Optimization of Mixed-Based Biochar Preparation Process and Adsorption Performance of Lead and Cadmium
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Biochar Preparation
2.3. Response Surface Analysis Experiment
2.4. Adsorption Experiments for Pb2+ and Cd2+ on Mixed-Based Biochar
2.5. Statistical Analyses
3. Results and Discussion
3.1. Single-Factor Iodine Adsorption Experiments
3.2. Response Surface Analysis Experiments
3.2.1. Secondary Regression Analysis and Optimization of Process Parameters
3.2.2. Effects of Interactions among Pyrolysis Factors on the Iodine Adsorption Values of Mixed-Based Biochar
3.3. Adsorption Experiments of Pb2+ and Cd2+ on Mixed-Based Biochar
3.3.1. Effects of Initial pH of the Solution on the Adsorption Values of Pb2+ and Cd2+
3.3.2. Adsorption Kinetics Experiments
3.3.3. Isothermal Adsorption Experiments
3.4. Adsorption Mechanism
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liao, W.; Zhang, X.; Shao, J.; Yang, H.; Zhang, S.; Chen, H. Simultaneous removal of cadmium and lead by biochar modified with layered double hydroxide. Fuel Process. Technol. 2022, 235, 107389. [Google Scholar] [CrossRef]
- Ma, Z.; Tao, R.; Hu, J.; Cao, C.; Hu, Z.; Chen, Y.; Hu, H.; Ma, Y. Effects of Formula Fertilizer and Biochar on Cadmium and Plumbum Absorption in Maize (Zea mays L.). Sustainability 2023, 15, 4696. [Google Scholar] [CrossRef]
- Aborisade, M.A.; Feng, A.; Zheng, X.; Oba, B.T.; Kumar, A.; Battamo, A.Y.; Kavwenje, S.; Liu, J.; Chen, D.; Okimiji, O.P.; et al. Carbothermal reduction synthesis of eggshell-biochar modified with nanoscale zerovalent iron/activated carbon for remediation of soil polluted with lead and cadmium. Environ. Nanotechnol. Monit. Manag. 2022, 18, 100726. [Google Scholar] [CrossRef]
- Liu, T.; Lawluvy, Y.; Shi, Y.; Ighalo, J.O.; He, Y.; Zhang, Y.; Yap, P.-S. Adsorption of cadmium and lead from aqueous solution using modified biochar: A review. J. Environ. Chem. Eng. 2022, 10, 106502. [Google Scholar] [CrossRef]
- Okereafor, U.; Makhatha, M.; Mekuto, L.; Uche-Okereafor, N.; Sebola, T.; Mavumengwana, V. Toxic Metal Implications on Agricultural Soils, Plants, Animals, Aquatic life and Human Health. Int. J. Environ. Res. Public Health 2020, 17, 2204. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.; Hou, R.; Fu, Q.; Li, T.; Zhang, S.; Su, A. Long-term immobilization of cadmium and lead with biochar in frozen-thawed soils of farmland in China. Environ. Pollut. 2022, 313, 120143. [Google Scholar] [CrossRef] [PubMed]
- Jia, Y.; Zhang, Y.; Fu, J.; Yuan, L.; Li, Z.; Liu, C.; Zhao, D.; Wang, X. A novel magnetic biochar/MgFe-layered double hydroxides composite removing Pb2+ from aqueous solution: Isotherms, kinetics and thermodynamics. Colloids Surf. A Physicochem. Eng. Asp. 2019, 567, 278–287. [Google Scholar] [CrossRef]
- Hu, X.; Zhang, R.; Xia, B.; Ying, R.; Hu, Z.; Tao, X.; Yu, H.; Xiao, F.; Chu, Q.; Chen, H.; et al. Effect of Pyrolysis Temperature on Removal Efficiency and Mechanisms of Hg(II), Cd(II), and Pb (II) by Maize Straw Biochar. Sustainability 2022, 14, 9022. [Google Scholar] [CrossRef]
- Lin, H.; Yang, D.; Zhang, C.; Liu, W.; Zhang, L.; Dong, Y. Selective removal behavior of lead and cadmium from calcium-rich solution by MgO loaded soybean straw biochars and mechanism analysis. Chemosphere 2023, 319, 138010. [Google Scholar] [CrossRef]
- Jin, J.; Wang, M.; Cao, Y.; Wu, S.; Liang, P.; Li, Y.; Zhang, J.; Zhang, J.; Wong, M.H.; Shan, S.; et al. Cumulative effects of bamboo sawdust addition on pyrolysis of sewage sludge: Biochar properties and environmental risk from metals. Bioresour. Technol. 2017, 228, 218–226. [Google Scholar] [CrossRef]
- Huang, H.-j.; Yang, T.; Lai, F.-y.; Wu, G.-q. Co-pyrolysis of sewage sludge and sawdust/rice straw for the production of biochar. J. Anal. Appl. Pyrolysis 2017, 125, 61–68. [Google Scholar] [CrossRef]
- Zhao, L.; Sun, Z.F.; Pan, X.W.; Tan, J.Y.; Yang, S.S.; Wu, J.T.; Chen, C.; Yuan, Y.; Ren, N.Q. Sewage sludge derived biochar for environmental improvement: Advances, challenges, and solutions. Water Res. X 2023, 18, 100167. [Google Scholar] [CrossRef]
- Yu, F.; Lv, H.; Fan, L.A.; Chen, L.; Hu, Y.; Wang, X.; Guo, Q.; Cui, X.; Zhou, N.; Jiao, L. Co-pyrolysis of sewage sludge and poplar sawdust under controlled low-oxygen conditions: Biochar properties and heavy metals behavior. J. Anal. Appl. Pyrolysis 2023, 169, 105868. [Google Scholar] [CrossRef]
- Mei, Z.; Chen, D.; Zhang, J.; Yin, L.; Huang, Z.; Xin, Q. Sewage sludge pyrolysis coupled with self-supplied steam reforming for high quality syngas production and the influence of initial moisture content. Waste Manag. 2020, 106, 77–87. [Google Scholar] [CrossRef] [PubMed]
- Devi, P.; Saroha, A.K. Utilization of sludge based adsorbents for the removal of various pollutants: A review. Sci. Total Environ. 2017, 578, 16–33. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Wen, E.; Ge, C.; El-Naggar, A.; Yu, H.; Wang, S.; Kwon, E.E.; Song, H.; Shaheen, S.M.; Wang, H.; et al. Iron-modified phosphorus- and silicon-based biochars exhibited various influences on arsenic, cadmium, and lead accumulation in rice and enzyme activities in a paddy soil. J. Hazard. Mater. 2023, 443, 130203. [Google Scholar] [CrossRef]
- Ghorbani, M.; Konvalina, P.; Neugschwandtner, R.W.; Kopecký, M.; Amirahmadi, E.; Moudrý, J., Jr.; Menšík, L. Preliminary Findings on Cadmium Bioaccumulation and Photosynthesis in Rice (Oryza sativa L.) and Maize (Zea mays L.) Using Biochar Made from C3- and C4-Originated Straw. Plants 2022, 11, 1424. [Google Scholar] [CrossRef]
- Wang, Z.; Shen, R.; Ji, S.; Xie, L.; Zhang, H. Effects of biochar derived from sewage sludge and sewage sludge/cotton stalks on the immobilization and phytoavailability of Pb, Cu, and Zn in sandy loam soil. J. Hazard. Mater. 2021, 419, 126468. [Google Scholar] [CrossRef]
- Cheng, Q.; Meng, F.; Li, X.; Fan, C. Effects of K2CO3 on pyrolysis characteristics of Xinjiang cotton stalk. Int. J. Hydrogen Energy 2023, 48, 5069–5079. [Google Scholar] [CrossRef]
- Hamawand, I.; Sandell, G.; Pittaway, P.; Chakrabarty, S.; Yusaf, T.; Chen, G.; Seneweera, S.; Al-Lwayzy, S.; Bennett, J.; Hopf, J. Bioenergy from Cotton Industry Wastes: A review and potential. Renew. Sustain. Energy Rev. 2016, 66, 435–448. [Google Scholar] [CrossRef]
- Lin, Y.; Liao, Y.; Yu, Z.; Fang, S.; Ma, X. A study on co-pyrolysis of bagasse and sewage sludge using TG-FTIR and Py-GC/MS. Energy Convers. Manag. 2017, 151, 190–198. [Google Scholar] [CrossRef]
- Zhang, W.; Yuan, C.; Xu, J.; Yang, X. Beneficial synergetic effect on gas production during co-pyrolysis of sewage sludge and biomass in a vacuum reactor. Bioresour. Technol. 2015, 183, 255–258. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Deng, S.; Tan, H.; Adeosun, A.; Vujanović, M.; Yang, F.; Duić, N. Synergetic effect of sewage sludge and biomass co-pyrolysis: A combined study in thermogravimetric analyzer and a fixed bed reactor. Energy Convers. Manag. 2016, 118, 399–405. [Google Scholar] [CrossRef] [Green Version]
- Stunda-Zujeva, A.; Kreicbergs, I.; Medne, O. Sustainable Utilization of Sewage Sludge: Review of Technologies. Key Eng. Mater. 2018, 762, 121–125. [Google Scholar] [CrossRef]
- Xu, X.; Zhao, B.; Sun, M.; Chen, X.; Zhang, M.; Li, H.; Xu, S. Co-pyrolysis characteristics of municipal sewage sludge and hazelnut shell by TG-DTG-MS and residue analysis. Waste Manag. 2017, 62, 91–100. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.-F.; Shih, C.-H.; Chiueh, P.-T.; Lo, S.-L. Microwave co-pyrolysis of sewage sludge and rice straw. Energy 2015, 87, 638–644. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, K.; Xie, L.; Zhu, H.; Ji, S.; Shu, X. Effects of residence time on characteristics of biochars prepared via co-pyrolysis of sewage sludge and cotton stalks. J. Anal. Appl. Pyrolysis 2019, 142, 104659. [Google Scholar] [CrossRef]
- Wang, Z.; Tian, Q.; Guo, J.; Wu, R.; Zhu, H.; Zhang, H. Co-pyrolysis of sewage sludge/cotton stalks with K2CO3 for biochar production: Improved biochar porosity and reduced heavy metal leaching. Waste Manag. 2021, 135, 199–207. [Google Scholar] [CrossRef]
- Ghorbani, M.; Amirahmadi, E.; Neugschwandtner, R.W.; Konvalina, P.; Kopecký, M.; Moudrý, J.; Perná, K.; Murindangabo, Y.T. The Impact of Pyrolysis Temperature on Biochar Properties and Its Effects on Soil Hydrological Properties. Sustainability 2022, 14, 14722. [Google Scholar] [CrossRef]
- Qiu, Y.; Cheng, H.; Xu, C.; Sheng, G.D. Surface characteristics of crop-residue-derived black carbon and lead(II) adsorption. Water Res. 2008, 42, 567–574. [Google Scholar] [CrossRef]
- Tansel, B.; Sager, J.; Rector, T.; Garland, J.; Strayer, R.F.; Levine, L.; Roberts, M.; Hummerick, M.; Bauer, J. Significance of hydrated radius and hydration shells on ionic permeability during nanofiltration in dead end and cross flow modes. Sep. Purif. Technol. 2006, 51, 40–47. [Google Scholar] [CrossRef]
- Buss, W.; Graham, M.C.; Shepherd, J.G.; Masek, O. Suitability of marginal biomass-derived biochars for soil amendment. Sci. Total Environ. 2016, 547, 314–322. [Google Scholar] [CrossRef] [Green Version]
- Spark, K.W.J.; Johnson, B. Characterizing trace metal adsorption on kaolinite. Eur. J. Soil Sci. 1995, 46, 633–640. [Google Scholar] [CrossRef]
- Chen, B.; Guan, H.; Zhang, Y.; Liu, S.; Zhao, B.; Zhong, C.; Zhang, H.; Ding, W.; Song, A.; Zhu, D.; et al. Performance and mechanism of Pb2+ and Cd2+ ions’ adsorption via modified antibiotic residue-based hydrochar. Heliyon 2023, 9, e14930. [Google Scholar] [CrossRef] [PubMed]
- Fan, Q.; Sun, J.; Chu, L.; Cui, L.; Quan, G.; Yan, J.; Hussain, Q.; Iqbal, M. Effects of chemical oxidation on surface oxygen-containing functional groups and adsorption behavior of biochar. Chemosphere 2018, 207, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Zhang, F.S. Removal of lead from water using biochars prepared from hydrothermal liquefaction of biomass. J. Hazard. Mater. 2009, 167, 933–939. [Google Scholar] [CrossRef]
- Kołodyńska, D.; Wnętrzak, R.; Leahy, J.J.; Hayes, M.H.B.; Kwapiński, W.; Hubicki, Z. Kinetic and adsorptive characterization of biochar in metal ions removal. Chem. Eng. J. 2012, 197, 295–305. [Google Scholar] [CrossRef]
- Ho, Y.S.; McKay, G. A Comparison of Chemisorption Kinetic Models Applied to Pollutant Removal on Various Sorbents. Process Saf. Environ. Prot. 1998, 76, 332–340. [Google Scholar] [CrossRef] [Green Version]
- Fan, S.; Huang, Z.; Zhang, Y.; Hu, H.; Liang, X.; Gong, S.; Zhou, J.; Tu, R. Magnetic chitosan-hydroxyapatite composite microspheres: Preparation, characterization, and application for the adsorption of phenolic substances. Bioresour. Technol. 2019, 274, 48–55. [Google Scholar] [CrossRef]
- Ghorbani, M.; Neugschwandtner, R.W.; Konvalina, P.; Asadi, H.; Kopecký, M.; Amirahmadi, E. Comparative effects of biochar and compost applications on water holding capacity and crop yield of rice under evaporation stress: A two-years field study. Paddy Water Environ. 2022, 21, 47–58. [Google Scholar] [CrossRef]
- Lu, H.; Zhang, W.; Yang, Y.; Huang, X.; Wang, S.; Qiu, R. Relative distribution of Pb2+ sorption mechanisms by sludge-derived biochar. Water Res. 2012, 46, 854–862. [Google Scholar] [CrossRef] [PubMed]
Items | Temperature A/°C | Time B/min | Ratio C/% | Iodine Value Y/(mg·g−1) |
---|---|---|---|---|
1 | 550 | 90 | 40 | 292.13 |
2 | 550 | 60 | 50 | 341.23 |
3 | 650 | 90 | 50 | 411.25 |
4 | 650 | 90 | 50 | 406.24 |
5 | 650 | 90 | 50 | 418.66 |
6 | 750 | 120 | 50 | 397.18 |
7 | 750 | 60 | 50 | 365.96 |
8 | 650 | 120 | 60 | 394.59 |
9 | 750 | 90 | 40 | 316.89 |
10 | 750 | 90 | 60 | 344.45 |
11 | 650 | 60 | 40 | 318.65 |
12 | 650 | 120 | 40 | 353.64 |
13 | 650 | 60 | 60 | 346.66 |
14 | 650 | 90 | 50 | 411.43 |
15 | 550 | 120 | 50 | 379.55 |
16 | 650 | 90 | 50 | 413.41 |
17 | 550 | 90 | 60 | 318.62 |
Regression Equation | Correlation Coefficient R2 | SNR | Significant Level | Response Conditions | Iodine Value (mg·g−1) | ||
---|---|---|---|---|---|---|---|
Temperature A/°C | Time B/min | Proportion C/% | |||||
Y = −2568.90 + 4.75A + 1.04B + 56.29C − 5.92 × 10−4AB + 2.68 × 10−4AC + 0.011BC − 3.83 × 10−3A2 − 3.25 × 10−3B2 − 0.56C2 | 0.9601 | 4.45 | A, B, C, BC, A2, C2 | 638.22 | 86.54 | 50.23 | 448.63 |
Heavy Metals | Actual Balance Adsorption Amount qe (mg·g−1) | Quasi-First-Order Kinetic Equations | Quasi-Second-Order Kinetic Equations | ||||
---|---|---|---|---|---|---|---|
qe (mg·g−1) | k1 (/h) | R2 | qe (mg·g−1) | k2 (g·mg−1·h−1) | R2 | ||
Pb | 165.88 | 158.73 | 0.04762 | 0.9176 | 166.67 | 0.036 | 0.9998 |
Cd | 42.00 | 454.55 | 11.3636 | 0.9280 | 42.37 | 0.1160 | 0.9998 |
Temperature (°C) | Heavy Metals | Langmuir Model | Freundlich Model | ||||
---|---|---|---|---|---|---|---|
Qm (mg·g−1) | KL (L·mg−1) | R2 | Kf (mg·g−1) | 1/n (g·L−1) | R2 | ||
25 °C | Pb | 111.11 | 0.007679 | 0.9693 | 148.4132 | 3.9667 | 0.9840 |
Cd | 86.21 | 0.091920 | 0.9577 | 19.7885 | 3.5336 | 0.9796 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, X.; Wang, Q.; Wang, Z.; Wu, S.; Zhai, Y.; Zhang, H.; Zhou, L.; Lu, B.; Chen, K.; Wang, X. Optimization of Mixed-Based Biochar Preparation Process and Adsorption Performance of Lead and Cadmium. Sustainability 2023, 15, 11579. https://doi.org/10.3390/su151511579
Yuan X, Wang Q, Wang Z, Wu S, Zhai Y, Zhang H, Zhou L, Lu B, Chen K, Wang X. Optimization of Mixed-Based Biochar Preparation Process and Adsorption Performance of Lead and Cadmium. Sustainability. 2023; 15(15):11579. https://doi.org/10.3390/su151511579
Chicago/Turabian StyleYuan, Xiaoxian, Qiang Wang, Zhipu Wang, Sikai Wu, Yawei Zhai, Haibing Zhang, Lisong Zhou, Bei Lu, Kefan Chen, and Xinwei Wang. 2023. "Optimization of Mixed-Based Biochar Preparation Process and Adsorption Performance of Lead and Cadmium" Sustainability 15, no. 15: 11579. https://doi.org/10.3390/su151511579
APA StyleYuan, X., Wang, Q., Wang, Z., Wu, S., Zhai, Y., Zhang, H., Zhou, L., Lu, B., Chen, K., & Wang, X. (2023). Optimization of Mixed-Based Biochar Preparation Process and Adsorption Performance of Lead and Cadmium. Sustainability, 15(15), 11579. https://doi.org/10.3390/su151511579