Evaluation of Phytoremediation Potential of an Aquatic Macrophyte (Eichhornia crassipes) in Wastewater Treatment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Sample Collection
2.3. Water Analysis
2.4. Plant (E. crassipes) Analysis
2.5. Bioconcentration Factor (BCF)
2.6. Translocation Factor (TF)
2.7. Statistical Analysis
3. Results
3.1. Water Analysis
3.1.1. Physico-Chemical Parameters of Water
3.1.2. Heavy Metal(loids) Analysis of Water
3.2. Plant Analysis
3.2.1. Plant (E. crassipes) Physiological Analysis
3.2.2. Analysis of Na+, K+, and Ca2+ Ions
3.2.3. Heavy Metal(loid)s Analysis
3.2.4. Bioconcentration Factor and Translocation Factor
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mishra, R.K. Fresh water availability and its global challenge. Br. J. Multidiscip. Adv. Stud. 2023, 4, 1–78. [Google Scholar] [CrossRef]
- Jamal, A.; Sarim, M. Heavy metals distribution in different soil series of district Swabi, Khyber Pakhunkhawa, Pakistan. World Sci. News 2018, 105, 1–13. [Google Scholar]
- Ahmad, I.; Ghaffar, A.; Zakir, A.; Khan, Z.U.H.; Saeed, M.F.; Rasool, A.; Jamal, A.; Mihoub, A.; Marzeddu, S.; Boni, M.R. Activated Biochar Is an Effective Technique for Arsenic Removal from Contaminated Drinking Water in Pakistan. Sustainability 2022, 14, 14523. [Google Scholar] [CrossRef]
- Farooqi, Z.U.R.; Ahmad, I.; Abdul Qadir, A.; Murtaza, G.; Rafiq, S.; Jamal, A.; Zeeshan, N.; Murtaza, B.; Javed, W.; Radicetti, E. Zeolite-Assisted Immobilization and Health Risks of Potentially Toxic Elements in Wastewater-Irrigated Soil under Brinjal (Solanum melongena) Cultivation. Agronomy 2022, 12, 2433. [Google Scholar] [CrossRef]
- Sarim, M.; Jan, T.; Khattak, S.A.; Mihoub, A.; Jamal, A.; Saeed, M.F.; Soltani-Gerdefaramarzi, S.; Tariq, S.R.; Fernández, M.P.; Mancinelli, R. Assessment of the Ecological and Health Risks of Potentially Toxic Metals in Agricultural Soils from the Drosh-Shishi Valley, Pakistan. Land 2022, 11, 1663. [Google Scholar] [CrossRef]
- Mitra, S.; Chakraborty, A.J.; Tareq, A.M.; Emran, T.B.; Nainu, F.; Khusro, A.; Idris, A.M.; Khandaker, M.U.; Osman, H.; Alhumaydhi, F.A. Impact of heavy metals on the environment and human health: Novel therapeutic insights to counter the toxicity. J. King Saud. Univ. Sci. 2022, 34, 101865. [Google Scholar] [CrossRef]
- Azimi, A.; Azari, A.; Rezakazemi, M.; Ansarpour, M. Removal of Heavy Metals from Industrial Wastewaters: A Review. ChemBioEng Rev. 2017, 4, 37–59. [Google Scholar] [CrossRef]
- Abidli, A.; Huang, Y.; Rejeb, Z.B.; Zaoui, A.; Park, C.B. Sustainable and efficient technologies for removal and recovery of toxic and valuable metals from wastewater: Recent progress, challenges, and future perspectives. Chemosphere 2022, 292, 133102. [Google Scholar] [CrossRef]
- Hayyat, M.U.; Nawaz, R.; Irfan, A.; Al-Hussain, S.A.; Aziz, M.; Siddiq, Z.; Ahmad, S.; Zaki, M.E. Evaluating the phytoremediation potential of Eichhornia crassipes for the removal of Cr and Li from synthetic polluted water. Int. J. Environ. Res. Public Health 2023, 20, 3512. [Google Scholar] [CrossRef]
- Buta, E.; Borșan, I.L.; Omotă, M.; Trif, E.B.; Bunea, C.I.; Mocan, A.; Bora, F.D.; Rózsa, S.; Nicolescu, A. Comparative Phytoremediation Potential of Eichhornia crassipes, Lemna minor, and Pistia stratiotes in Two Treatment Facilities in Cluj County, Romania. Horticulturae 2023, 9, 503. [Google Scholar] [CrossRef]
- Mustafa, H.M.; Hayder, G. Recent studies on applications of aquatic weed plants in phytoremediation of wastewater: A review article. Ain Shams Eng. J. 2021, 12, 355–365. [Google Scholar] [CrossRef]
- Ashraf, S.; Ali, Q.; Zahir, Z.A.; Ashraf, S.; Asghar, H.N. Phytoremediation: Environmentally sustainable way for reclamation of heavy metal polluted soils. Ecotoxicol. Environ. Saf. 2019, 174, 714–727. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Wu, X.; Gan, J. Uptake and metabolism of phthalate esters by edible plants. Environ. Sci. Technol. 2015, 49, 8471–8478. [Google Scholar] [CrossRef] [PubMed]
- Pandey, V.C.; Bajpai, O. Phytoremediation: From theory toward practice. In Phytomanagement of Polluted Sites; Elsevier: Amsterdam, The Netherlands, 2019; pp. 1–49. [Google Scholar]
- Thakur, S.; Singh, L.; Wahid, Z.A.; Siddiqui, M.F.; Atnaw, S.M.; Din, M.F.M. Plant-driven removal of heavy metals from soil: Uptake, translocation, tolerance mechanism, challenges, and future perspectives. Environ. Monit. Assess. 2016, 188, 206. [Google Scholar] [CrossRef] [PubMed]
- Rawat, K.; Fulekar, M.; Pathak, B. Rhizofiltration: A green technology for remediation of heavy metals. Int. J. Innov. Biosci. 2012, 2, 193–199. [Google Scholar]
- Alsafran, M.; Usman, K.; Ahmed, B.; Rizwan, M.; Saleem, M.H.; Al Jabri, H. Understanding the phytoremediation mechanisms of potentially toxic elements: A proteomic overview of recent advances. Front. Plant Sci. 2022, 13, 881242. [Google Scholar] [CrossRef]
- Yan, A.; Wang, Y.; Tan, S.N.; Mohd Yusof, M.L.; Ghosh, S.; Chen, Z. Phytoremediation: A promising approach for revegetation of heavy metal-polluted land. Front. Plant Sci. 2020, 11, 359. [Google Scholar] [CrossRef]
- Ansari, A.A.; Naeem, M.; Gill, S.S.; AlZuaibr, F.M. Phytoremediation of contaminated waters: An eco-friendly technology based on aquatic macrophytes application. Egypt. J. Aquat. Res. 2020, 46, 371–376. [Google Scholar] [CrossRef]
- González-Tavares, C.; Salazar-Hernández, M.; Talavera-López, A.; Salgado-Román, J.M.; Hernández-Soto, R.; Hernández, J.A. Removal of Ni(II) and Cu(II) in Aqueous Solutions Using Treated Water Hyacinth (Eichhornia crassipes) as Bioadsorbent. Separations 2023, 10, 289. [Google Scholar] [CrossRef]
- Khan, M.U.; Malik, R.N.; Muhammad, S. Human health risk from heavy metal via food crops consumption with wastewater irrigation practices in Pakistan. Chemosphere 2013, 93, 2230–2238. [Google Scholar] [CrossRef]
- Estefan, G.; Sommer, R.; Ryan, J. Methods of Soil, Plant, and Water Analysis: A Manual for the West Asia and North Africa Region, 3rd ed.; International Center for Agricultural Research in the Dry Areas (ICARDA): Beirut, Lebanon, 2013; pp. 65–119. [Google Scholar]
- APHA. Standard Methods for the Examination of Water and Wastewater, 18th ed.; American Public Health Association and Water Environmental Foundation EPS Group, Inc.: Baltimore, MD, USA, 1998. [Google Scholar]
- Khalid, S.; Murtaza, B.; Shaheen, I.; Ahmad, I.; Ullah, M.I.; Abbas, T.; Rehman, F.; Ashraf, M.R.; Khalid, S.; Abbas, S. Assessment and public perception of drinking water quality and safety in district Vehari, Punjab, Pakistan. J. Clean. Prod. 2018, 181, 224–234. [Google Scholar] [CrossRef]
- Ahmad, I.; Akhtar, M.J.; Zahir, Z.A.; Naveed, M.; Mitter, B.; Sessitsch, A. Cadmium-tolerant bacteria induce metal stress tolerance in cereals. Environ. Sci. Pollut. Res. 2014, 21, 11054–11065. [Google Scholar] [CrossRef]
- Arnon, D.I. Copper enzymes isolated chloroplasts, polyphenoloxidase in Beta vulgaris. Plant Physiol. 1949, 24, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zayed, A.; Gowthaman, S.; Terry, N. Phytoaccumulation of Trace Elements by Wetland Plants: I. Duckweed; 0047-2425; Wiley Online Library: Hoboken, NJ, USA, 1998. [Google Scholar]
- Wu, F.; Sun, E. Effects of Copper, Zinc, Nickel, Chromium and Lead on the growth of water convolvulus in water culture. Environ. Prot. 1998, 21, 63–72. [Google Scholar]
- Hem, J.D. Study and Interpretation of the Chemical Characteristics of Natural Water; Department of the Interior, US Geological Survey: Reston, VA, USA, 1985; Volume 2254.
- Burton, F.L.; Tchobanoglous, G.; Tsuchihashi, R.; David Stensel, H. Wastewater Engineering: Treatment Resource Recovery; McGraw-Hill: New York, NY, USA, 2014. [Google Scholar]
- Shafy, H.I.A.; Farid, M.R.; El-Din, A.M.S. Water-Hyacinth from Nile River: Chemical. Egypt. J. Chem. 2016, 59, 131–143. [Google Scholar]
- Gamage, N.; Yapa, P. Use of water Hyacinth (Eichhornia crassipes (Mart) Solms) in treatment systems for textile mill effluents-a case study. J. Natl. Sci. Found. Sri Lanka 2001, 29, 15–28. [Google Scholar] [CrossRef]
- Aniyikaiye, T.E.; Oluseyi, T.; Odiyo, J.O.; Edokpayi, J.N. Physico-chemical analysis of wastewater discharge from selected paint industries in Lagos, Nigeria. Int. J. Environ. Res. Public Health 2019, 16, 1235. [Google Scholar] [CrossRef] [Green Version]
- Kamel, A. Phytoremediation potentiality of aquatic macrophytes in heavy metal contaminated water of El-Temsah Lake, Ismailia, Egypt. Middle-East J. Sci. Res. 2013, 14, 1555–1568. [Google Scholar]
- Samecka-Cymerman, A.; Kempers, A. Concentrations of heavy metals and plant nutrients in water, sediments and aquatic macrophytes of anthropogenic lakes (former open cut brown coal mines) differing in stage of acidification. Soc. Total Environ. 2001, 281, 87–98. [Google Scholar] [CrossRef]
- Branković, S. Metals (Fe, Mn, Cu and Pb) in Phytoremediation Some Aquatic Macrophytes in Lakes Gruza, Grosnica, Memorial Park Kragujevac and Bubanj. Master’s Thesis, Faculty of Science, University in Kragujevac, Kragujevac, Serbia, 2007. [Google Scholar]
- Lu, X.; Kruatrachue, M.; Pokethitiyook, P.; Homyok, K. Removal of cadmium and zinc by water hyacinth, Eichhornia crassipes. Sci. Asia 2004, 30, 103. [Google Scholar] [CrossRef]
- Hasan, S.H.; Talat, M.; Rai, S. Sorption of cadmium and zinc from aqueous solutions by water hyacinth (Eichchornia crassipes). Bioresour. Technol. 2007, 98, 918–928. [Google Scholar] [CrossRef]
- Victor, K.K.; Séka, Y.; Norbert, K.K.; Sanogo, T.A.; Celestin, A.B. Phytoremediation of wastewater toxicity using water hyacinth (Eichhornia crassipes) and water lettuce (Pistia stratiotes). Int. J. Phytoremediat. 2016, 18, 949–955. [Google Scholar] [CrossRef]
- Mohamad, H.H.; Latif, P.A. Uptake of cadmium and zinc from synthetic effluent by water hyacinth (Eichhornia crassipes). Environ. Asia 2010, 3, 36–42. [Google Scholar]
- Sooknah, R.D.; Wilkie, A.C. Nutrient removal by floating aquatic macrophytes cultured in anaerobically digested flushed dairy manure wastewater. Ecol. Eng. 2004, 22, 27–42. [Google Scholar] [CrossRef]
- Kumar, S.; Deswal, S. Phytoremediation capabilities of Salvinia molesta, water hyacinth, water lettuce, and duckweed to reduce phosphorus in rice mill wastewater. Int. J. Phytoremediat. 2020, 22, 1097–1109. [Google Scholar] [CrossRef] [PubMed]
- Ren, H.; Zhao, X.; Li, W.; Hussain, J.; Qi, G.; Liu, S. Calcium signaling in plant programmed cell death. Cells 2021, 10, 1089. [Google Scholar] [CrossRef] [PubMed]
- Petrov, V.; Hille, J.; Mueller-Roeber, B.; Gechev, T.S. ROS-mediated abiotic stress-induced programmed cell death in plants. Front. Plant Sci. 2015, 6, 69. [Google Scholar] [CrossRef] [Green Version]
- Liao, S.-W.; Chang, W.-L. Heavy metal phytoremediation by water hyacinth at constructed wetlands in Taiwan. J. Aquat. Plant Manag. 2004, 42, 60–68. [Google Scholar]
- Sarkar, M.; Rahman, A.; Bhoumik, N. Remediation of chromium and copper on water hyacinth (E. crassipes) shoot powder. Water Resour. Ind. 2017, 17, 1–6. [Google Scholar] [CrossRef]
- Mokhtar, M.N.; Fizri, F.F.A. Hyperaccumulation of copper by two species of aquatic plants. In Proceedings of the 2011 International Conference on Environment Science and Engineering IPCBEE, Bali, Indonesia, 1–3 April 2011; IACSIT Press: Singapore, 2011; Volume 8. [Google Scholar]
- Sjahrul, M. The effect of pH on bioaccumulation of Cd, Hg and Pb by water hyacinth. Eur. Chem. Bull. 2014, 3, 240–241. [Google Scholar]
- Ajayi, T.O.; Ogunbayo, A.O. Achieving environmental sustainability in wastewater treatment by phytoremediation with water hyacinth (Eichhornia crassipes). J. Sustain. Dev. 2012, 5, 80–90. [Google Scholar] [CrossRef] [Green Version]
- Jayaweera, M.W.; Kasturiarachchi, J.C.; Kularatne, R.K.; Wijeyekoon, S.L. Contribution of water hyacinth (Eichhornia crassipes (Mart.) Solms) grown under different nutrient conditions to Fe-removal mechanisms in constructed wetlands. J. Environ. Manag. 2008, 87, 450–460. [Google Scholar] [CrossRef] [PubMed]
- Ingole, N.; Bhole, A. Removal of heavy metals from aqueous solution by water hyacinth (Eichhornia crassipes). J. Water Supply Res. Technol. 2003, 52, 119–128. [Google Scholar] [CrossRef]
- Zhang, J.; Li, Y.; Liu, C.; Li, F.; Zhu, L.; Qiu, Z.; Xiao, M.; Yang, Z.; Cai, Y. Concentration levels, biological enrichment capacities and potential health risk assessment of trace elements in Eichhornia crassipes from Honghu lake, China. Sci. Rep. 2019, 9, 2431. [Google Scholar] [CrossRef] [Green Version]
- Jódar-Abellán, A.; López-Ortiz, M.I.; Melgarejo-Moreno, J. Wastewater treatment and water reuse in Spain. Current situation and perspectives. Water 2019, 11, 1551. [Google Scholar] [CrossRef] [Green Version]
- Azizi, A.; Krika, A.; Krika, F. Heavy metal bioaccumulation and distribution in Typha latifolia and Arundo donax: Implication for phytoremediation. Casp. J. Environ. Sci. 2019, 18, 21–29. [Google Scholar]
- Ibezim-Ezeani, M.; Ihunwo, O. Assessment of Pb, Cd, Cr and Ni in water and water hyacinth (Eichhornia crassipes) plant from Woji Creek, Rivers State, Nigeria. J. Appl. Sci. Environ. Manag. 2020, 24, 719–727. [Google Scholar] [CrossRef]
Water Sources | pH | EC | TDS | HCO3− | CO32− | Cl− | SO42− | Na+ | K+ | Ca2+ | |
---|---|---|---|---|---|---|---|---|---|---|---|
(μS cm−1) | (mg L−1) | ||||||||||
FW | Min. | 8.40 | 420.00 | 200.00 | 71.22 | N/A | 74.80 | 14.03 | 12.60 | 3.10 | 32.30 |
Max. | 8.70 | 470.00 | 230.00 | 109.83 | N/A | 82.24 | 61.98 | 13.80 | 7.50 | 43.10 | |
Ave. | 8.54 | 436.00 | 212.00 | 93.57 | N/A | 79.33 | 19.10 | 13.38 | 4.03 | 35.75 | |
SD | 0.13 | 19.49 | 10.95 | 19.66 | N/A | 3.00 | 21.11 | 0.48 | 0.70 | 3.81 | |
IW | Min. | 7.90 | 1420.00 | 700.00 | 54.92 | 12.00 | 425.54 | 34.25 | 34.50 | 17.10 | 71.30 |
Max. | 8.50 | 2430.00 | 1200.00 | 146.44 | 91.53 | 744.50 | 273.05 | 38.10 | 37.80 | 89.50 | |
Ave. | 8.32 | 1746.00 | 864.00 | 107.38 | 61.52 | 557.83 | 137.27 | 37.03 | 30.37 | 77.33 | |
SD | 0.24 | 402.53 | 198.82 | 34.13 | 35.41 | 133.47 | 92.91 | 1.31 | 8.54 | 6.69 | |
UW | Min. | 7.80 | 1230.00 | 610.00 | 91.53 | 12.04 | 425.40 | 12.95 | 38.20 | 17.80 | 45.80 |
Max. | 8.00 | 1520.00 | 740.00 | 170.84 | 18.01 | 602.65 | 62.73 | 302.00 | 94.00 | 74.40 | |
Ave. | 7.94 | 1366.00 | 672.00 | 123.38 | 14.43 | 496.20 | 38.00 | 154.10 | 37.12 | 58.65 | |
SD | 0.09 | 123.00 | 58.05 | 29.66 | 3.27 | 70.82 | 20.37 | 101.68 | 28.42 | 11.03 | |
Permissible Limits | |||||||||||
NEQS (2008) | 6.5 to 8.5 | N/A * | <1000 | N/A | N/A | <250 | N/A | N/A | N/A | N/A | |
WHO (2008) | 6.5 to 9.5 | N/A | 1000 | N/A | N/A | 250 | 250 | 200 | N/A | N/A | |
USEPA | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | |
EU | ≥6.5 to ≤9.5 | 2500 at 20 °C | N/A | N/A | N/A | 250 | 250 | 200 | N/A | N/A |
Water Sources | Cd | Cr | Zn | Pb | Ni | As | |
---|---|---|---|---|---|---|---|
mg L−1 | μg L−1 | ||||||
FW | Min. | 0.001 | 0.05 | 0.02 | 0.01 | 0.01 | 0.61 |
Max. | 0.005 | 0.15 | 0.03 | 0.22 | 0.02 | 2.71 | |
Ave. | 0.003 | 0.09 | 0.03 | 0.08 | 0.01 | 1.92 | |
SD | 0.001 | 0.05 | 0.00 | 0.09 | 0.01 | 0.83 | |
IW | Min. | 0.001 | 0.02 | 0.03 | 0.03 | 0.01 | 17.30 |
Max. | 0.004 | 0.08 | 0.05 | 0.06 | 0.03 | 33.89 | |
Ave. | 0.002 | 0.05 | 0.04 | 0.04 | 0.02 | 28.45 | |
SD | 0.001 | 0.03 | 0.01 | 0.01 | 0.01 | 7.62 | |
UW | Min. | 0.002 | 0.01 | 0.06 | 0.01 | 0.01 | 12.52 |
Max. | 0.005 | 0.07 | 0.18 | 0.09 | 0.06 | 25.69 | |
Ave. | 0.003 | 0.05 | 0.10 | 0.05 | 0.03 | 19.62 | |
SD | 0.001 | 0.02 | 0.05 | 0.03 | 0.02 | 5.44 | |
Permissible Limits | |||||||
NEQS | 0.01 | 0.05 | 5 | 0.05 | 0.02 | 50 | |
WHO | 0.003 | 0.05 | 3 | 0.01 | 0.07 | 10 | |
USEPA | 0.005 | 0.1 | 0.015 | 10 | |||
EU | 0.005 | 0.05 | 0.01 | 0.02 | 10 |
Water Sources | TR | SC | AR | ICC | Chl-a | Chl-b | SFWt | SDWt | RFWt | RDWt | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
mmol m2 s−1 | μmol m2 s−1 | μmol mol−1 | mg g−1 | g | ||||||||
FW | Min. | 1.01 | 397.70 | 0.40 | 22.00 | 0.01 | 0.64 | 24 | 1.59 | 16 | 1.01 | |
Max. | 3.76 | 999.90 | 2.40 | 31.30 | 0.12 | 1.31 | 56 | 4.31 | 30 | 3.76 | ||
Ave. | 2.67 | 755.56 | 1.26 | 25.60 | 0.52 | 0.98 | 40 | 2.99 | 22 | 2.67 | ||
SD | 1.14 | 267.79 | 0.76 | 3.84 | 0.05 | 0.30 | 13 | 1.23 | 7 | 1.14 | ||
IW | Min. | 1.27 | 257.15 | 0.25 | 10.50 | 0.01 | 0.78 | 24 | 1.24 | 12 | 1.27 | |
Max. | 3.63 | 968.00 | 1.87 | 40.30 | 0.08 | 1.29 | 86 | 6.21 | 40 | 3.63 | ||
Ave. | 2.69 | 536.57 | 0.82 | 23.16 | 0.03 | 1.05 | 42 | 2.72 | 19 | 2.69 | ||
SD | 0.96 | 283.38 | 0.66 | 12.32 | 0.03 | 0.23 | 25 | 2.04 | 12 | 0.96 | ||
UW | Min. | 1.10 | 463.00 | 0.30 | 18.00 | 0.02 | 0.47 | 20 | 0.84 | 10 | 1.10 | |
Max. | 3.37 | 999.90 | 3.40 | 33.70 | 0.11 | 1.67 | 66 | 4.71 | 32 | 3.37 | ||
Ave. | 2.47 | 755.16 | 1.66 | 24.14 | 0.06 | 1.21 | 41 | 2.80 | 19 | 2.47 | ||
SD | 0.93 | 261.39 | 1.30 | 7.19 | 0.04 | 0.44 | 22 | 1.81 | 10 | 0.93 |
Water Sources | E. crassipes Shoots | E. crassipes Roots | ||||||
---|---|---|---|---|---|---|---|---|
Na+ | K+ | Ca2+ | Na+ | K+ | Ca2+ | |||
mg L−1 | ||||||||
FW | Min. | 100.0 | 152.0 | 287.0 | 11.7 | 62.1 | 32.3 | |
Max. | 102 | 312 | 306 | 108 | 160 | 296 | ||
Mean | 101.00 | 208.0 | 295.40 | 85.74 | 117.20 | 239.46 | ||
SD | 1.00 | 63.64 | 7.13 | 41.52 | 47.64 | 115.88 | ||
IW | Min. | 115 | 110 | 318 | 96 | 40 | 309 | |
Max. | 127 | 318 | 328 | 114 | 153 | 328 | ||
Mean | 120.20 | 178.60 | 322.40 | 106.20 | 86.00 | 319.60 | ||
SD | 4.66 | 83.14 | 3.65 | 6.72 | 44.66 | 8.20 | ||
UW | Min. | 98 | 116 | 293 | 106 | 72 | 302 | |
Max. | 117 | 312 | 313 | 125 | 174 | 307 | ||
Mean | 108.20 | 229.00 | 301.80 | 114.40 | 110.80 | 306.40 | ||
SD | 7.26 | 61.26 | 7.19 | 7.40 | 38.85 | 3.05 |
Water Sources | E. crassipes Shoots | E. crassipes Roots | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cd | Cr | Zn | Pb | Ni | As | Cd | Cr | Zn | Pb | Ni | As | |||
mg L−1 | μg L−1 | mg L−1 | μg L−1 | |||||||||||
FW | Min. | 0.014 | 0.07 | 0.02 | 0.00 | 0.02 | 0.89 | 0.013 | 0.09 | 0.03 | 0.09 | 0.06 | 9.17 | |
Max. | 0.029 | 0.29 | 0.35 | 0.11 | 0.11 | 22.81 | 0.085 | 0.56 | 1.53 | 0.22 | 0.39 | 31.26 | ||
Ave. | 0.020 | 0.13 | 0.20 | 0.04 | 0.07 | 6.47 | 0.044 | 0.30 | 0.67 | 0.14 | 0.18 | 17.96 | ||
SD | 0.006 | 0.09 | 0.12 | 0.04 | 0.03 | 9.20 | 0.028 | 0.18 | 0.70 | 0.07 | 0.13 | 8.10 | ||
IW | Min. | 0.015 | 0.12 | 0.10 | 0.04 | 0.03 | 4.31 | 0.021 | 0.11 | 0.16 | 0.05 | 0.05 | 24.34 | |
Max. | 0.048 | 0.33 | 0.79 | 0.24 | 0.07 | 29.28 | 0.254 | 0.19 | 1.01 | 0.11 | 0.11 | 47.77 | ||
Ave. | 0.028 | 0.22 | 0.40 | 0.10 | 0.05 | 11.95 | 0.083 | 0.14 | 0.45 | 0.08 | 0.08 | 36.14 | ||
SD | 0.013 | 0.08 | 0.32 | 0.08 | 0.02 | 10.83 | 0.096 | 0.03 | 0.33 | 0.02 | 0.02 | 8.36 | ||
UW | Min. | 0.013 | 0.04 | 0.03 | 0.02 | 0.01 | 2.51 | 0.014 | 0.10 | 0.13 | 0.05 | 0.05 | 32.45 | |
Max. | 0.080 | 0.19 | 0.20 | 0.14 | 0.05 | 36.52 | 0.029 | 0.21 | 0.63 | 0.17 | 0.86 | 48.86 | ||
Ave. | 0.042 | 0.10 | 0.12 | 0.08 | 0.04 | 18.45 | 0.020 | 0.15 | 0.32 | 0.10 | 0.23 | 39.94 | ||
SD | 0.026 | 0.05 | 0.08 | 0.05 | 0.02 | 15.12 | 0.006 | 0.04 | 0.21 | 0.06 | 0.35 | 7.01 |
Water Sources | BCF of Shoots | BCF of Roots | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cd | Cr | Zn | Pb | Ni | As | Cd | Cr | Zn | Pb | Ni | As | |||
FW | Min | 4.24 | 0.47 | 0.59 | 0.06 | 2.95 | 0.55 | 4.13 | 1.74 | 1.00 | 0.42 | 3.55 | 5.70 | |
Max | 24.10 | 5.33 | 10.61 | 7.64 | 17.37 | 8.41 | 30.75 | 7.13 | 59.62 | 22.41 | 69.55 | 26.89 | ||
Ave. | 10.57 | 1.97 | 6.95 | 2.26 | 8.06 | 3.16 | 19.41 | 3.56 | 27.39 | 6.59 | 24.50 | 11.86 | ||
SD | 8.09 | 1.95 | 3.77 | 3.30 | 5.88 | 3.27 | 10.27 | 2.18 | 29.45 | 9.19 | 26.17 | 8.99 | ||
IW | Min | 5.76 | 2.76 | 2.23 | 0.85 | 2.54 | 0.13 | 9.75 | 1.49 | 3.61 | 1.23 | 2.90 | 1.02 | |
Max | 22.29 | 12.48 | 29.55 | 5.48 | 6.77 | 0.92 | 240.32 | 8.29 | 37.78 | 2.73 | 7.95 | 2.18 | ||
Ave. | 13.76 | 5.81 | 10.97 | 2.60 | 3.78 | 0.46 | 61.68 | 4.17 | 13.05 | 1.86 | 5.72 | 1.34 | ||
SD | 6.64 | 4.01 | 11.28 | 1.92 | 1.74 | 0.40 | 100.16 | 3.26 | 14.02 | 0.73 | 1.87 | 0.50 | ||
UW | Min | 3.79 | 1.34 | 0.14 | 0.26 | 0.30 | 0.10 | 3.71 | 1.54 | 1.80 | 0.64 | 1.38 | 1.35 | |
Max | 41.50 | 2.85 | 3.14 | 11.09 | 4.11 | 2.27 | 14.59 | 10.19 | 5.63 | 16.88 | 21.81 | 2.69 | ||
Ave. | 21.94 | 2.25 | 1.55 | 3.59 | 1.79 | 0.99 | 8.99 | 4.58 | 3.04 | 4.91 | 7.36 | 2.14 | ||
SD | 16.84 | 0.64 | 1.21 | 4.64 | 1.53 | 0.89 | 3.89 | 3.65 | 1.57 | 6.98 | 8.38 | 0.53 |
Water Sources | Cd | Cr | Zn | Pb | Ni | As | |
---|---|---|---|---|---|---|---|
FW | Min. | 0.24 | 0.22 | 0.03 | 0.03 | 0.15 | 0.06 |
Max. | 1.08 | 0.90 | 10.61 | 0.48 | 1.44 | 1.47 | |
Ave. | 0.61 | 0.52 | 3.62 | 0.29 | 0.61 | 0.40 | |
SD | 0.37 | 0.3 | 4.97 | 0.17 | 0.54 | 0.60 | |
IW | Min. | 0.06 | 0.79 | 0.43 | 0.6 | 0.39 | 0.09 |
Max. | 2.29 | 2.09 | 1.67 | 2.12 | 0.9 | 0.81 | |
Ave. | 0.79 | 1.61 | 0.87 | 1.29 | 0.68 | 0.33 | |
SD | 0.86 | 0.50 | 0.47 | 0.61 | 0.21 | 0.29 | |
UW | Min. | 0.45 | 0.28 | 0.04 | 0.41 | 0.01 | 0.05 |
Max. | 4.21 | 1.19 | 1.38 | 1.14 | 1.00 | 0.91 | |
Ave. | 2.34 | 0.70 | 0.61 | 0.77 | 0.49 | 0.47 | |
SD | 1.63 | 0.38 | 0.56 | 0.29 | 0.36 | 0.38 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rasool, S.; Ahmad, I.; Jamal, A.; Saeed, M.F.; Zakir, A.; Abbas, G.; Seleiman, M.F.; Caballero-Calvo, A. Evaluation of Phytoremediation Potential of an Aquatic Macrophyte (Eichhornia crassipes) in Wastewater Treatment. Sustainability 2023, 15, 11533. https://doi.org/10.3390/su151511533
Rasool S, Ahmad I, Jamal A, Saeed MF, Zakir A, Abbas G, Seleiman MF, Caballero-Calvo A. Evaluation of Phytoremediation Potential of an Aquatic Macrophyte (Eichhornia crassipes) in Wastewater Treatment. Sustainability. 2023; 15(15):11533. https://doi.org/10.3390/su151511533
Chicago/Turabian StyleRasool, Shahbaz, Iftikhar Ahmad, Aftab Jamal, Muhammad Farhan Saeed, Ali Zakir, Ghulam Abbas, Mahmoud F. Seleiman, and Andrés Caballero-Calvo. 2023. "Evaluation of Phytoremediation Potential of an Aquatic Macrophyte (Eichhornia crassipes) in Wastewater Treatment" Sustainability 15, no. 15: 11533. https://doi.org/10.3390/su151511533
APA StyleRasool, S., Ahmad, I., Jamal, A., Saeed, M. F., Zakir, A., Abbas, G., Seleiman, M. F., & Caballero-Calvo, A. (2023). Evaluation of Phytoremediation Potential of an Aquatic Macrophyte (Eichhornia crassipes) in Wastewater Treatment. Sustainability, 15(15), 11533. https://doi.org/10.3390/su151511533