Temporal–Spatial Evolution, Influencing Factors, and Driving Mechanisms of Environmental Regulation Performance Disparities: Evidence from China
Abstract
:1. Introduction
2. Literature Review
2.1. Environmental Regulation Performance
2.2. Disparities in Environmental Regulation Performance
2.3. Driving Mechanisms of Differences in Environmental Regulation Performance
3. Methods and Data
3.1. Entropy Method
3.2. Theil Model
3.3. Quadratic Assignment Procedure Method
3.4. Qualitative Comparative Analysis
3.5. Indicator and Data Source Description
4. Results
4.1. Temporal and Spatial Characteristics of Environmental Regulatory Performance Differences
4.2. Decomposition of Environmental Regulation Performance Differences
4.3. Factors Influencing Environmental Regulation Performance Differences
4.4. Driving Mechanisms of Environmental Regulation Performance Differences
4.4.1. Driving Mechanism of High Environmental Regulation Performance
4.4.2. Non-High Environmental Regulation Performance-Driven Mechanisms
5. Discussion
6. Conclusions and Policy Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cole, S.; Moksnes, P.-O.; Söderqvist, T.; Wikström, S.A.; Sundblad, G.; Hasselström, L.; Bergström, U.; Kraufvelin, P.; Bergström, L. Environmental compensation for biodiversity and ecosystem services: A flexible framework that addresses human wellbeing. Ecosyst. Serv. 2021, 50, 101319. [Google Scholar] [CrossRef]
- Shi, H.; Yi, M. Research on the influence of environmental regulation on high-quality development and spatial spillover effect. Inq. Into Into Into Econ. Issues 2020, 454, 164–179. (In Chinese) [Google Scholar]
- Zheng, J.; Liu, F.; Zhao, Q.; Fu, C. Environmental regulation and innovative development of high quality: A theoretical study of the new structure porter hypothesis. Inq. Into Econ. Issues 2020, 461, 175–181. (In Chinese) [Google Scholar]
- Hou, Y.; Zhang, K.; Zhu, Y.; Liu, W. Spatial and temporal differentiation and influencing factors of environmental governance performance in the Yangtze River Delta, China. Sci. Total Environ. 2021, 801, 149699. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Wang, S.; Li, B.; Zhang, W. Dynamics, differences, influencing factors of eco-efficiency in China: A spatiotemporal perspective analysis. J. Environ. Manag. 2020, 264, 110442. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhang, R.; Cui, J. Spatial differentiation and influencing factors in the ecological well-being performance of urban agglomerations in the middle reaches of the Yangtze River: A hierarchical perspective. J. Environ. Res. Public Health 2022, 19, 12867. [Google Scholar] [CrossRef] [PubMed]
- Hu, M.; Sarwar, S.; Li, Z. Spatio-temporal differentiation mode and threshold effect of Yangtze River Delta urban ecological well-being performance based on network DEA. Sustainability 2021, 13, 4550. [Google Scholar] [CrossRef]
- Ma, D.; Li, G.; He, F. Exploring PM2.5 environmental efficiency and its influencing factors in China. Int. J. Environ. Res. Public Health 2021, 18, 12218. [Google Scholar] [CrossRef]
- Vitenu-Sackey, P.A.; Acheampong, T. Impact of economic policy uncertainty, energy intensity, technological innovation and R&D on CO2 emissions: Evidence from a panel of 18 developed economies. Environ. Sci. Pollut. Res. 2022, 29, 87426–87445. [Google Scholar] [CrossRef]
- Khan, P.A.; Johl, S.K.; Kumar, A.; Luthra, S. Hope-hype of green innovation, corporate governance index, and impact on firm financial performance: A comparative study of Southeast Asian countries. Environ. Sci. Pollut. Res. 2023, 30, 55237–55254. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, G. Can environmental regulation improve high-quality economic development in China? The mediating effects of digital economy. Sustainability 2022, 14, 12143. [Google Scholar] [CrossRef]
- Ma, X.; Xu, J. Impact of environmental regulation on high-quality economic development. Front. Environ. Sci. 2022, 10, 896892. [Google Scholar] [CrossRef]
- Chen, H.; Yang, Y.; Yang, M.; Huang, H. The impact of environmental regulation on China’s industrial green development and its heterogeneity. Front. Ecol. Evol. 2022, 10, 967550. [Google Scholar] [CrossRef]
- Chen, W.; Chen, S.; Wu, T. Research of the impact of heterogeneous environmental regulation on the performance of China’s manufacturing enterprises. Front. Environ. Sci. 2022, 10, 948611. [Google Scholar] [CrossRef]
- Liu, L.; Li, M.; Gong, X.; Jiang, P.; Jin, R.; Zhang, Y. Influence mechanism of different environmental regulations on carbon emission efficiency. Int. J. Environ. Res. Public Health 2022, 19, 13385. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.; Zhong, Y.; Liu, M.; Xiao, W.; Qin, C. Research on the impacts of dual environmental regulation on regional carbon emissions under the goal of carbon neutrality-the intermediary role of green technology innovation. Front. Environ. Sci. 2022, 10, 993833. [Google Scholar] [CrossRef]
- Xiong, B.; Wang, R. Effect of environmental regulation on industrial solid waste pollution in China: From the perspective of formal environmental regulation and informal environmental regulation. Int. J. Environ. Res. Public Health 2020, 17, 7798. [Google Scholar] [CrossRef]
- Li, X.; Li, Y.; Xu, C.; Duan, J.; Zhao, W.; Cheng, B.; Tian, Y. Can environmental regulation reduce urban haze concentration from the perspective of China’s five urban agglomerations? Atmosphere 2022, 13, 668. [Google Scholar] [CrossRef]
- Liu, Y.; Luo, N.; Wu, S. Nonlinear effects of environmental regulation on environmental pollution. Discret. Dyn. Nat. Soc. 2019, 2019, 6065396. [Google Scholar] [CrossRef]
- Wang, K.; Yang, X. Impact of government regulation on emission reduction of environmental pollutants in China. Nat. Environ. Pollut. Technol. 2021, 20, 1855–1861. [Google Scholar] [CrossRef]
- Nie, G.-Q.; Zhu, Y.-F.; Wu, W.-P.; Xie, W.-H.; Wu, K.-X. Impact of voluntary environmental regulation on green technological innovation: Evidence from Chinese manufacturing enterprises. Front. Energy Res. 2022, 10, 889037. [Google Scholar] [CrossRef]
- Xu, X.; Hou, P.; Liu, Y. The impact of heterogeneous environmental regulations on the technology innovation of urban green energy: A study based on the panel threshold model. Green Financ. 2022, 4, 115–136. [Google Scholar] [CrossRef]
- Tang, J.; Li, S. How do environmental regulation and environmental decentralization affect regional green innovation? Empirical research from China. Int. J. Environ. Res. Public Health 2022, 19, 7074. [Google Scholar] [CrossRef]
- Miao, Z.; Baležentis, T.; Shao, S.; Chang, D. Energy use, industrial soot and vehicle exhaust pollution—China’s regional air pollution recognition, performance decomposition and governance. Energy Econ. 2019, 83, 501–514. [Google Scholar] [CrossRef]
- Miao, Z.; Baležentis, T.; Tian, Z.; Shao, S.; Geng, Y.; Wu, R. Environmental performance and regulation effect of China’s atmospheric pollutant emissions: Evidence from “Three Regions and Ten Urban Agglomerations”. Environ. Resour. Econ. 2019, 74, 211–242. [Google Scholar] [CrossRef]
- Choi, Y.; Yang, F.; Lee, H. On the unbalanced atmospheric environmental performance of major cities in China. Sustainability 2020, 12, 5391. [Google Scholar] [CrossRef]
- Huang, W.; Liu, Q.; Abu Hatab, A. Is the technical efficiency green? The environmental efficiency of agricultural production in the MENA region. J. Environ. Manag. 2023, 327, 116820. [Google Scholar] [CrossRef]
- Peng, B.; Li, Y.; Wei, G.; Elahi, E. Temporal and spatial differentiations in environmental governance. Int. J. Environ. Res. Public Health 2018, 15, 2242. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Z.; Guo, F.; Cai, L.; Li, X. Eco-Province construction performance and its influencing factors of Shandong Province in China: From regional eco-efficiency perspective. Sustainability 2021, 13, 12068. [Google Scholar] [CrossRef]
- Zhao, X.; Ding, X.; Li, L. Research on environmental regulation, technological innovation and green transformation of manufacturing industry in the Yangtze River Economic Belt. Sustainability 2021, 13, 10005. [Google Scholar] [CrossRef]
- Meng, X.; Di, Q.; Ji, J. Measurement on the level of the urban ecological performance and analysis of influential factors in Beijing-Tianjin-Hebei Urban Agglomeration. Econ. Geogr. 2020, 40, 181–186+225. (In Chinese) [Google Scholar] [CrossRef]
- Wei, W.; Ding, S.; Zheng, S.; Ma, J.; Niu, T.; Li, J. Environmental efficiency evaluation of China’s power industry based on the two-stage network slack-based measure model. Int. J. Environ. Res. Public Health 2021, 18, 12650. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, Z. A study on spatial-temporal heterogeneity of environmental regulation tourism eco-efficiency: Taking Yangtze River Delta Urban Agglomeration as an example. Resour. Environ. Yangtze Basin 2022, 31, 750–758. (In Chinese) [Google Scholar]
- Zhang, L.; Peng, X. Environmental efficiency of node cities in Chinese section of silk road economic zone and its influencing factors. Discret. Dyn. Nat. Soc. 2021, 2021, 6405394. [Google Scholar] [CrossRef]
- Yang, J.; Wang, S.; Sun, S.; Zhu, J. Influence mechanism of high-tech industrial agglomeration on green innovation performance: Evidence from China. Sustainability 2022, 14, 3187. [Google Scholar] [CrossRef]
- Wu, H.; Xu, L.; Ren, S.; Hao, Y.; Yan, G. How do energy consumption and environmental regulation affect carbon emissions in China? New evidence from a dynamic threshold panel model. Resour. Policy 2020, 67, 101678. [Google Scholar] [CrossRef]
- Shi, D.; Bu, C.; Xue, H. Deterrence effects of disclosure: The impact of environmental information disclosure on emission reduction of firms. Energy Econ. 2021, 104, 105680. [Google Scholar] [CrossRef]
- Muhammad, S.; Pan, Y.; Magazzino, C.; Luo, Y.; Waqas, M. The fourth industrial revolution and environmental efficiency: The role of fintech industry. J. Clean. Prod. 2022, 381, 135196. [Google Scholar] [CrossRef]
- Peng, F.; Zhang, X.; Zhou, S. The role of foreign technology transfer in improving environmental efficiency: Empirical evidence From China’s high-tech industry. Front. Environ. Sci. 2022, 10, 855427. [Google Scholar] [CrossRef]
- Ong, T.S.; Lee, A.S.; Teh, B.H.; Magsi, H.B. Environmental innovation, environmental performance and financial performance: Evidence from Malaysian environmental proactive firms. Sustainability 2019, 11, 3494. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Martínez, C.C.; García-Sánchez, I.M.; Vicente-Galindo, P.; Galindo-Villardón, P. Exploring relationships between environmental performance, e-government and corruption: A multivariate perspective. Sustainability 2019, 11, 6497. [Google Scholar] [CrossRef] [Green Version]
- Haldorai, K.; Kim, W.G.; Garcia, R.L.F. Top management green commitment and green intellectual capital as enablers of hotel environmental performance: The mediating role of green human resource management. Tour. Manag. 2022, 88, 104431. [Google Scholar] [CrossRef]
- Cheng, Z.; Kong, S. The effect of environmental regulation on green total-factor productivity in China’s industry. Environ. Impact Assess. Rev. 2022, 94, 106757. [Google Scholar] [CrossRef]
- Nassani, A.A.; Yousaf, Z.; Radulescu, M.; Haffar, M. Environmental performance through environmental resources conservation efforts: Does corporate social responsibility authenticity act as mediator? Sustainability 2022, 14, 2330. [Google Scholar] [CrossRef]
- Cheng, K.; He, K.X.; Fu, Q.; Tagawa, K.; Guo, X.X. Assessing the coordination of regional water and soil resources and ecological-environment system based on speed characteristics. J. Clean. Prod. 2022, 339, 130718. [Google Scholar] [CrossRef]
- Theil, H.; Uribe, P. The information approach to the aggregation of input-output tables. Rev. Econ. Stat. 1967, 49, 451–462. [Google Scholar] [CrossRef]
- Krackardt, D. QAP partialling as a test of spuriousness. Soc. Netw. 1987, 9, 171–186. [Google Scholar] [CrossRef]
- Su, Y.; Yu, Y.-Q. Spatial association effect of regional pollution control. J. Clean. Prod. 2019, 213, 540–552. [Google Scholar] [CrossRef]
- Benlic, U.; Hao, J.-K. Breakout local search for the quadratic assignment problem. Appl. Math. Comput. 2013, 219, 4800–4815. [Google Scholar] [CrossRef] [Green Version]
- Nam, Y. Institutional network structure of corporate stakeholders regarding global corporate social responsibility issues. Qual. Quant. 2015, 49, 1063–1080. [Google Scholar] [CrossRef]
- Marx, A.; Rihoux, B.; Ragin, C. The origins, development, and application of qualitative comparative analysis: The first 25 years. Eur. Political Sci. Rev. 2014, 6, 115–142. [Google Scholar] [CrossRef] [Green Version]
- Rihoux, B.; Ragin, C. Configurational Comparative Methods: Qualitative Comparative Analysis (QCA) and Related Techniques; SAGE Publications, Inc.: Thousand Oaks, CA, USA, 2009. [Google Scholar] [CrossRef]
- Greckhamer, T.; Misangyi, V.; Fiss, P. The two QCAs: From a small-N to a large-N set-theoretic approach. Config. Theory Methods Organ. Res. 2013, 38, 49–75. [Google Scholar] [CrossRef] [Green Version]
- Woodside, A.G.; Hsu, S.-Y.; Marshall, R. General theory of cultures’ consequences on international tourism behavior. J. Bus. Res. 2011, 64, 785–799. [Google Scholar] [CrossRef]
- Sun, P.; Chen, S. The influence factors and multiple paths of local government innovation: Based on the dual detection of panel data analysis and qualitative comparison analysis. J. Beijing Adm. Inst. 2020, 127, 28–36. (In Chinese) [Google Scholar] [CrossRef]
Year | Total | Within-Group Differences | Between-Group Differences | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
D-V | C-R (%) | Contribution Rate of Different Regions (%) | D-V | C-R (%) | Inter-Regional Contribution Rate (%) | ||||||||||
E | C | W | Ne | E-C | E-W | E-Ne | C-W | C-Ne | W-Ne | ||||||
2008 | 0.108 | 0.052 | 47.97 | 9.12 | 12.71 | 8.07 | 18.07 | 0.056 | 52.03 | 7.76 | 4.86 | 9.99 | 6.60 | 13.97 | 8.85 |
2009 | 0.108 | 0.052 | 47.85 | 9.11 | 12.64 | 7.97 | 18.13 | 0.056 | 52.15 | 7.81 | 4.88 | 9.86 | 6.60 | 14.05 | 8.95 |
2010 | 0.091 | 0.045 | 49.79 | 9.40 | 13.29 | 8.35 | 18.75 | 0.046 | 50.21 | 7.42 | 4.55 | 9.72 | 6.40 | 13.55 | 8.57 |
2011 | 0.097 | 0.040 | 41.10 | 7.76 | 10.90 | 6.87 | 15.57 | 0.057 | 58.90 | 8.70 | 5.47 | 11.44 | 7.47 | 15.82 | 10.00 |
2012 | 0.095 | 0.050 | 52.81 | 9.91 | 13.90 | 9.18 | 19.82 | 0.045 | 47.19 | 7.02 | 4.20 | 9.18 | 6.00 | 12.73 | 8.06 |
2013 | 0.091 | 0.035 | 38.23 | 7.19 | 10.16 | 6.42 | 14.46 | 0.056 | 61.77 | 9.18 | 5.72 | 11.97 | 7.83 | 16.58 | 10.49 |
2014 | 0.094 | 0.041 | 43.83 | 8.29 | 11.64 | 7.35 | 16.55 | 0.053 | 56.17 | 8.30 | 5.16 | 10.92 | 7.13 | 15.11 | 9.55 |
2015 | 0.095 | 0.042 | 43.93 | 8.29 | 11.68 | 7.38 | 16.58 | 0.053 | 56.07 | 8.27 | 5.16 | 10.90 | 7.12 | 15.09 | 9.53 |
2016 | 0.082 | 0.037 | 45.06 | 8.45 | 12.02 | 7.58 | 17.01 | 0.045 | 54.94 | 8.02 | 5.03 | 10.63 | 7.04 | 14.85 | 9.37 |
2017 | 0.084 | 0.033 | 39.41 | 7.36 | 10.48 | 6.61 | 14.96 | 0.051 | 60.59 | 8.78 | 5.60 | 11.78 | 7.77 | 16.37 | 10.29 |
2018 | 0.068 | 0.033 | 48.75 | 9.12 | 12.99 | 8.18 | 18.46 | 0.035 | 51.25 | 7.38 | 4.58 | 9.93 | 6.62 | 13.96 | 8.78 |
2019 | 0.066 | 0.027 | 40.75 | 7.59 | 10.95 | 6.78 | 15.43 | 0.039 | 59.25 | 8.48 | 5.27 | 11.57 | 7.62 | 16.19 | 10.12 |
2020 | 0.079 | 0.027 | 34.48 | 6.41 | 9.29 | 5.71 | 13.07 | 0.052 | 65.52 | 9.28 | 6.04 | 12.75 | 8.53 | 17.84 | 11.08 |
Variable | Integral | Eco- Environmental | Eco- Economic | Eco- Social | Eco- Cultural | Eco- Political | |
---|---|---|---|---|---|---|---|
Political factors | Value of decision making | −0.355 *** | −0.465 *** | −0.280 *** | −0.037 | −0.297 *** | −0.212 *** |
Sense of innovation | 0.179 *** | 0.060 | 0.226 *** | 0.170 *** | 0.184 *** | −0.017 | |
Decentralization of decision making | −0.164 *** | −0.320 *** | −0.082 ** | 0.044 | −0.164 *** | −0.150 *** | |
Administrative factors | Infrastructure inputs | 0.039 | 0.142 *** | −0.016 | −0.047 | 0.020 | 0.073 * |
Green technology inputs | 0.126 *** | 0.050 | 0.151 *** | 0.106 ** | 0.128 *** | 0.006 | |
Command-based regulation | 0.124 ** | 0.097 ** | 0.083 * | 0.017 | 0.130 ** | 0.073 * | |
Incentive-based regulation | −0.156 *** | −0.309 *** | −0.131 *** | 0.053 | −0.065* | −0.169 *** | |
Voluntary regulation | 0.044 | −0.044 | 0.048 | 0.082* | 0.055 | −0.019 | |
Rule-of-law factors | Project supervision | 0.085 * | −0.137 *** | 0.390 *** | 0.253 *** | 0.066 * | −0.293 *** |
Financial supervision | 0.226 *** | 0.021 | 0.350 *** | 0.280 *** | 0.140 *** | 0.002 | |
Subject supervision | 0.332 *** | 0.035 | 0.424 *** | 0.330 *** | 0.293 *** | 0.002 | |
Non-environmental regulatory factors | Urbanization | 0.188 *** | 0.002 | 0.207 *** | 0.191 *** | 0.166 *** | 0.037 |
Marketization | 0.156 *** | 0.005 | 0.148 *** | 0.121 *** | 0.143 *** | 0.076 * | |
Openness to the outside | −0.007 | −0.033 | −0.075 * | −0.030 | 0.017 | 0.060 | |
Regional population density | 0.069 * | −0.034 | 0.058 | 0.070* | 0.050 | 0.047 |
Variable | Integral | Eco- Environmental | Eco- Economic | Eco- Social | Eco- Cultural | Eco- Political | |
---|---|---|---|---|---|---|---|
Political factors | Value of decision making | −0.333 ** | −0.409 * | −0.284 ** | −0.046 | −0.304 ** | −0.149 ** |
Sense of innovation | 0.120 | 0.155 | 0.137 | 0.203 | 0.291 ** | −0.237 * | |
Decentralization of decision making | −0.093 ** | −0.240 *** | −0.099 ** | 0.040 | −0.120 ** | −0.018 | |
Administrative factors | Infrastructure inputs | 0.051 | 0.065 * | 0.010 | −0.016 | 0.028 | 0.072 * |
Green technology inputs | −0.112 | −0.044 | −0.026 | −0.156 | −0.229 * | 0.048 | |
Command-based regulation | 0.090 ** | 0.021 | 0.019 | 0.019 | 0.070 * | 0.118 *** | |
Incentive-based regulation | −0.004 | −0.238 *** | −0.002 | 0.156 *** | 0.055 | −0.080 ** | |
Voluntary regulation | 0.010 | −0.039 | 0.019 | 0.040 | 0.019 | −0.021 | |
Rule-of-law factors | Project supervision | −0.465 *** | −0.332 *** | 0.215 | −0.087 | −0.411 *** | −0.857 *** |
Financial supervision | −0.329 *** | −0.247 ** | −0.242 ** | 0.010 | −0.548 *** | 0.089 | |
Subject supervision | 0.953 *** | 0.451 *** | 0.424 *** | 0.360 *** | 1.048 *** | 0.630 *** | |
Non-environmental regulatory factors | Urbanization | 0.027 | −0.016 | 0.030 | 0.088 | 0.045 | −0.042 |
Marketization | 0.077 | −0.038 | −0.058 | −0.026 | 0.059 | 0.220 *** | |
Openness to the outside | 0.001 | −0.025 | 0.008 | 0.011 | 0.029 | −0.027 | |
Regional population density | 0.004 | −0.014 | 0.015 | −0.028 | −0.061 | 0.064 | |
Adj. R2 | 0.375 | 0.417 | 0.294 | 0.145 | 0.357 | 0.335 |
Variable | Coef. | Std. Err. | t | p > |t| | 95% Conf. Interval | |
---|---|---|---|---|---|---|
Value of decision making | −0.000036 | 0.0002736 | −0.13 | 0.895 | −0.0005741 | 0.0005022 |
Sense of innovation | 3.97 × 10−9 * | 2.22 × 10−9 | 1.79 | 0.075 | −3.97 × 10−10 | 8.34 × 10−9 |
Decentralization of decision making | 0.011316 *** | 0.0032977 | 3.43 | 0.001 | 0.0048299 | 0.0178021 |
Infrastructure input | 3.77 × 10−6 | 0.000067 | 0.06 | 0.955 | −0.0001279 | 0.0001355 |
Green technology inputs | −2.11 × 10−7 * | 1.10 × 10−7 | −1.91 | 0.056 | −4.28 × 10−7 | 5.81 × 10−9 |
Command-based regulation | 0.0002421 | 0.0007939 | 0.3 | 0.761 | −0.0013194 | 0.0018035 |
Incentive-based regulation | 4.55 × 10−8 | 4.98 × 10−8 | 0.91 | 0.362 | −5.24 × 10−8 | 1.43 × 10−7 |
Voluntary regulation | 0.0024201 *** | 0.0006877 | 3.52 | p < 0.001 | 0.0010676 | 0.0037727 |
Project supervision | 0.0251753 *** | 0.0079573 | 3.16 | 0.002 | 0.0095244 | 0.0408261 |
Financial supervision | −0.0286102 *** | 0.0065112 | −4.39 | p < 0.001 | −0.0414169 | −0.0158035 |
Subject supervision | −0.0027016 | 0.0056018 | −0.48 | 0.63 | −0.0137196 | 0.0083164 |
Urbanization | 0.0055518 *** | 0.0012937 | 4.29 | p < 0.001 | 0.0030074 | 0.0080962 |
Marketization | 0.0046557 | 0.0042731 | 1.09 | 0.277 | −0.003749 | 0.0130604 |
Openness to the outside | 0.4377848 ** | 0.1984643 | 2.21 | 0.028 | 0.0474326 | 0.8281369 |
Regional population density | −0.0002059 *** | 0.0000666 | −3.09 | 0.002 | −0.000337 | −0.0000749 |
_cons | 0.0349871 | 0.0740736 | 0.47 | 0.637 | −0.1107056 | 0.1806798 |
Conditional Variables | High Environmental Regulation Performance Group | Non-High Environmental Regulation Performance Group | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
H1 | H2 | H3 | H4 | H5 | H6 | H7 | H8 | NH1 | NH2 | NH3 | NH4 | NH5 | NH6 | NH7 | |
Decentralization of decision making | □ | ○ | ■ | ■ | ○ | ● | ○ | ● | □ | ● | ● | ||||
Voluntary regulation | ● | ● | ○ | □ | ● | ■ | ■ | □ | ■ | ■ | |||||
Project supervision | ● | ● | ● | ● | □ | ● | ● | ■ | □ | ■ | ■ | ■ | ■ | ||
Financial supervision | ○ | ○ | ○ | ○ | ■ | ○ | ○ | ○ | ○ | ● | □ | ||||
Urbanization | ● | ○ | ● | ● | ○ | ○ | □ | □ | ■ | ○ | |||||
Openness to the outside | ○ | ○ | ○ | ○ | ● | ● | ■ | ■ | ■ | ■ | ○ | ○ | |||
Regional population density | ● | ● | ● | ● | ● | ● | ■ | ■ | □ | ■ | ■ | ■ | |||
Consistency | 0.9 55 | 0.9 45 | 0.9 60 | 0.9 74 | 0.9 86 | 0.9 32 | 0.9 40 | 0.9 46 | 0.9 12 | 0.9 52 | 0.9 50 | 0.9 28 | 0.9 41 | 0.9 41 | 0.9 33 |
Raw coverage | 0.4 15 | 0.1 89 | 0.3 30 | 0.1 58 | 0.1 76 | 0.3 41 | 0.1 26 | 0.1 43 | 0.4 77 | 0.3 25 | 0.1 87 | 0.3 24 | 0.2 05 | 0.2 51 | 0.1 91 |
Unique coverage | 0.0 27 | 0.0 06 | 0.0 35 | 0.0 10 | 0.0 01 | 0.0 63 | 0.0 04 | 0.0 03 | 0.1 03 | 0.0 10 | 0.0 01 | 0.1 56 | 0.0 20 | 0.0 12 | 0.0 01 |
Solution consistency | 0.923 | 0.900 | |||||||||||||
Solution coverage | 0.663 | 0.703 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, X.; Chen, Y.; Zhao, H. Temporal–Spatial Evolution, Influencing Factors, and Driving Mechanisms of Environmental Regulation Performance Disparities: Evidence from China. Sustainability 2023, 15, 11519. https://doi.org/10.3390/su151511519
Han X, Chen Y, Zhao H. Temporal–Spatial Evolution, Influencing Factors, and Driving Mechanisms of Environmental Regulation Performance Disparities: Evidence from China. Sustainability. 2023; 15(15):11519. https://doi.org/10.3390/su151511519
Chicago/Turabian StyleHan, Xiao, Yining Chen, and Hehua Zhao. 2023. "Temporal–Spatial Evolution, Influencing Factors, and Driving Mechanisms of Environmental Regulation Performance Disparities: Evidence from China" Sustainability 15, no. 15: 11519. https://doi.org/10.3390/su151511519
APA StyleHan, X., Chen, Y., & Zhao, H. (2023). Temporal–Spatial Evolution, Influencing Factors, and Driving Mechanisms of Environmental Regulation Performance Disparities: Evidence from China. Sustainability, 15(15), 11519. https://doi.org/10.3390/su151511519