from the Literature Review |
---|---|---|
Stakeholder familiarity with NbS and related concepts | About one third have not encountered the concept of NbS before the start of the FGDs, “entry-point” knowledge often provided by Haramaya University and related offices | Despite their ignorance, farmers and land users, according to [79], believe themselves to be experts. The majority of the literature emphasizes the value of NbS initiatives for education and promoting awareness/knowledge, as in [83]. |
NbS benefits perceived by stakeholders | FGD participants mainly reference benefits of nature and express potential economic opportunities | According to [76], the majority of urban NbS literature values co-benefits for society, and managerial viewpoints are related to easier maintenance [82]. |
Concerns of stakeholders with NbS | Evidence of durability or functionality is largely missing, effectiveness is lower, maintenance is costlier, and fear of invasive species | NbS is less effective, particularly in severe events [78], and solutions that lack visual appeal are not widely adopted [84]. |
Perceived barriers to NbS by stakeholders | Lack of knowledge, FGDs could help to overcome or address this issue | Many times, people are unaware of NbS evolution and the value of stakeholder involvement, as demonstrated by [75,85]. |
Collaborative processes | Expectations relate to raising awareness, learning, experiencing hands-on cases, gathering experience, demonstrating effectiveness and viability, and new attractive business models | Mixed experiences, critical reflections, e.g., [86], as well as positive reports, e.g., [75]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sintayehu, D.W.; Kassa, A.K.; Tessema, N.; Girma, B.; Alemayehu, S.; Hassen, J.Y. Drought Characterization and Potential of Nature-Based Solutions for Drought Risk Mitigation in Eastern Ethiopia. Sustainability 2023, 15, 11613. https://doi.org/10.3390/su151511613
Sintayehu DW, Kassa AK, Tessema N, Girma B, Alemayehu S, Hassen JY. Drought Characterization and Potential of Nature-Based Solutions for Drought Risk Mitigation in Eastern Ethiopia. Sustainability. 2023; 15(15):11613. https://doi.org/10.3390/su151511613
Chicago/Turabian StyleSintayehu, Dejene W., Asfaw Kebede Kassa, Negash Tessema, Bekele Girma, Sintayehu Alemayehu, and Jemal Yousuf Hassen. 2023. "Drought Characterization and Potential of Nature-Based Solutions for Drought Risk Mitigation in Eastern Ethiopia" Sustainability 15, no. 15: 11613. https://doi.org/10.3390/su151511613
APA StyleSintayehu, D. W., Kassa, A. K., Tessema, N., Girma, B., Alemayehu, S., & Hassen, J. Y. (2023). Drought Characterization and Potential of Nature-Based Solutions for Drought Risk Mitigation in Eastern Ethiopia. Sustainability, 15(15), 11613. https://doi.org/10.3390/su151511613