Structure and Assembly Mechanism of Archaeal Communities in Deep Soil Contaminated by Chlorinated Hydrocarbons
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Soil Physical and Chemical Analysis
2.3. DNA Extraction and Amplification, Illumina MiSeq Sequencing, and Data Analysis
2.4. Statistical Analysis
3. Result
3.1. Soil Pollution and Physicochemical Properties Analysis
3.2. Driving Factors of Archaeal Community Difference
3.3. Effects of Pollution Stress on Archaeal Community Structure
3.4. Interaction Relationships of Archaea under Different Pollution Stress
3.5. Environmental Factors Affecting Archaeal Community
3.6. Assemblage Processes of the Archaeal Community under Different Pollution Stress
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Huang, Y.; Liu, H.; Liu, S.; Li, C.; Yuan, S. Glucose oxidase modified Fenton reactions for in-situ ROS generation and potential application in groundwater remediation. Chemosphere 2020, 253, 126648. [Google Scholar] [CrossRef]
- Lyu, H.; Hu, K.; Wu, Z.; Shen, B.; Tang, J. Functional materials contributing to the removal of chlorinated hydrocarbons from soil and groundwater: Classification and intrinsic chemical-biological removal mechanisms. Sci. Total Environ. 2023, 879, 163011. [Google Scholar] [CrossRef]
- Halios, C.H.; Landeg-Cox, C.; Lowther, S.D.; Middleton, A.; Marczylo, T.; Dimitroulopoulou, S. Chemicals in European residences—Part I: A review of emissions, concentrations and health effects of volatile organic compounds (VOCs). Sci. Total Environ. 2022, 839, 156201. [Google Scholar] [CrossRef]
- Wang, Z. Effects of 124-Trichlorobenzene and Naphthalene on the Growth and Grain Yield of Rice and Their Mechanism. Ph.D. Thesis, Yangzhou University, Yangzhou, China, 2006. [Google Scholar]
- Wanner, P.; Parker, B.L.; Chapman, S.W.; Lima, G.; Gilmore, A.; Mack, E.E.; Aravena, R. Identification of Degradation Pathways of Chlorohydrocarbons in Saturated Low-Permeability Sediments Using Compound-Specific Isotope Analysis. Environ. Sci. Technol. 2018, 52, 7296–7306. [Google Scholar] [CrossRef]
- Hua, S.Y. Application of Soil Pollution Risk Stratification Assessment Method in Deep Chlorinated Hydrocarbon Contaminated Sites. Guangdong Chem. 2022, 49, 122–127. [Google Scholar]
- Li, J.B.; Wang, S.; Dai, X.L.; Gou, Y.L.; Zhang, T.F.; Wang, H.J.; Guo, P.; Wei, W.X.; Leng, W.P. Application of MIP system in investigation of a volatile chlorinated hydrocarbon contaminated site. Chin. J. Environ. Eng. 2022, 16, 546–554. [Google Scholar]
- Zhuang, J.; Zhang, R.; Zeng, Y.; Dai, T.; Ye, Z.; Gao, Q.; Yang, Y.; Guo, X.; Li, G.; Zhou, J. Petroleum pollution changes microbial diversity and network complexity of soil profile in an oil refinery. Front. Microbiol. 2023, 14, 1193189. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.L.; Gou, Y.L.; Wang, H.Q.; Liu, Z.J.; Xu, H.F.; Yang, S.; Liang, J. Structure and assembly mechanism of bacterial communities in deep soil contaminated by chlorinated hydrocarbons. China Environ. Sci. 2023. [Google Scholar] [CrossRef]
- Hoshino, T.; Doi, H.; Uramoto, G.-I.; Wörmer, L.; Adhikari, R.R.; Xiao, N.; Morono, Y.; D’Hondt, S.; Hinrichs, K.-U.; Inagaki, F. Global diversity of microbial communities in marine sediment. Proc. Natl. Acad. Sci. USA 2020, 117, 27587–27597. [Google Scholar] [CrossRef]
- Zhang, S.; Xu, L.; Kong, D.; Tan, X. Assessing the shaping factors for archaeal and bacterial communities in tidal wetland soils contaminated with polycyclic aromatic hydrocarbons. Environ. Technol. Innov. 2023, 31, 103191. [Google Scholar] [CrossRef]
- Ghezzi, D.; Filippini, M.; Cappelletti, M.; Firrincieli, A.; Zannoni, D.; Gargini, A.; Fedi, S. Molecular characterization of microbial communities in a peat-rich aquifer system contaminated with chlorinated aliphatic compounds. Environ. Sci. Pollut. Res. 2021, 28, 23017–23035. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.X.; Li, R.; Zhang, C.; Li, L.R.; Che, Y.D. Seasonal characteristics and influencing factors of soil microbial in Nanshan. Lanzhou. China Environ. Sci. 2018, 38, 2722–2730. [Google Scholar]
- Li, X.F.; Hou, L.J.; Liu, M. Archaeal community structure and diversity in intertidal sediments of the Yangtze River Estuary. China Environ. Sci. 2019, 39, 1744–1752. [Google Scholar]
- Zhu, Y.G.; Peng, J.J.; Wei, Z.; Shen, Q.; Zhang, F.S. Linking the soil microbiome to soil health. Sci. China Life Sci. 2021, 51, 1–11. [Google Scholar]
- Chen, T.-W.; Chang, S.-C. Potential Microbial Indicators for Better Bioremediation of an Aquifer Contaminated with Vinyl Chloride or 1,1-Dichloroethene. Water Air Soil Pollut. 2020, 231, 239. [Google Scholar] [CrossRef]
- Faust, K.; Raes, J. Microbial interactions: From networks to models. Nat. Rev. Microbiol. 2012, 10, 538–550. [Google Scholar] [CrossRef]
- Liu, Y.; Dai, W.; Yao, D.; Wang, N.; Liu, M.; Wang, L.; Tian, W.; Yan, P.; Huang, Z.; Wang, H. Arsenic pollution from human activities drives changes in soil microbial community characteristics. Environ. Microbiol. 2023. [Google Scholar] [CrossRef]
- Xun, W.; Li, W.; Xiong, W.; Ren, Y.; Liu, Y.; Miao, Y.; Xu, Z.; Zhang, N.; Shen, Q.; Zhang, R. Diversity-triggered deterministic bacterial assembly constrains community functions. Nat. Commun. 2019, 10, 3833. [Google Scholar] [CrossRef] [Green Version]
- Graham, E.B.; Crump, A.R.; Resch, C.T.; Fansler, S.; Arntzen, E.; Kennedy, D.W.; Fredrickson, J.K.; Stegen, J.C. Deterministic influences exceed dispersal effects on hydrologically-connected microbiomes. Environ. Microbiol. 2017, 19, 1552–1567. [Google Scholar] [CrossRef]
- Tripathi, B.M.; Stegen, J.C.; Kim, M.; Dong, K.; Adams, J.M.; Lee, Y.K. Soil pH mediates the balance between stochastic and deterministic assembly of bacteria. ISME J. 2018, 12, 1072–1083. [Google Scholar] [CrossRef]
- Chesson, P. Mechanisms of Maintenance of Species Diversity. Environ. Sci. 2000, 31, 343–366. [Google Scholar] [CrossRef] [Green Version]
- Fargione, J.; Brown, C.S.; Tilman, D. Community assembly and invasion: An experimental test of neutral versus niche processes. Environ. Sci. 2003, 100, 8916–8920. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Ning, D. Stochastic Community Assembly: Does It Matter in Microbial Ecology? Microbiol. Mol. Biol. Rev. 2017, 81, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- GB 50021-2001; Code for Investigation of Geotechnical Engineering. China Architecture & Building Press: Beijing, China, 2001.
- HJ605-2011; Soil and Sediment-Determination of Volatile Organic Compounds-Purge and Trap Gas Chromatography/Mass Spectrometry Method. China Environmental Press: Beijing, China, 2011.
- Golia, E.E. The impact of heavy metal contamination on soil quality and plant nutrition. Sustainable management of moderate contaminated agricultural and urban soils, using low cost materials and promoting circular economy. Sustain. Chem. Pharm. 2023, 33, 101046. [Google Scholar] [CrossRef]
- HJ 962-2018; Soil-Determination of pH-Potentiometry. China Environmental Press: Beijing, China, 2018.
- NY/T1 121.6-2006; Soil Testing Part 6: Method for Determination of Soil Organic Matter. China Environmental Press: Beijing, China, 2006.
- HJ 635-2012; Soil-Determination of Water-Soluble and Acid-Soluble Sulfate: Gravimetric Method. China Environmental Press: Beijing, China, 2012.
- ISO 10694:1995; Soil Quality—Determination of Organic and Total Carbon after Dry Combustion (Elementary Analysis). International Organization for Standardization: Geneva, Switzerland, 1995.
- HJ 717-2014; Soil Quality-Determination of Total Nitrogen-Modified Kjeldahlmethod. China Environmental Press: Beijing, China, 2015.
- HJ 632-2011; Soil-Determination of Total Phosphorus by Alkali Fusion-Mo-Sb Anti Spectrophotometric Method. China Environmental Press: Beijing, China, 2011.
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018, 34, i884–i890. [Google Scholar] [CrossRef]
- Magoč, T.; Salzberg, S.L. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics 2011, 27, 2957–2963. [Google Scholar] [CrossRef] [Green Version]
- Edgar, R.C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 2013, 10, 996–998. [Google Scholar] [CrossRef]
- Stackebrandt, E.; Goebel, B.M. Taxonomic note: A place for DNA-DNA reassociation and 16s rRNA sequence analysis in the Present Species Definition in Bacteriology. Int. J. Syst. Bacteriol. 1994, 44, 846–849. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Garrity, G.M.; Tiedje, J.M.; Cole, J.R. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 2007, 73, 5261–5267. [Google Scholar] [CrossRef] [Green Version]
- Oksanen, J.; Simpson, G.; Blanchet, F.G.; Kindt, R.; Legendre, P.; Minchin, P.; O’hara, R.; Solymos, P.; Stevens, H.; Szöcs, E.; et al. Vegan: Community Ecology Package; R Foundation: Vienna, Austria, 2022; Version 2.6-2. [Google Scholar]
- Wen, T.; Niu, G.Q.; Chen, T.; Shen, Q.; Yuan, J.; Liu, Y.X. The best practice for microbiome analysis using R. Protein Cell 2023, pwad024. [Google Scholar] [CrossRef]
- Zhang, J.T. Quantitative Ecology, 3rd ed.; Science Press: Beijing, China, 2011. [Google Scholar]
- Zhang, S.J.; Zeng, Y.H.; Zhu, J.M.; Cai, Z.H.; Zhou, J. The structure and assembly mechanisms of plastisphere microbial community in natural marine environment. J. Hazard. Mater. 2022, 421, 126780. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency. EPA Regional Screening Levels; U.S. Environmental Protection Agency: Washington, DC, USA, 2023.
- Shu, W.S.; Huang, L.N. Microbial diversity in extreme environments. Nat. Rev. Microbiol. 2022, 20, 219–235. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Zuo, Y.Q.; Cao, P.L.; Fan, Y.P.; Qu, W.; Wang, J.X. The assembling of free-living and particle-attached archaea communities in the changjiang river estuary in summer. Oceanol. Limnol. Sin. 2023, 54, 773–785. [Google Scholar]
- Li, Y.T.; Yang, S.; Zhang, Y.; Fan, L.; Liu, K.; Zhang, S. Response of Soil Archaeal Community to Heavy Metal Pollution in Different. Environ. Sci. 2021, 42, 4481–4488. [Google Scholar]
- Gao, Y.X.; Li, X.; Zhao, J.R.; Zhang, Z.X.; Fan, X.Y. Stress and Post Effects of Azithromycin and Copper on Archaeal Communityand ARGs in Activated Sludge. Environ. Sci. 2021, 42, 5921–5929. [Google Scholar]
- Tan, Y.; Hu, Y.H.; Qian, Y.X.; Guo, A.N. Composition and distribution of archaea community in constructed wetland fortreatment of mariculture wastewater by Spartina alterniflora Loisel. J. Ningbo Univ. (NSEE) 2023, 36, 1–9. [Google Scholar]
- Baker, B.J.; De Anda, V.; Seitz, K.W.; Dombrowski, N.; Santoro, A.E.; Lloyd, K.G. Diversity, ecology and evolution of Archaea. Nat. Microbiol. 2020, 5, 887–900. [Google Scholar] [CrossRef]
- Akpudo, Y.M.; Bezuidt, O.K.; Makhalanyane, T.P. Metagenome-Assembled Genomes of Four Southern Ocean Archaea Harbor Multiple Genes Linked to Polyethylene Terephthalate and Polyhydroxybutyrate Plastic Degradation. Microbiol. Resour. Announc. 2023, 12, e0109822. [Google Scholar] [CrossRef]
- Pengfei, Z.; Wei, Z.; Zhou, Y.; Li, Q.; Qi, Z.; Diao, X.-P.; Wang, Y. Genomic Evidence for the Recycling of Complex Organic Carbon by Novel Thermoplasmatota Clades in Deep-Sea Sediments. Msystems 2022, 7, e00077-22. [Google Scholar]
- Diamond, S.; Lavy, A.; Crits-Christoph, A.; Matheus Carnevali, P.B.; Sharrar, A.; Williams, K.H.; Banfield, J.F. Soils and sediments host Thermoplasmata archaea encoding novel copper membrane monooxygenases (CuMMOs). ISME J. 2022, 16, 1348–1362. [Google Scholar] [CrossRef]
- Cozannet, M.; Borrel, G.; Roussel, E.; Moalic, Y.; Allioux, M.; Sanvoisin, A.; Toffin, L.; Alain, K. New Insights into the Ecology and Physiology of Methanomassiliicoccales from Terrestrial and Aquatic Environments. Microorganisms 2020, 9, 30. [Google Scholar] [CrossRef] [PubMed]
- Cheng, X.; Xiang, X.; Yun, Y.; Wang, W.; Wang, H.; Bodelier, P.L.E. Archaea and their interactions with bacteria in a karst ecosystem. Front. Microbiol. 2023, 14, 1068595. [Google Scholar] [CrossRef] [PubMed]
- Du, X.; Wang, S.; Xu, Z.; Liu, J.; Gao, Z.; Ren, X.; Ma, K.; Hu, S. Response of soils properties and archaea community to saline-sodic soils under long-term rice-based cropping system. Arch. Agron. Soil Sci. 2023, 69, 533–549. [Google Scholar] [CrossRef]
- Chen, B.; Jiao, S.; Luo, S.; Ma, B.; Qi, W.; Cao, C.; Zhao, Z.; Du, G.; Ma, X. High soil pH enhances the network interactions among bacterial and archaeal microbiota in alpine grasslands of the Tibetan Plateau. Environ. Microbiol. 2021, 23, 464–477. [Google Scholar] [CrossRef]
- Chase, J.M. Drought mediates the importance of stochastic community assembly. Proc. Natl. Acad. Sci. USA 2007, 104, 17430–17434. [Google Scholar] [CrossRef]
- Gravel, D.; Canham, C.D.; Beaudet, M.; Messier, C. Reconciling niche and neutrality: The continuum hypothesis. Ecol. Lett. 2006, 9, 399–409. [Google Scholar] [CrossRef] [Green Version]
- Chisholm, R.A.; Pacala, S.W. Theory predicts a rapid transition from niche-structured to neutral biodiversity patterns across a speciation-rate gradient. Theor. Ecol. 2011, 4, 195–200. [Google Scholar] [CrossRef]
- Chisholm, R.A.; Pacala, S.W. Niche and neutral models predict asymptotically equivalent species abundance distributions in high-diversity ecological communities. Proc. Natl. Acad. Sci. USA 2010, 107, 15821–15825. [Google Scholar] [CrossRef]
- Kadmon, R.; Allouche, O. Integrating the Effects of Area, Isolation, and Habitat Heterogeneity on Species Diversity: A Unification of Island Biogeography and Niche Theory. Am. Nat. 2007, 170, 443–454. [Google Scholar] [CrossRef]
- Lan, G.; Quan, F.; Yang, C.; Sun, R.; Chen, B.; Zhang, X.; Wu, Z. Driving factors for soil fungal and bacterial community assembly in topical forest of China. Appl. Soil Ecol. 2022, 177, 104520. [Google Scholar] [CrossRef]
Sample Number | TCE (mg/kg) | Chloroform (mg/kg) |
---|---|---|
H02 | 1.71 ± 0.15 | 0.36 ± 0.21 |
H04 | 2.70 ± 1.13 | 0.79 ± 0.51 |
H06 | 9.56 ± 2.06 | 9.89 ± 0.49 |
H08 | 7.00 ± 2.40 | 5.98 ± 2.78 |
H10 | 8.23 ± 6.68 | 5.23 ± 3.39 |
Soil/Groundwater Use Scenario | TCE | Chloroform |
---|---|---|
Resident Soil | 0.94 mg/kg | 0.32 mg/kg |
Industrial Soil | 6 mg/kg | 1.4 mg/kg |
maximum contaminant levels | 5 μg/L | 80 μg/L |
Parameter | H02 | H04 | H06 | H08 | H10 |
---|---|---|---|---|---|
pH | 8.7 ± 0.1 | 8.6 ± 0.1 | 8.4 ± 0.2 | 8.6 ± 0.1 | 8.7 ± 0.3 |
Moisture (%) | 17.1 ± 1.4 | 21.1 ± 1.8 | 21.1 ± 0.5 | 15.2 ± 1.5 | 19.8 ± 2.9 |
ORP (mV) | 364.6 ± 47.4 | 390.6 ± 52.7 | 454.0 ± 103.5 | 433.7 ± 92.5 | 447.6 ± 80.7 |
Organic matter (g/kg) | 7.3 ± 3.7 | 5.2 ± 3.1 | 4.0 ± 0.7 | 2.7 ± 0.8 | 3.1 ± 0.6 |
Sulfate (mg/kg) | 447.3 ± 87.3 | 376.0 ± 131.3 | 513.3 ± 78.0 | 182.0 ± 47.6 | 154.0 ± 18.5 |
TC (g/kg) | 8.7 ± 0.1 | 8.6 ± 0.1 | 8.4 ± 0.2 | 8.6 ± 0.1 | 8.7 ± 0.3 |
TN (mg/kg) | 409.3 ± 72.3 | 470.3 ± 186.7 | 316.3 ± 16.4 | 194.7 ± 67.6 | 198.3 ± 52.6 |
TP (mg/kg) | 472.3 ± 135.0 | 437.7 ± 163.3 | 307.0 ± 65.4 | 415.7 ± 23.3 | 480.0 ± 53.0 |
Topological Parameters | D | G |
---|---|---|
Nodes | 84 | 11 |
Edges | 63 | 11 |
Positive correlation | 84.13% | 100.00% |
Degree | 1.5 | 2.0 |
Modularity | 0.92 | 0.41 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, Y.; Liu, Z.; Xu, H.; Wang, H. Structure and Assembly Mechanism of Archaeal Communities in Deep Soil Contaminated by Chlorinated Hydrocarbons. Sustainability 2023, 15, 11511. https://doi.org/10.3390/su151511511
Fan Y, Liu Z, Xu H, Wang H. Structure and Assembly Mechanism of Archaeal Communities in Deep Soil Contaminated by Chlorinated Hydrocarbons. Sustainability. 2023; 15(15):11511. https://doi.org/10.3390/su151511511
Chicago/Turabian StyleFan, Yanling, Zengjun Liu, Hefeng Xu, and Hongqi Wang. 2023. "Structure and Assembly Mechanism of Archaeal Communities in Deep Soil Contaminated by Chlorinated Hydrocarbons" Sustainability 15, no. 15: 11511. https://doi.org/10.3390/su151511511
APA StyleFan, Y., Liu, Z., Xu, H., & Wang, H. (2023). Structure and Assembly Mechanism of Archaeal Communities in Deep Soil Contaminated by Chlorinated Hydrocarbons. Sustainability, 15(15), 11511. https://doi.org/10.3390/su151511511