The Response of Retisol’s Carbon Storage Potential to Various Organic Matter Inputs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site Characterization
2.2. Study Treatments
2.3. Chemical Analysis of Soil Samples
2.4. Data Analysis
2.5. Statistical Analysis
3. Results and Discussion
3.1. Changes in the Retisol Chemical Characteristics under Various Organic Matter Inputs
3.2. Effect of Various Organic Matter Inputs on the SOC Changes
3.3. Estimation of the Effects of Various Organic Matter Inputs on the Carbon Transformation Processes
3.4. Response Ratio of the Soil Properties to the Different Organic Matter Inputs
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Veronesi, F.; Schillaci, C. Comparison between geostatistical and machine learning models as predictors of topsoil organic carbon with a focus on local uncertainty estimation. Ecol. Indic. 2019, 101, 1032–1044. [Google Scholar] [CrossRef]
- Wu, L.P.; Zhang, S.R.; Ma, R. Carbon sequestration under different organic amendments in saline-alkaline soils. Catena 2021, 196, 104882. [Google Scholar] [CrossRef]
- Gao, F.; Cui, X.Y.; Sang, Y.; Song, J.F. Changes in soil organic carbon and total nitrogen as affected by primary forest conversion. For. Ecol. Manag. 2020, 463, 118013. [Google Scholar] [CrossRef]
- Li, M. Carbon stock and sink economic values of forest ecosystem in the forest industry region of Heilongjiang Province, China. J. For. Res. 2022, 33, 875–882. [Google Scholar] [CrossRef]
- Wingfeld, M.J.; Brockerhof, E.G.; Wingfeld, B.D.; Slippers, B. Planted Forest health: The need for a global strategy. Science 2015, 349, 832–836. [Google Scholar] [CrossRef]
- Cui, X.W.; Liang, J.; Lu, W.Z.; Chen, H.; Liu, F.; Lin, G.X.; Xu, F.H.; Luo, Y.Q.; Lin, G.H. Stronger ecosystem carbon sequestration potential of mangrove wetlands with respect to terrestrial forests in subtropical China. Agric. For. Meteorol. 2018, 249, 71–80. [Google Scholar] [CrossRef]
- Lal, R. Digging deeper: A holistic perspective of factors affecting soil organic carbon sequestration in agroecosystems. Global Chang. Biol. 2018, 24, 3285–3301. [Google Scholar] [CrossRef]
- He, Y.T.; Zhang, W.J.; Xu, M.G.; Tong, X.G.; Sun, F.X.; Wang, J.Z.; Huang, S.M.; Zhu, P.; He, X.H. Long-term combined chemical, and manure fertilizations increase soil organic carbon and total nitrogen in aggregate fractions at three typical cropland soils in China. Sci. Total Environ. 2015, 532, 635–644. [Google Scholar] [CrossRef]
- Guo, Z.C.; Zhang, Z.B.; Zhou, H.; Rahman, M.T.; Wang, D.Z.; Guo, X.S.; Li, L.J.; Peng, X.H. Long-term animal manure application promoted biological binding agents but not soil aggregation in a Vertisol. Soil Tillage Res. 2018, 180, 232–237. [Google Scholar] [CrossRef]
- Ivushkin, K.; Bartholomeus, H.; Bregt, A.K. Global mapping of soil salinity change. Remote Sens. Environ. 2019, 231, 111260. [Google Scholar] [CrossRef]
- He, Y.T.; He, X.H.; Xu, M.G.; Zhang, W.J.; Yang, X.Y.; Huang, S.M. Long-term fertilization increases soil organic carbon and alters its chemical composition in three wheat-maize cropping sites across central and south China. Soil Tillage Res. 2018, 177, 79–87. [Google Scholar] [CrossRef]
- Chen, H.; Liang, Q.; Gong, Y.; Kuzyakov, Y.; Fan, M.; Plante, A.F. Reduced tillage and increased residue retention increase enzyme activity and carbon and nitrogen concentrations in soil particle size fractions in a long-term field experiment on Loess Plateau in China. Soil Tillage Res. 2019, 194, 104296. [Google Scholar] [CrossRef]
- Mustafa, A.; Minggang, X.; Ali Shah, S.A.; Abrar, M.M.; Nan, S.; Baoren, W.; Zejiang, C.; Saeed, Q.; Naveed, M.; Mehmood, K.; et al. Soil aggregation ~ and soil aggregate stability regulate organic carbon and nitrogen storage in a red soil of southern China. J. Environ. Manag. 2020, 270, 110894. [Google Scholar] [CrossRef]
- Qaswar, M.; Jing, H.; Ahmed, W.; Dongchu, L.; Shujun, L.; Lu, Z.; Cai, A.; Lisheng, L.; Yongmei, X.; Jusheng, G.; et al. Yield sustainability, soil organic carbon sequestration and nutrients balance under long-term combined application of manure and inorganic fertilizers in acidic paddy soil. Soil Tillage Res. 2020, 198, 104569. [Google Scholar] [CrossRef]
- Ryals, R.; Kaiser, M.; Torn, M.S.; Berhe, A.A.; Silver, W.L. Impacts of organic matter amendments on carbon and nitrogen dynamics in grassland soils. Soil Biol. Biochem. 2014, 68, 52–61. [Google Scholar] [CrossRef]
- Fujisaki, K.; Chevallier, T.; Chapuis-Lardy, L.; Albrecht, A.; Razafimbelo, T.; Masse, D.; Ndour, Y.B.; Chotte, J.-L. Soil carbon stock changes in tropical croplands are mainly driven by carbon inputs: A synthesis. Agric. Ecosyst. Environ. 2018, 259, 147–158. [Google Scholar] [CrossRef]
- Poeplau, C.; Zopf, D.; Greiner, B.; Geerts, R.; Korvaar, H.; Thumm, U.; Don, A.; Heidkamp, A.; Flessa, H. Why does mineral fertilization increase soil carbon stocks in temperate grasslands? Agric. Ecosyst. Environ. 2018, 265, 144–155. [Google Scholar] [CrossRef]
- Shah, S.A.; Xu, M.; Abrar, M.M.; Mustafa, A.; Fahad, S.; Shah, T.; Ali Shah, S.A.; Yang, X.; Zhou, W.; Zhang, S.; et al. Long-term fertilization affects functional soil organic carbon protection mechanisms in a profile of Chinese loess plateau soil. Chemosphere 2020, 267, 128897. [Google Scholar] [CrossRef]
- Waqas, M.A.; Li, Y.; Smith, P.; Wang, X.; Ashraf, M.N.; Noor, M.A.; Amou, M.; Shi, S.; Zhu, Y.; Li, J.; et al. The influence of nutrient management on soil organic carbon storage, crop production, and yield stability varies under different climates. J. Clean. Prod. 2020, 268, 121922. [Google Scholar] [CrossRef]
- Kukal, S.S.; Rehana-Rasool; Benbi, D.K. Soil organic carbon sequestration in relation to organic and inorganic fertilization in rice-wheat and maize-wheat systems. Soil Tillage Res. 2009, 102, 87–92. [Google Scholar] [CrossRef]
- Kundu, S.; Bhattacharyya, R.; Prakash, V.; Ghosh, B.N.; Gupta, H.S. Carbon sequestration and relationship between carbon addition and storage under rainfed soybean-wheat rotation in a sandy loam soil of the Indian Himalayas. Soil Tillage Res. 2007, 92, 87–95. [Google Scholar] [CrossRef]
- Mustafa, A.; Hu, X.; Abrar, M.M.; Shah, S.A.A.; Nan, S.; Saeed, Q.; Kamran, M.; Naveed, M.; Conde-Cid, M.; Hongjun, G.; et al. Long-term fertilization enhanced carbon mineralization and maize biomass through physical protection of organic carbon in fractions under continuous maize cropping. Appl. Soil Ecol. 2021, 165, 103971. [Google Scholar] [CrossRef]
- Alam, M.K.; Bell, R.W.; Biswas, W.K. Increases in soil sequestered carbon under conservation agriculture cropping decrease the estimated greenhouse gas emissions of wetland rice using life cycle assessment. J. Clean. Prod. 2019, 224, 72–87. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, W.; Xin, X.; Zhu, A.; Ding, S. Poor physical structural components restrict soil fertility and crop productivity for wheat–maize cropping. Nutr. Cycl. Agroecosyst. 2020, 117, 169–184. [Google Scholar] [CrossRef]
- Liu, D.; Ding, Z.; Ali, E.F.; Kheir, A.M.; Eissa, M.A.; Ibrahim, O.H. Biochar and compost enhance soil quality and growth of roselle (Hibiscus sabdariffa L.) under saline conditions. Sci. Rep. 2021, 11, 8739. [Google Scholar] [CrossRef]
- Hedges, L.V.; Gurevitch, J.; Curtis, P.S. The meta-analysis of response ratios in experimental ecology. Ecology 1999, 80, 1150–1156. [Google Scholar] [CrossRef]
- Cai, A.; Zhang, W.; Xu, M.; Wang, B.; Wen, S.; Shah, S.A. Soil fertility and crop yield after manure addition to acidic soils in South China. Nutr. Cycl. Agroecosyst. 2018, 111, 61–72. [Google Scholar] [CrossRef]
- Wasak, K.; Drewnik, M. Land use effects on soil organic carbon sequestration in calcareous Leptosols in former pastureland—A case study from the Tatra Mountains (Poland). Solid Earth 2015, 6, 1103–1115. [Google Scholar] [CrossRef] [Green Version]
- Souri, M.K.; Hatamian, M. Aminochelates in plant nutrition: A review. J. Plant Nutr. 2019, 42, 67–78. [Google Scholar] [CrossRef]
- Jafer, D.; Gebresilassie, H. Application of lime for acid soil amelioration and better Soybean performance in South Western Ethiopia. J. Biol. Agric. Health 2017, 7, 95–100. [Google Scholar]
- Alemu, G.; Desalegn, T.; Debele, T.; Adela, A.; Taye, G.; Yirga, C. Effect of lime and phosphorus fertilizer on acid soil properties and barley grain yield at Bedi in Western Ethiopia. Afr. J. Agric. Res. 2017, 12, 3005–3012. [Google Scholar]
- Walsh, B.; Ciais, P.; Janssens, I.A.; Penuelas, J.; Riahi, K.; Rydzak, F.; van Vuuren, D.P.; Obersteiner, M. Pathways for balancing CO2 emissions and sinks. Nat. Commun. 2017, 8, 14856. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Mao, A.; Zhang, Y.; Zhang, L.; Chang, J.; Gao, H.; Thompson, M.L. Carbon and nitrogen forms in soil organic matter influenced by incorporated wheat and corn residues. Soil Sci. Plant Nut. 2017, 63, 377–387. [Google Scholar] [CrossRef] [Green Version]
- Bandyopadhyay, P.K.; Saha, S.; Mani, P.K.; Mandal, B. Effect of organic inputs on aggregate associated organic carbon concentration under long-term rice–wheat cropping system. Geoderma 2010, 154, 379–386. [Google Scholar] [CrossRef]
- Dannehl, T.; Leithold, G.; Brock, C. The effect of C:N ratios on the fate of carbon from straw and green manure in soil. Eur. J. Soil Sci. 2017, 68, 988–998. [Google Scholar] [CrossRef]
- Yadav, R.K.; Purakayastha, T.J.; Khan, M.A.; Kaushik, S.C. Long-term impact of manuring and fertilization on enrichment, stability, and quality of organic carbon in Inceptisol under two potato-based cropping systems. Sci. Total Environ. 2017, 609, 1535–1543. [Google Scholar] [CrossRef]
- Gilmullina, A.; Rumpel, C.; Blagodatskaya, E.; Klumpp, K.; Bertrand, I.; Dippold, M.I.; Chabbi, A. Is plant biomass input driving soil organic matter formation processes in grassland soil under contrasting management? Sci. Total Environ. 2023, 893, 164550. [Google Scholar] [CrossRef]
- Mahmoodabadi, M.; Heydarpour, E. Sequestration of organic carbon influenced by the application of straw residue and farmyard manure in two different soils. Int. Agrophys. 2014, 28, 169–176. [Google Scholar] [CrossRef] [Green Version]
- Dumale, W.A.; Miyazaki, T.; Hirai, K.; Nishimura, T. SOC turnover and lime-CO2 evolution during liming of an acid Andisol and Ultisol. Open J. Soil Sci. 2011, 1, 49–53. [Google Scholar] [CrossRef] [Green Version]
- Kuzyakov, Y.; Blagodatskaya, E. Microbial hotspots and hot moments in soil: Concept & review. Soil Biol. Biochem. 2015, 83, 184–199. [Google Scholar]
- Lal, R. Crop residues as soil amendments and feedstock for bioethanol production. Waste Manag. 2008, 28, 747–758. [Google Scholar] [CrossRef]
- Boeni, M.; Bayer, C.; Dieckow, J.; Conceicao, P.C.; Dick, D.P.; Knicker, H.; Macedo, M.C. Organic matter composition in density fractions of Cerrado Ferralsolsas revealed by CPMAS 13C NMR: Influence of pastureland, cropland, and integrated crop-livestock. Agric. Ecosyst. Environ. 2014, 190, 80–86. [Google Scholar] [CrossRef] [Green Version]
- Anuo, C.O.; Cooper, J.A.; Koehler- Cole, K.; Ramirez, S.; Kaiser, M. Effect of cover cropping on soil organic matter characteristics: Insights from a five-year field experiment in Nebraska. Agric. Ecosyst. Environ. 2023, 347, 108393. [Google Scholar] [CrossRef]
- Liao, M.; Peng, Y.; Chen, Y. Effect of long—Term different fertilizer management on soil carbon stock characteristics in paddy soil. J. Soil Water Conserv. 2011, 6, 129–133. [Google Scholar]
- Liu, X.Y.; Wang, Z.Q.; Zhang, X.Y. Effects of long-term fertilization in aggregate dynamics and organic carbon and total nitrogen contents in reddish paddy soil. Acta Ecol. Sin. 2013, 16, 4949–4955. [Google Scholar]
- Zhu, L.; Li, J.; Tao, B.; Hu, N. Effect of different fertilization modes on soil organic carbon sequestration in paddy fields in South China: A meta—Analysis. Ecol. Indic. 2015, 53, 144–153. [Google Scholar] [CrossRef]
- Bhattacharyya, R.; Prakash, V.; Kundu, S. Effect of fertilization on car bon sequestration in soybean-wheat rotation under two contrasting soils and management practices in the Indian Himalayas. Soil Res. 2009, 47, 592–601. [Google Scholar] [CrossRef]
- Ogunwole, J.O. Changes in an Alfisol under long-term application of manure and inorganic fertilizer. Soil Use Manag. 2005, 21, 260–261. [Google Scholar] [CrossRef]
- Cong, R.H.; Xu, M.G.; Wang, X.J.; Zhang, W.J.; Yang, X.Y.; Huang, S.M.; Wang, B.R. An analysis of soil carbon dynamics in long-term soil fertility trials in China. Nutr. Cycl. Agroecosyst. 2012, 93, 201–213. [Google Scholar] [CrossRef]
- Gross, A.; Glaser, B. Meta-analysis on how manure application changes soil organic carbon storage. Sci. Rep. 2021, 11, 5516. [Google Scholar] [CrossRef]
- Pauline, C.; Bernard, V.; Johan, S. Does the combined application of organic and mineral nutrient sources influence maize productivity? A meta-analysis. Plant Soil 2011, 342, 1–30. [Google Scholar]
- Fang, H.; Cheng, S.; Yu, G.; Yang, X.; Xu, M.; Wang, Y.; Li, L.S.; Dang, X.; Wang, L.; Li, Y. Nitrogen deposition impacts on the amount and stability of soil organic matter in an alpine meadow ecosystem depend on the form and rate of applied nitrogen. Eur. J. Soil Sci. 2014, 65, 510–519. [Google Scholar] [CrossRef]
- Hijbeek, R.; van Loon, M.P.; van Ittersum, M.K. Fertiliser Use and Soil Carbon Sequestration: Opportunities and Trade-offs. CCAFS Working Paper no. 264. Wageningen, the Netherlands: CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS). 2019. Available online: www.ccafs.cgiar.org (accessed on 15 April 2023).
- Lu, X.; Hou, E.; Guo, J.; Gilliam, F.S.; Li, J.; Tang, S.; Kuang, Y. Nitrogen addition stimulates soil aggregation and enhances carbon storage in terrestrial ecosystems of China: A meta-analysis. Global Chang. Biol. 2021, 27, 2780–2792. [Google Scholar] [CrossRef]
- Li, X.S.; Zhu, W.L.; Xu, F.Y.; Du, J.L.; Tian, X.H.; Shi, J.L.; Wei, G.H. Organic amendments affect soil organic carbon sequestration and fractions in fields with long-term contrasting nitrogen applications. Agric. Ecosyst. Environ. 2021, 322, 107643. [Google Scholar] [CrossRef]
- Meng, F.Q.; Dungait, J.; Xu, X.L.; Bol, R.; Zhang, X.; Wu, W.L. Coupled incorporation of maize (Zea mays L.) straw with nitrogen fertilizer increased soil organic carbon in Fluvic Cambisol. Geoderma 2017, 304, 19–27. [Google Scholar] [CrossRef]
Treatments | Natural Retisol | Natural Retisol + CM | Natural Retisol + PR | CaCO3 at 1.0 Rate | CaCO3 + CM | CaCO3 + PR |
---|---|---|---|---|---|---|
pHKCl | 4.02 ± 0.021 a | 4.38 ± 0.004 c | 4.17 ± 0.110 b | 5.61 ± 0.003 d | 5.73 ± 0.015 e | 5.68 ± 0.036 e |
Al3+, mg kg−1 | 80.48 ± 2.451 c | 13.25 ± 3.698 a | 45.36 ± 1.758 c | 0 d | 0 d | 0 d |
P2O4, mg kg−1 | 182.4 ± 8.96 ab | 222.5 ± 9.01 c | 196.6 ± 10.36 a | 157.4 ± 7.45 d | 229.7 ± 12.04 c | 180.8 ± 8.89 b |
K2O, mg kg−1 | 111.4 ± 2.58 b | 117.8 ± 1.46 d | 120.9 ± 2.25 b | 78.7 ± 7.28 c | 114.8 ± 6.36 bd | 90.4 ± 4.58 a |
Ntotal, % | 0.129 ± 0.2674 a | 0.151 ± 0.0458 d | 0.141 ± 0.1598 c | 0.137 ± 0.0389 b | 0.149 ± 0.3663 e | 0.141 ± 0.1452 c |
Exchangeable Ca, mg kg−1 | 172 ± 14.5 c | 649 ± 22.7 a | 460 ± 36.7 e | 1213 ± 33.9 b | 1313 ± 26.7 d | 1347 ± 12.8 f |
Exchangeable Mg, mg kg−1 | 67.7 ± 0.58 b | 68.3 ± 0.69 b | 62.3 ± 1.45 a | 88.0 ± 2.45 d | 107 ± 3.36 e | 113 ± 1.14 c |
Treatments | Natural Retisol + CM | Natural Retisol + PR | CaCO3 at 1.0 Rate | CaCO3 + CM | CaCO3 + PR |
---|---|---|---|---|---|
pHKCl | 8.96 | 3.73 | 39.55 | 42.59 | 41.29 |
Al3+ | −33.24 | −23.92 | −44.42 | −47.13 | −44.42 |
P2O4 | 21.98 | 7.79 | −13.71 | 25.93 | −0.88 |
K2O | 5.75 | 8.53 | −29.35 | 3.05 | −18.85 |
Ntotal | 17.05 | 9.30 | 6.20 | 15.50 | 9.30 |
Corg | 24.94 | 1.89 | 10.09 | 32.89 | 5.26 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mockevičienė, I.; Karčauskienė, D.; Repšienė, R. The Response of Retisol’s Carbon Storage Potential to Various Organic Matter Inputs. Sustainability 2023, 15, 11495. https://doi.org/10.3390/su151511495
Mockevičienė I, Karčauskienė D, Repšienė R. The Response of Retisol’s Carbon Storage Potential to Various Organic Matter Inputs. Sustainability. 2023; 15(15):11495. https://doi.org/10.3390/su151511495
Chicago/Turabian StyleMockevičienė, Ieva, Danutė Karčauskienė, and Regina Repšienė. 2023. "The Response of Retisol’s Carbon Storage Potential to Various Organic Matter Inputs" Sustainability 15, no. 15: 11495. https://doi.org/10.3390/su151511495
APA StyleMockevičienė, I., Karčauskienė, D., & Repšienė, R. (2023). The Response of Retisol’s Carbon Storage Potential to Various Organic Matter Inputs. Sustainability, 15(15), 11495. https://doi.org/10.3390/su151511495