Contributions of the 5G Network with Respect to Poverty (SDG1), Systematic Literature Review
Abstract
:1. Introduction
2. Literature Review
2.1. Previous Definitions
2.2. Previous Studies on Poverty Reduction and Access to 5G Technology
2.3. Asymmetric Advances of the Technological Frontier (Digital Divide)
- (a)
- High-speed Internet access [38], according to data from the International Telecommunication Union (ITU), in 2020, around 51% of the world’s population had access to high-speed Internet, a significant increase over previous years. However, the availability of and access to high-speed Internet varies by region, country, and social group [49]. According to ITU data, in 2020, high-speed Internet access was higher in high-income countries (82.2% of the population) than in low-income countries (19.9% of the population).
- (b)
- Mobile connectivity has become a key element for access to the Internet and digital services worldwide. According to data from the GSMA (global association of mobile operators) in 2020, the number of subscriptions to mobile services in the world reached 8000 million, equivalent to a penetration rate of 107% [44]. However, as with high-speed Internet access, mobile connectivity also presents inequalities in terms of access and quality of service. According to the GSMA, in 2020, 41% of the world’s population did not have access to mobile broadband services, and disparities were more pronounced in rural areas and low-income countries.
- (c)
- Artificial Intelligence (AI). In recent years, AI has undergone rapid development [50] and has generated great expectations in terms of its potential to improve the efficiency, quality, and accessibility of various services and applications. However, it also poses significant challenges in terms of ethics [51], privacy [52], and safety [53], as well as in terms of possible impacts on employment and social inequalities [54,55]. To address these challenges and take advantage of the opportunities offered by AI, various initiatives and regulatory frameworks have been developed around the world. Among the main initiatives are the European Union’s Artificial Intelligence Strategy (AI Strategy) [56], the U.S. National Artificial Intelligence Plan [57], and the National Artificial Intelligence Development Plan of China [58].
- (d)
- Virtual and augmented reality. Virtual reality (VR) and augmented reality (AR) are technologies that make it possible to create immersive and enriched experiences for users [59]. VR involves creating a computer-generated virtual environment in which users can interact using devices such as VR goggles or headsets, while AR overlays digital information on top of the real world using devices such as smartphones or tablets [60]. These technologies have great potential for a wide variety of applications, including training and learning [61,62,63,64], entertainment [65,66], advertising [67] and marketing [68], simulation of dangerous situations [69], and aid in the treatment of diseases [70,71,72,73]. Currently, VR and AR are experiencing rapid growth and expansion [74], driven by the development of ever more advanced technologies and the popularity of video games [65,66] and mobile applications [75,76].
- (e)
- 5G technology. This technology is expected to have a significant impact on a wide range of applications, from autonomous driving [77] to telemedicine [78,79,80] and industrial automation [81,82,83]. The 5G network uses advanced technologies, such as active array antennas, carrier aggregation technology, and advanced signal modulation techniques [84], to improve network efficiency and capacity. In addition, the 5G network also uses network virtualization techniques, allowing for greater flexibility and customization in network design. Despite its potential, the implementation of the 5G network also poses significant challenges, including the need to deploy new infrastructure, radio spectrum allocation, and regulatory challenges [85]. In addition, 5G network adoption may also create digital inequalities in areas where network infrastructure is insufficient or where network access costs are prohibitive.
2.4. Magnitude and Trends
2.5. Research Purpose and Questions
3. Methods
3.1. Type of Study
3.2. Search Strategy
3.3. Inclusion and Exclusion Criteria
- Poverty-related technology items;
- Articles that have implications with the main digital technologies and their relation to a sustainable economy;
- Articles related to the subject, mainly on the contribution of the use of 5G technology and its relationship with the reduction of poverty;
- We search for articles mainly related to the selected language, except for the titles that have to comply with the most important and pre-established keyword.
- Items unrelated to technology and poverty;
- Articles that do not provide input on the use of digital technologies and the reduction of poverty;
- Articles that do not answer the research questions.
4. Results
5. Findings and Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- ONG Manos Unidas. ¿Qué es la Pobreza? ONG Manos Unidas: Madrid, Spain; Available online: https://www.manosunidas.org/observatorio/pobreza-mundo/definicion-pobreza (accessed on 7 September 2022).
- United Nations. Acabar Con la Pobreza; Naciones Unidas: New York, NY, USA. Available online: https://www.un.org/es/global-issues/ending-poverty (accessed on 7 September 2022).
- PNUD. Objetivos de Desarrollo Sostenible; Programa De Las Naciones Unidas Para El Desarrollo: New York, NY, USA; Available online: https://www.undp.org/es/sustainable-development-goals (accessed on 9 September 2022).
- Naciones Unidas. Pobreza–Desarrollo Sostenible. Available online: https://www.un.org/sustainabledevelopment/es/poverty/ (accessed on 9 September 2022).
- Banco Mundial. Según El Banco Mundial, la Pobreza Extrema a Nivel Mundial Continúa Disminuyendo, Aunque a Un Ritmo Más Lento. Available online: https://www.bancomundial.org/es/news/press-release/2018/09/19/decline-of-global-extreme-poverty-continues-but-has-slowed-world-bank (accessed on 9 September 2022).
- Banco Mundial. Pobreza: Panorama General. Available online: https://www.bancomundial.org/es/topic/poverty/overview (accessed on 9 September 2022).
- Elavarasan, R.M.; Pugazhendhi, R.; Shafiullah, G.M.; Kumar, N.M.; Arif, M.T.; Jamal, T.; Chopra, S.S. Impacts of COVID-19 on Sustainable Development Goals and effective approaches to maneuver them in the post-pandemic environment. Environ. Sci. Pollut. Res. 2022, 29, 33957–33987. [Google Scholar] [CrossRef] [PubMed]
- ONU. ONU: La COVID-19 Podría Conducir a Una Década Pérdida Para El Desarrollo; United Nations Inter-Agency Task Force on Financing for Development: New York, NY, USA. Available online: https://developmentfinance.un.org/fsdr2021-pressrelease-spanish (accessed on 7 September 2022).
- Banco Mundial. Debido a la Pandemia de COVID-19, El Número de Personas Que Viven en la Pobreza Extrema Habrá Aumentado en 150 Millones Para 2021. 2020. Available online: https://www.bancomundial.org/es/news/press-release/2020/10/07/covid-19-to-add-as-many-as-150-million-extreme-poor-by-2021 (accessed on 7 September 2022).
- Nikoláev, S.K.; Nikoláaeva, L.B. Impacto de la Pandemia en la Implementación de la ‘Agenda 2030’: ¿Agravación de Problemas O Señal Para Actuar? Iberoamérica 2021, 2, 35–59. [Google Scholar] [CrossRef]
- FAO; CEPAL. Fao Y Cepal: Millones de Personas Pueden Caer en la Pobreza Extrema Y El Hambre en 2020 en América Latina Y El Caribe Debido Al Impacto de la Pandemia; Comisión Económica para América Latina y el Caribe: Santiago, Chile, 2020; Available online: https://www.cepal.org/es/comunicados/fao-cepal-millones-personas-pueden-caer-la-pobreza-extrema-hambre-2020-america-latina (accessed on 7 September 2022).
- Naciones Unidas. Cómo Evitar Que la Crisis Del COVID-19 SE Transforme en Una Crisis Alimentaria: Acciones Urgentes Contra El Hambre en América Latina Y El Caribe; Comisión Económica para América Latina y el Caribe: Santiago, Chile, 2020. Available online: https://www.cepal.org/es/publicaciones/45702-como-evitar-que-la-crisis-covid-19-se-transforme-crisis-alimentaria-acciones (accessed on 12 September 2022).
- UNDP. UNDP in Collaboration with the Ministry of Health to Pilot Smart Anti-Epidemic Robotic Solutions in Kenya; United Nations Development Programme: New York, NY, USA, 2021; Available online: https://www.undp.org/kenya/press-releases/undp-collaboration-ministry-health-pilot-smart-anti-epidemic-robotic-solutions-kenya (accessed on 14 September 2022).
- Bermeo-Chalco, D.G.; García-Herrera, D.G.; Mena-Clerque, S.E. Brecha digital en tiempos de pandemia: Perspectivas de padres de familia. Epistem. Koin. 2021, 4, 338–360. [Google Scholar] [CrossRef]
- Partha, A. La Brecha Digital Y Sus Consecuencias Adversas Para Millones de Niños—Humanium. 2021. Available online: https://www.humanium.org/es/la-brecha-digital-y-sus-consecuencias-adversas-para-millones-de-ninos/ (accessed on 19 September 2022).
- United Nations Development Programme. An Integrated Global Response is an Investment in Our Future; Programa de las Naciones Unidas para el Desarrollo: New York, NY, USA, 2020; Available online: https://www.undp.org/coronavirus (accessed on 7 September 2022).
- Alkholidi, A.; Alsharabi, N.A.; Hamam, H.; Alshammari, T.S. The 5G Wireless Technology and a Significant Economic Growth and Sustainable Development. In Proceedings of the 2023 International Conference on Smart Computing and Application (ICSCA), Hail, Saudi Arabia, 5–6 February2023; pp. 1–6. [Google Scholar] [CrossRef]
- Gabriel, I.; Gauri, V. Towards a New Global Narrative for the Sustainable Development Goals. In Sustainable Development Goals; Wiley: Hoboken, NY, USA, 2019; pp. 53–70. [Google Scholar] [CrossRef]
- Mobile World Capital Barcelona. Conectividad Inteligente y Servicios Avanzados|La Revolución Digital; Mobile World Capital Barcelona: Barcelona, Spain, 2021; Available online: https://mobileworldcapital.com/conectividad-inteligente-servicios/ (accessed on 19 September 2022).
- UIT. Tecnologías Digitales Para El Cumplimiento de Los Objetivos de Desarrollo Sostenible de Las Naciones Unidas. 2021. Available online: https://www.itu.int/es/mediacentre/backgrounders/Pages/icts-to-achieve-the-united-nations-sustainable-development-goals.aspx (accessed on 19 September 2022).
- CEPAL. ODS 1: Poner Fin a la Pobreza en Todas Sus Formas Para Todos en América Latina El Caribe; Naciones Unidas Cepal: Santiago, Chile, 2019.
- Fundación Microfinanzas BBVA. Tecnología Para Acelerar El Cumplimiento de Los Ods, la Apuesta de la Fundación Microfinanzas BBVA; Fundación Microfinanzas BBVA: Madrid, Spain, 2019; Available online: https://www.fundacionmicrofinanzasbbva.org/tecnologia-acelerar-cumplimiento-los-ods-la-apuesta-la-fundacion-microfinanzas-bbva/ (accessed on 19 September 2022).
- Casal, J.L. La Conectividad Los Objetivos de Desarrollo Sostenible; Atlas Tecnológico: Valencia, Spain, 2021; Available online: https://atlastecnologico.com/la-conectividad-y-los-objetivos-de-desarrollo-sostenible/ (accessed on 19 September 2022).
- Dangi, R.; Lalwani, P.; Choudhary, G.; You, I.; Pau, G. Study and investigation on 5g technology: A systematic review. Sensors 2022, 22, 26. [Google Scholar] [CrossRef]
- Gonzáles, V. El 5G, Mucho Más Que Una Tecnología; Ideas PwC: London, UK, 2020; Available online: https://ideas.pwc.es/archivos/20200131/el-5g-mucho-mas-que-una-tecnologia/ (accessed on 19 September 2022).
- Fowdur, T.P.; Indoonundon, M.; Hosany, M.A.; Milovanovic, D.; Bojkovic, Z. Achieving Sustainable Development Goals Through Digital Infrastructure for Intelligent Connectivity. In AI and IoT for Sustainable Development in Emerging Countries; Lecture Notes on Data Engineering and Communications Technologies; Springer: Cham, Switzerland, 2022; Volume 105, pp. 3–26. [Google Scholar] [CrossRef]
- Campbell, K.; Cruz, L.; Flanagan, B.; Morelli, B.; O’Neil, B.; Téral, S.; Watson, J. The 5G Economy; IHS Markit: London, UK, 2019; Available online: https://www.qualcomm.com/content/dam/qcomm-martech/dm-assets/documents/the_ihs_5g_economy_-_2019.pdf (accessed on 19 September 2022).
- Shafique, K.; Khawaja, B.A.; Sabir, F.; Qazi, S.; Mustaqim, M. Internet of things (IoT) for next-generation smart systems: A review of current challenges, future trends and prospects for emerging 5G-IoT Scenarios. IEEE Access 2020, 8, 23022–23040. [Google Scholar] [CrossRef]
- Khanh, Q.V.; Hoai, N.V.; Manh, L.D.; Le, A.N.; Jeon, G. Wireless Communication Technologies for IoT in 5G: Vision, Applications, and Challenges. Wirel. Commun. Mob. Comput. 2022, 2022, 3229294. [Google Scholar] [CrossRef]
- Wang, Y. Development of the Digital Economy: A Case Study of 5G Technology. In Digital Transformation in Industry. Lecture Notes in Information Systems and Organisation; Kumar, V., Leng, J., Akberdina, V., Kuzmin, E., Eds.; Springer: Cham, Switzerland, 2022; Volume 54. [Google Scholar] [CrossRef]
- World Economic Situation and Prospects 2023|Department of Economic and Social Affairs. Available online: https://www.un.org/development/desa/dpad/publication/world-economic-situation-and-prospects-2023/ (accessed on 26 April 2023).
- Reddy, A.A. Electronic national agricultural markets: The way forward. Curr. Sci. 2018, 115, 826–837. [Google Scholar] [CrossRef]
- Lnu, M. Impact of Policy Reforms on Development of Agricultural Markets and Food-Processing Industries View Project A Amarender Reddy ICAR-Central Research Instititute for Dryland Agriculture. 2019. Available online: https://www.researchgate.net/publication/330540139 (accessed on 28 June 2023).
- Dieye, C.T.; Hathie, M.L.; Amin, S.A.A. Les determinants de la demande d’importation de riz au Senegal. Approuvé par le Comité de mémoire. 2008. Available online: https://repository.uneca.org/handle/10855/43617 (accessed on 4 May 2023).
- Mundial, B. Desarrollo Digital. 2022. Available online: https://www.bancomundial.org/es/topic/digitaldevelopment/overview (accessed on 3 May 2023).
- del Portillo, I.; Eiskowitz, S.; Crawley, E.F.; Cameron, B.G. Connecting the other half: Exploring options for the 50% of the population unconnected to the internet. Telecomm. Policy 2021, 45, 102092. [Google Scholar] [CrossRef]
- Arango-Lopera, C.A.; Cruz-González, M.C.; Rivera, B.X.M.; García, D.G.; Delgado, M.F. Brecha digital: Una revisión de literatura en español. Tsafiqui Rev. Científica En Cienc. Soc. 2022, 12, 19. [Google Scholar] [CrossRef]
- ITU. Facts and Figures 2022—Internet Use. 2022. Available online: https://www.itu.int/itu-d/reports/statistics/2022/11/24/ff22-internet-use/ (accessed on 3 May 2023).
- CEPAL—Naciones Unidas. Brecha Digital Podría Ampliarse en América Latina; Comisión Económica para América Latina y el Caribe: Santiago, Chile, 2002; Available online: https://www.cepal.org/es/comunicados/brecha-digital-podria-ampliarse-america-latina (accessed on 3 May 2023).
- FCC—Federal Communications Commission. Communications Marketplace Report; Federal Communications Commission: Washington, DC, USA, 2022. Available online: https://www.fcc.gov/document/2022-communications-marketplace-report (accessed on 3 May 2023).
- UNESCO. Education: From School Closure to Recovery. Available online: https://www.unesco.org/en/covid-19/education-response (accessed on 3 May 2023).
- Katzis, K.; Mfupe, L.; Hussien, H.M. Opportunities and Challenges of Bridging the Digital Divide using 5G enabled High Altitude Platforms and TVWS spectrum. In Proceedings of the 2020 8th International Conference on Communications and Networking, Hammamet, Tunisia, 27–30 October 2020. [Google Scholar] [CrossRef]
- Oinas-Kukkonen, H.; Karppinen, P.; Kekkonen, M.; Advanced, O. 5G and 6G Broadband Cellular Network Technologies as Enablers of New Avenues for Behavioral Influence with Examples from Reduced Rural-Urban Digital Divide. Urban Sci. 2021, 5, 60. [Google Scholar] [CrossRef]
- GSMA. GSMA-State-of-Mobile-Internet-Connectivity-Report-2020; GSMA: London, UK, 2020. [Google Scholar]
- Ahad, A.; Tahir, M.; Sheikh, M.A.; Ahmed, K.I.; Mughees, A.; Numani, A. Technologies Trend towards 5G Network for Smart Health-Care Using IoT: A Review. Sensors 2020, 20, 4047. [Google Scholar] [CrossRef] [PubMed]
- Siriwardhana, Y.; Gür, G.; Ylianttila, M.; Liyanage, M. The role of 5G for digital healthcare against COVID-19 pandemic: Opportunities and challenges. ICT Express 2021, 7, 244–252. [Google Scholar] [CrossRef]
- Zhu, W. Research on the Blended Teaching Mode Reform of University Physical Education Curriculum Based on the Integration of 5G Cloud Computing and Multimedia. Mob. Inf. Syst. 2021, 2021, 4035878. [Google Scholar] [CrossRef]
- Wu, W.; Lu, B. Construction of Wireless Sensor Network Video Surveillance System for Multimedia Classroom Education and Teaching under 5G Communication Network. J. Sens. 2022, 2022, 6385391. [Google Scholar] [CrossRef]
- ITU. Facts and Figures 2022—Internet Use in Urban and Rural Areas. 2022. Available online: https://www.itu.int/itu-d/reports/statistics/2022/11/24/ff22-internet-use-in-urban-and-rural-areas/ (accessed on 25 April 2023).
- Jiménez, D.L. Reseña de ‘la Inteligencia Artificial Y El Futuro de la Humanidad’, de John Lennox. Temas Debates 2022, 44, 177–181. Available online: http://www.scielo.org.ar/scielo.php?script=sci_arttext&pid=S1853-984X2022000200177&lng=es&nrm=iso&tlng=es (accessed on 4 May 2023).
- Arencibia, M.G.; Cardero, D.M.; Arencibia, M.G.; Cardero, D.M. Dilemas éticos en el escenario de la inteligencia artificial. Econ. Soc. 2020, 25, 93–109. [Google Scholar] [CrossRef]
- Curzon, J.; Kosa, T.A.; Akalu, R.; El-Khatib, K. Privacy and Artificial Intelligence. IEEE Trans. Artif. Intell. 2021, 2, 96–108. [Google Scholar] [CrossRef]
- Hu, Y.; Kuang, W.; Qin, Z.; Li, K.; Zhang, J.; Gao, Y.; Li, W.; Li, K. Artificial Intelligence Security: Threats and Countermeasures. ACM Comput. Surv. 2021, 55, 1–36. [Google Scholar] [CrossRef]
- Goyal, A.; Aneja, R. Artificial intelligence and income inequality: Do technological changes and worker’s position matter? J. Public Aff. 2020, 20, e2326. [Google Scholar] [CrossRef]
- Kim, P. AI and Inequality. 2021. Available online: https://papers.ssrn.com/abstract=3938578 (accessed on 4 May 2023).
- European Commission. A European Approach to Artificial Intelligence|Shaping Europe’s Digital Future. Available online: https://digital-strategy.ec.europa.eu/en/policies/european-approach-artificial-intelligence (accessed on 4 May 2023).
- White House—OSTP. The Biden Administration Launches the National Artificial Intelligence Research Resource Task Force; The White House: Washington, DC, USA, 2021. Available online: https://www.whitehouse.gov/ostp/news-updates/2021/06/10/the-biden-administration-launches-the-national-artificial-intelligence-research-resource-task-force/ (accessed on 4 May 2023).
- National Development and Reform Commission. Aviso Del Consejo de Estado Sobre Impresión Y Distribución Del Plan de Desarrollo de Una Nueva Generación de Inteligencia Artificial (Guo Fa [2017] No. 35) _Government Columna Abierta de Información. 2017. Available online: http://www.gov.cn/zhengce/content/2017-07/20/content_5211996.htm (accessed on 4 May 2023).
- Interrante, V.; Höllerer, T.; Lécuyer, A. Virtual and Augmented Reality. IEEE Comput. Graph. Appl. 2018, 38, 28–30. [Google Scholar] [CrossRef] [Green Version]
- Yin, K.; He, Z.; Xiong, J.; Zou, J.; Li, K.; Wu, S.T. Virtual reality and augmented reality displays: Advances and future perspectives. J. Phys. Photonics 2021, 3, 022010. [Google Scholar] [CrossRef]
- Memarsadeghi, N.; Varshney, A. Virtual and Augmented Reality Applications in Science and Engineering. Comput. Sci. Eng. 2020, 22, 4–6. [Google Scholar] [CrossRef]
- Xanthidis, D.; Manolas, C.; Paul, S.; Xanthidou, O.K. Virtual and Augmented Reality: Enhancing the learning experience in higher education in the U.A.E. Current standing research directions. In Proceedings of the 2020 7th International Conference on Information Technology Trends, ITT 2020, Abu Dhabi, United Arab Emirates, 25–26 November 2020; pp. 206–211. [Google Scholar] [CrossRef]
- Su, S.; Perry, V.; Bravo, L.; Kase, S.; Roy, H.; Cox, K.; Dasari, V.R. Virtual and Augmented Reality Applications to Support Data Analysis and Assessment of Science and Engineering. Comput. Sci. Eng. 2020, 22, 27–39. [Google Scholar] [CrossRef]
- Radianti, J.; Majchrzak, T.A.; Fromm, J.; Wohlgenannt, I. A systematic review of immersive virtual reality applications for higher education: Design elements, lessons learned, and research agenda. Comput. Educ. 2020, 147, 103778. [Google Scholar] [CrossRef]
- Rachevsky, D.C.; De Souza, V.C.; Nedel, L. Visualization and interaction in immersive virtual reality games: A user evaluation study. In Proceedings of the 2018 20th Symposium on Virtual and Augmented Reality, SVR 2018, Foz do Iguacu, Brazil, 28–30 October 2018; pp. 89–98. [Google Scholar] [CrossRef]
- Cruz-Neira, C.; Fernández, M.; Portalés, C. Virtual Reality and Games. Multimodal Technol. Interact. 2018, 2, 8. [Google Scholar] [CrossRef] [Green Version]
- Yang, K.C.C.; Kang, Y. Integrating Virtual Reality and Augmented Reality into Advertising Campaigns: History, Technology, and Future Trends. In Encyclopedia of Computer Graphics and Games; Springer: Cham, Switzerland, 2018; pp. 1–9. [Google Scholar] [CrossRef]
- Wedel, M.; Bigné, E.; Zhang, J. Virtual and augmented reality: Advancing research in consumer marketing. Int. J. Res. Mark. 2020, 37, 443–465. [Google Scholar] [CrossRef]
- Benvegnu, G.; Pluchino, P.; Garnberini, L. Virtual morality: Using virtual reality to study moral behavior in extreme accident situations. In Proceedings of the 2021 IEEE Conference on Virtual Reality and 3D User Interfaces, VR 2021, Lisboa, Portugal, 27 March–1 April 2021; pp. 316–325. [Google Scholar] [CrossRef]
- Bohil, C.J.; Alicea, B.; Biocca, F.A. Virtual reality in neuroscience research and therapy. Nat. Rev. Neurosci. 2011, 12, 752–762. [Google Scholar] [CrossRef] [PubMed]
- Yokoyama, I.; Sarai, T.; Asai, T.; Kitou, N.; Nozaki, H.; Kondo, Y.; Nomura, Y.; Morizane, A.; Sekikawa, M.; Liu, D. Virtual reality and augmented reality applications and simulation in vascular access management with three-dimensional visualization. J. Vasc. Access 2019, 20 (Suppl. S1), 65–70. [Google Scholar] [CrossRef]
- Cieślik, B.; Mazurek, J.; Rutkowski, S.; Kiper, P.; Turolla, A.; Szczepańska-Gieracha, J. Virtual reality in psychiatric disorders: A systematic review of reviews. Complement. Ther. Med. 2020, 52, 102480. [Google Scholar] [CrossRef]
- Asadzadeh, A.; Samad-Soltani, T.; Rezaei-Hachesu, P. Applications of virtual and augmented reality in infectious disease epidemics with a focus on the COVID-19 outbreak. Inform. Med. Unlocked 2021, 24, 100579. [Google Scholar] [CrossRef]
- Das, K.; Fatima, Z.; Fatima, M. Review: Future of Virtual Reality and Augmented Reality. Int. J. Res. Anal. Rev. 2018, 18–23. Available online: https://ijrar.org/viewfull.php?&p_id=IJRAR1944004 (accessed on 4 May 2023).
- Alturki, R.; Gay, V. Augmented and virtual reality in mobile fitness applications: A survey. In EAI/Springer Innovations in Communication and Computing; Springer: Cham, Switzerland, 2019; pp. 67–75. [Google Scholar]
- Napier, T.; Lee, I. Using mobile-based augmented reality and object detection for real-time Abalone growth monitoring. Comput. Electron. Agric. 2023, 207, 107744. [Google Scholar] [CrossRef]
- Bagheri, H.; Noor-A-Rahim, M.; Liu, Z.; Lee, H.; Pesch, D.; Moessner, K.; Xiao, P. 5G NR-V2X: Toward Connected and Cooperative Autonomous Driving. IEEE Commun. Stand. Mag. 2021, 5, 48–54. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, G.; Du, H.; Yuan, X.; Cheriet, M.; Kadoch, M. Real-Time Remote Health Monitoring System Driven by 5G MEC-IoT. Electronics 2020, 9, 1753. [Google Scholar] [CrossRef]
- Hameed, K.; Bajwa, I.S.; Sarwar, N.; Anwar, W.; Mushtaq, Z.; Rashid, T. Integration of 5G and block-chain technologies in smart telemedicine using IoT. J. Healthc. Eng. 2021, 2021, 8814364. [Google Scholar] [CrossRef]
- Lin, T.W.; Hsu, C.L.; Le, T.V.; Lu, C.F.; Huang, B.Y. A Smartcard-Based User-Controlled Single Sign-On for Privacy Preservation in 5G-IoT Telemedicine Systems. Sensors 2021, 21, 2880. [Google Scholar] [CrossRef]
- Mistry, I.; Tanwar, S.; Tyagi, S.; Kumar, N. Blockchain for 5G-enabled IoT for industrial automation: A systematic review, solutions, and challenges. Mech. Syst. Signal. Process. 2020, 135, 106382. [Google Scholar] [CrossRef]
- Attaran, M. The impact of 5G on the evolution of intelligent automation and industry digitization. J. Ambient Intell. Humaniz. Comput. 2021, 1, 1–17. [Google Scholar] [CrossRef]
- Ansari, J.; Andersson, C.; de Bruin, P.; Farkas, J.; Grosjean, L.; Sachs, J.; Torsner, J.; Varga, B.; Harutyunyan, D.; König, N.; et al. Performance of 5G Trials for Industrial Automation. Electronics 2022, 11, 412. [Google Scholar] [CrossRef]
- Thompson, J.; Ge, X.; Wu, H.-C.; Irmer, R.; Jiang, H.; Fettweis, G.; Alamouti, S. 5G wireless communication systems: Prospects and challenges [Guest Editorial]. IEEE Commun. Mag. 2014, 52, 62–64. [Google Scholar] [CrossRef]
- Andrews, J.G.; Buzzi, S.; Choi, W.; Hanly, S.V.; Lozano, A.; Soong, A.C.K.; Zhang, J.C. What will 5G be? IEEE J. Sel. Areas Commun. 2014, 32, 1065–1082. [Google Scholar] [CrossRef]
- Mundial, B. Tasa de Incidencia de la Pobreza, Sobre la Base de $1.90 Por Día (2011 Ppa) (% De la Población)|Data. 2021. Available online: https://datos.bancomundial.org/indicador/SI.POV.DDAY (accessed on 3 May 2023).
- CEPAL. Panorama Social de Amecia Latina 2021; Naciones Unidas: New York, NY, USA, 2022; pp. 1–247.
- Sameti, M.; Esfahani, R.D.; Haghighi, H.K. Theories of Poverty: A comparative Analysis. Kuwait Chapter Arab. J. Bus. Manag. Rev. 2012, 1, 45–61. [Google Scholar]
- GSMA. 2020 Mobile Industry Impact Report: Sustainable Development Goals; GSMA: London, UK, 2020. [Google Scholar]
- 5G in China: Outlook and Regional Comparisons. Available online: https://data.gsmaintelligence.com/research/research/research-2017/5g-in-china-outlook-and-regional-comparisons (accessed on 3 May 2023).
- Campbell, K.; Diffley, J.; Flanagan, B.; Morelli, B.; O’neil, B.; Sideco, F. IHS Economics/IHS Technology the 5G Economy: How 5G Technology Will Contribute to the Global Economy; IHS: London, UK, 2017. [Google Scholar]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The Prisma 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Watson, M. Guidance on Conducting a Systematic Literature Review. J. Plan. Educ. Res. 2019, 39, 93–112. [Google Scholar] [CrossRef]
- La Compresión Textual a Partir de los Recursos Literarios. Available online: https://www.eumed.net/rev/atlante/2020/01/comprension-textual.html (accessed on 2 April 2023).
- Pozzo, M.I. Alfabetización académica en la universidad: Recursos literarios adicionales para aprender a investigar. Rev. Abralin 2021, 20, 1094–1103. [Google Scholar] [CrossRef]
- Donthu, N.; Kumar, S.; Mukherjee, D.; Pandey, N.; Lim, W.M. How to conduct a bibliometric analysis: An overview and guidelines. J. Bus. Res. 2021, 133, 285–296. [Google Scholar] [CrossRef]
- van Eck, N.J.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef] [Green Version]
- VOSviewer—Visualizing Scientific Landscapes. Available online: https://www.vosviewer.com/ (accessed on 6 April 2023).
- Huseien, G.F.; Shah, K.W. Potential Applications of 5G Network Technology for Climate Change Control: A Scoping Review of Singapore. Sustainability 2021, 13, 9720. [Google Scholar] [CrossRef]
- Mangra, N.; Behmann, F.; Thakur, A.; Popescu, A.; Suciu, G., Jr.; Giannattasio, G.; Uppal, R.; Montlouis, W. White Paper—5G Enabled Agriculture Ecosystem: Food Supply Chain, Rural Development, and Climate Resiliency; IEEE: Manhattan, NY, USA, 2023; pp. 1–40. [Google Scholar]
- Wang, S. Research on poverty alleviation mode and internal mechanism of rural e-commerce with 5G VR technology. In Proceedings of the ACM International Conference Proceeding Series, Dalian, China, 24–26 September 2021; pp. 2036–2040. [Google Scholar] [CrossRef]
- van Hilten, M.; Wolfert, S. 5G in agri-food—A review on current status, opportunities and challenges. Comput. Electron. Agric. 2022, 201, 107291. [Google Scholar] [CrossRef]
- Meng, H.; Cheng, Y. Research on key technologies of intelligent agriculture under 5G environment. J. Phys. Conf. Ser. 2019, 1345, 042057. [Google Scholar] [CrossRef]
- Xue, C.; Feng, Y.; Bai, F.; Liu, T. A Drip Irrigation Remote Control System Using 5G-IoT Technology. In Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICST; Springer: Cham, Switzerland, 2022; Volume 413, pp. 182–192. [Google Scholar]
- Tang, Y.; Dananjayan, S.; Hou, C.; Guo, Q.; Luo, S.; He, Y. A survey on the 5G network and its impact on agriculture: Challenges and opportunities. Comput. Electron. Agric. 2021, 180, 105895. [Google Scholar] [CrossRef]
- Shrivastava, S.; Chandra, S.; Askari, M. Factors Influencing Adoption of Disruptive Technologies in Healthcare in India: A Review. In Proceedings of the ICPC2T 2022—2nd International Conference on Power, Control and Computing Technologies, Proceedings, Raipur, India, 1–3 March 2022. [Google Scholar] [CrossRef]
- Moglia, A.; Georgiou, K.; Marinov, B.; Georgiou, E.; Berchiolli, R.N.; Satava, R.M.; Cuschieri, A. 5G in Healthcare: From COVID-19 to Future Challenges. IEEE J. Biomed. Health Inform. 2022, 26, 4187–4196. [Google Scholar] [CrossRef] [PubMed]
- Wei, T. Exploration and prospect of 5G application in telemedicine. Chin. J. Surg. 2020, 58, 1–4. [Google Scholar] [CrossRef]
- Raza, M.; Le, M.H.; Aslam, N.; Le, C.H.; Le, N.T.; Le, T.L. Telehealth technology: Potentials, challenges and research directions for developing Countries. IFMBE Proc. 2018, 63, 523–528. [Google Scholar]
- Li, D. 5G and intelligence medicine—How the next generation of wireless technology will reconstruct healthcare? Precis. Clin. Med. 2019, 2, 205–208. [Google Scholar] [CrossRef] [Green Version]
- Javaid, M.; Haleem, A.; Singh, R.P.; Suman, R. 5G technology for healthcare: Features, serviceable pillars, and applications. Intell. Pharm. 2023, 1, 2–10. [Google Scholar] [CrossRef]
- Devi, D.H.; Duraisamy, K.; Armghan, A.; Alsharari, M.; Aliqab, K.; Sorathiya, V.; Das, S.; Rashid, N. 5G Technology in Healthcare and Wearable Devices: A Review. Sensors 2023, 23, 2519. [Google Scholar] [CrossRef]
- Xu, J.; Cui, Y.; Huang, X.; Mo, S.; Wang, L.; Su, G.; Cheng, Y. The Prospect of 5G Technology Applied to Distance Medical Education and Clinical Practice. Creat. Educ. 2020, 11, 2837–2845. [Google Scholar] [CrossRef]
- Ahmed, N.; Abid, A.; Rasheed, S.; Farooq, M.S.; Shahzadi, A.; Mubarik, I. Impact of telecommunication network on future of telemedicine in healthcare: A systematic literature review. Artic. Int. J. Adv. Appl. Sci. 2022, 9, 122–138. [Google Scholar] [CrossRef]
- Pandav, K.; Te, A.G.; Tomer, N.; Nair, S.S.; Tewari, A.K. Leveraging 5G technology for robotic surgery and cancer care. Cancer Rep. 2022, 5, e1595. [Google Scholar] [CrossRef]
- Bekaroo, G.; Santokhee, A.; Augusto, J.C. 5G Smart and Innovative Healthcare Services: Opportunities, Challenges, and Prospective Solutions. In 5G Multimedia Communication; CRC Press: Boca Raton, FL, USA, 2020; pp. 279–297. [Google Scholar] [CrossRef]
- Mokhtar, U.B.; Ahmad, J.B. 5G Communications: Potential Impact on Education Technology in Higher Ed. In Proceedings of the International Multidisciplinary Conference (IMC 2020), Bali, Indonesia, 24–26 January 2020. [Google Scholar]
- Sumallika, T.; Raju, D.P.V.M.; Indira, D.D.N.V.S.L.S.; Lakshmi, P.R. An Overview of E-Learning and its Challenges in India. Int. J. Mech. Eng. 2022, 7, 314–319. [Google Scholar]
- Denkenberger, D.; Way, J.; Pearce, J.M. Educational pathways to remote employment in isolated communities. J. Hum. Secur. 2015, 11, 34–44. [Google Scholar] [CrossRef] [Green Version]
- Wanka, F.A.; Rena, R. The impact of educational attainment on household poverty in South Africa: A case study of Limpopo province1. Afr. J. Sci. Technol. Innov. Dev. 2019, 11, 597–609. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, U.; Dave, P.; Tiwari, A.; Upadhyay, V.; Sankhe, M.; Shrivastav, S. Implementation of 5G Technology in Rural Education of India. In Proceedings of the IBSSC 2022—IEEE Bombay Section Signature Conference, Mumbai, India, 8–10 December 2022. [Google Scholar] [CrossRef]
- Ravishankar, V.; Marshall, A.M. Teaching an Undergraduate 5G Technology and Security Course, and Its Outcomes. In Proceedings of the SIGCSE 2023—Proceedings of the 54th ACM Technical Symposium on Computer Science Education, Toronto, ON, Canada, 15–18 March 2023; Volume 2, p. 1405. [Google Scholar] [CrossRef]
- Samuels-Kalow, M.; Jaffe, T.; Zachrison, K. Digital disparities: Designing telemedicine systems with a health equity aim. Emerg. Med. J. 2021, 38, 474–476. [Google Scholar] [CrossRef] [PubMed]
- Navarro, E.M.; Álvarez, A.N.R.; Anguiano, F.I.S. A new telesurgery generation supported by 5G technology: Benefits and future trends. Procedia Comput. Sci. 2022, 200, 31–38. [Google Scholar] [CrossRef]
- Kirshenbaum, E.; Rhee, E.Y.; Gettman, M.; Spitz, A. Telemedicine in Urology: The Socioeconomic Impact. Urol. Clin. N. Am. 2021, 48, 215–222. [Google Scholar] [CrossRef]
- Haleem, A.; Javaid, M.; Singh, R.P.; Suman, R. Medical 4.0 technologies for healthcare: Features, capabilities, and applications. Internet Things Cyber-Phys. Syst. 2022, 2, 12–30. [Google Scholar] [CrossRef]
- Ahmad, I.; Asghar, Z.; Kumar, T.; Li, G.; Manzoor, A.; Mikhaylov, K.; Shah, S.A.; Höyhtyä, M.; Reponen, J.; Hussko, J.; et al. Emerging Technologies for Next Generation Remote Health Care and Assisted Living. IEEE Access 2022, 10, 56094–56132. [Google Scholar] [CrossRef]
- Wang, L.; Hawkins-Daarud, A.; Swanson, K.R.; Hu, L.S.; Li, J. Knowledge-Infused Global-Local Data Fusion for Spatial Predictive Modeling in Precision Medicine. IEEE Trans. Autom. Sci. Eng. 2022, 19, 2203–2215. [Google Scholar] [CrossRef]
- Hurst, W.; Montañez, C.A.C.; Shone, N.; Al-Jumeily, D. An Ensemble Detection Model Using Multinomial Classification of Stochastic Gas Smart Meter Data to Improve Wellbeing Monitoring in Smart Cities. IEEE Access 2020, 8, 7877–7898. [Google Scholar] [CrossRef]
- Maurer, H.; Schinagl, W. Designing E-Learning Programs for Rural Social Transformation and Poverty Reduction. In World Conference on E-Learning in Corporate, Government, Healthcare, and Higher Education 2007; Association for the Advancement of Computing in Education (AACE): San Diego, CA, USA, 2007; pp. 6325–6340. Available online: https://www.learntechlib.org/primary/p/26793/ (accessed on 9 May 2023).
- Khan, H.; Williams, J.B. Poverty Alleviation Through Access to Education: Can E-Learning Deliver? SSRN Electron. J. 2006. [Google Scholar] [CrossRef]
- Lechman, E.; Popowska, M. Harnessing digital technologies for poverty reduction. Evidence for low-income and lower-middle income countries. Telecomm. Policy 2022, 46, 102313. [Google Scholar] [CrossRef]
- Uwizeyimana, E.D. Analysing the importance of e-government in times of disruption: The case of public education in Rwanda during COVID-19 lockdown. Eval. Program Plann. 2022, 91, 102064. [Google Scholar] [CrossRef] [PubMed]
- Murthy, C.S.H.N.; Mathur, G. Designing e-learning programs for rural social transformation and poverty reduction. Turk. Online J. Distance Educ. 2008, 9, 169–179. [Google Scholar]
- Naqvi, S.M.Z.A.; Saleem, S.R.; Tahir, M.N.; Li, S.; Hussain, S.; Ul Haq, S.I.; Awais, M. Role of 5G and 6G Technology in Precision Agriculture. Environ. Sci. Proc. 2022, 23, 3. [Google Scholar] [CrossRef]
- Tomaszewski, L.; Kołakowski, R.; Zagórda, M. Application of Mobile Networks (5G and Beyond) in Precision Agriculture. IFIP Adv. Inf. Commun. Technol. 2022, 652, 71–86. [Google Scholar]
- Xu, D.; Gao, Y.; Xiao, X. Precision Poverty Alleviation Methods in the Agricultural Field Based upon Wireless Communication Networks and Blockchain. Wirel. Commun. Mob. Comput. 2022, 2022, 2687445. [Google Scholar] [CrossRef]
- Zhu, C.; Lu, W.; Zhao, W.; Hong, Z.; Chen, C. On-Site Energy Consumption Technologies and Prosumer Marketing for Distributed Poverty Alleviation Photovoltaic Linked to Agricultural Loads in China. IEEE Access 2020, 8, 191561–191573. [Google Scholar] [CrossRef]
- Li, G.; Qin, J. Income effect of rural E-commerce: Empirical evidence from Taobao villages in China. J. Rural Stud. 2022, 96, 129–140. [Google Scholar] [CrossRef]
- Long, H.; Fu, X.; Kong, W.; Chen, H.; Zhou, Y.; Yang, F. Key technologies and applications of rural energy internet in China. Inf. Process. Agric. 2022, in press. [CrossRef]
- LoPiccalo, K. Impact of broadband penetration on U.S. Farm productivity: A panel approach. Telecomm. Policy 2022, 46, 102396. [Google Scholar] [CrossRef]
- Quayson, M.; Bai, C.; Sarkis, J. Technology for Social Good Foundations: A Perspective from the Smallholder Farmer in Sustainable Supply Chains. IEEE Trans. Eng. Manag. 2021, 68, 894–898. [Google Scholar] [CrossRef]
- Arrubla-Hoyos, W.; Ojeda-Beltrán, A.; Solano-Barliza, A.; Rambauth-Ibarra, G.; Barrios-Ulloa, A.; Cama-Pinto, D.; Arrabal-Campos, F.M.; Martínez-Lao, J.A.; Cama-Pinto, A.; Manzano-Agugliaro, F. Precision Agriculture and Sensor Systems Applications in Colombia through 5G Networks. Sensors 2022, 22, 7295. [Google Scholar] [CrossRef] [PubMed]
- Berto, F.; Ardagna, C.; Torrente, M.; Manenti, D.; Ferrari, E.; Calcante, A.; Oberti, R.; Fra’, C.; Ciani, L. A 5G-IoT enabled Big Data infrastructure for data-driven agronomy. In Proceedings of the 2022 IEEE Globecom Workshops, GC Wkshps 2022, Rio de Janeiro, Brazil, 4–8 December 2022; pp. 588–594. [Google Scholar] [CrossRef]
- Bhatti, M.R.; Akyol, A.; Rosigkeit, H.; Matzke, L.; Grabenhorst, I.; Gómez, J.M. Living lab research project ‘5G Smart Country’—Use of 5G technology in precision agriculture exemplified by site-specific fertilization. In Lecture Notes in Informatics (LNI), Proceedings—Series of the Gesellschaft fur Informatik (GI); Gesellschaft für Informatik e.V.: Bonn, Germany, 2022; Volume P-328, pp. 101–110. [Google Scholar]
- Murugamani, C.; Shitharth, S.; Hemalatha, S.; Kshirsagar, P.R.; Riyazuddin, K.; Naveed, Q.N.; Islam, S.; Ali, S.P.M.; Batu, A. Machine Learning Technique for Precision Agriculture Applications in 5G-Based Internet of Things. Wirel. Commun. Mob. Comput. 2022, 2022, 6534238. [Google Scholar] [CrossRef]
- Vong, J.; Mandal, P.; Song, I. Digital Banking for Alleviating Rural Poverty in Indonesia: Some Evidences; Springer: Singapore, 2016; pp. 3–18. [Google Scholar] [CrossRef]
- Wan, X.; Qie, X. Poverty alleviation ecosystem evolutionary game on smart supply chain platform under the government financial platform incentive mechanism. J. Comput. Appl. Math. 2020, 372, 112595. [Google Scholar] [CrossRef]
- How, M.L.; Cheah, S.M.; Khor, A.C.; Chan, Y.J. Artificial intelligence-enhanced predictive insights for advancing financial inclusion: A human-centric ai-thinking approach. Big Data Cogn. Comput. 2020, 4, 8. [Google Scholar] [CrossRef]
- Peng, C.; Ma, B.; Zhang, C. Poverty alleviation through e-commerce: Village involvement and demonstration policies in rural China. J. Integr. Agric. 2021, 20, 998–1011. [Google Scholar] [CrossRef]
- Ni, Y.; Li, X.; Ye, Y.; Li, Y.; Li, C.; Chu, D. An Investigation on Deep Learning Approaches to Combining Nighttime and Daytime Satellite Imagery for Poverty Prediction. IEEE Geosci. Remote Sens. Lett. 2021, 18, 1545–1549. [Google Scholar] [CrossRef]
- Ma, Y. Blue Economy Symbiosis Mechanism Based on 5G Network and Internet of Things. Microprocess. Microsyst. 2021, 80, 103561. [Google Scholar] [CrossRef]
- Ye, Y.; Chen, S.; Li, C. Financial technology as a driver of poverty alleviation in China: Evidence from an innovative regression approach. J. Innov. Knowl. 2022, 7, 100164. [Google Scholar] [CrossRef]
- Santos, S.C.; Neumeyer, X. The Technologization of Entrepreneurial Processes: A Poverty Perspective. IEEE Trans. Eng. Manag. 2023, 70, 1174–1185. [Google Scholar] [CrossRef]
- Wang, Q.; Miao, X. Innovative Ecological Economic System Based on 5G Network and Internet of Things. Microprocess. Microsyst. 2021, 80, 103558. [Google Scholar] [CrossRef]
- Baralla, G.; Pinna, A.; Tonelli, R.; Marchesi, M. Waste management: A comprehensive state of the art about the rise of blockchain technology. Comput. Ind. 2023, 145, 103812. [Google Scholar] [CrossRef]
- Hersh, J.; Engstrom, R.; Mann, M. Open data for algorithms: Mapping poverty in Belize using open satellite derived features and machine learning. Inf. Technol. Dev. 2021, 27, 263–292. [Google Scholar] [CrossRef]
- Ning, X.; Ramirez, R.; Khuntia, J. Blockchain-enabled government efficiency and impartiality: Using blockchain for targeted poverty alleviation in a city in China. Inf. Technol. Dev. 2021, 27, 599–616. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, Y.; Cheng, M.; Yu, N.; Wei, X.; Zhang, Z. Impact of Information Access on Poverty Alleviation Effectiveness: Evidence from China. IEEE Access 2019, 7, 149013–149025. [Google Scholar] [CrossRef]
- Wang, L. Improving the performance of precision poverty alleviation based on big data mining and machine learning. J. Intell. Fuzzy Syst. 2021, 40, 6617–6628. [Google Scholar] [CrossRef]
- Liu, H.; Liu, Y.; Qin, Z.; Zhang, R.; Zhang, Z.; Mu, L. A Novel DBSCAN Clustering Algorithm via Edge Computing-Based Deep Neural Network Model for Targeted Poverty Alleviation Big Data. Wirel. Commun. Mob. Comput. 2021, 2021, 5536579. [Google Scholar] [CrossRef]
- Mora, H.; Mendoza-Tello, J.C.; Varela-Guzmán, E.G.; Szymanski, J. Blockchain technologies to address smart city and society challenges. Comput. Hum. Behav. 2021, 122, 106854. [Google Scholar] [CrossRef]
- Stark, T.; Wurm, M.; Zhu, X.X.; Taubenböck, H. Satellite-Based Mapping of Urban Poverty with Transfer-Learned Slum Morphologies. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 5251–5263. [Google Scholar] [CrossRef]
- Goel, R.K.; Vishnoi, S. Urbanization and sustainable development for inclusiveness using ICTs. Telecomm. Policy 2022, 46, 102311. [Google Scholar] [CrossRef]
- Blake, A.; Garzon, M.Q. Boundary objects to guide sustainable technology-supported participatory development for poverty alleviation in the context of digital divides. Electron. J. Inf. Syst. Dev. Ctries. 2012, 51, 1–25. [Google Scholar] [CrossRef]
- Raji, M.O.; Ayoade, O.B.; Usoro, A. The Prospects and Problems of Adopting ICT for Poverty Eradication in Nigeria. Electron. J. Inf. Syst. Dev. Ctries. 2006, 28, 1–9. [Google Scholar] [CrossRef]
- Domingo, M.C. An Overview of Machine Learning and 5G for People with Disabilities. Sensors 2021, 21, 7572. [Google Scholar] [CrossRef]
- Payal, M.; Dixit, P.; Dutt, V. Drones in Smart Cities. In AI and IoT-Based Intelligent Automation in Robotics; Wiley: Hoboken, NJ, USA, 2021; pp. 205–228. [Google Scholar] [CrossRef]
- Khayyatkhoshnevis, P.; Choudhury, S.; Latimer, E.; Mago, V. Smart City Response to Homelessness. IEEE Access 2020, 8, 11380–11392. [Google Scholar] [CrossRef]
- Ma, M.; Wu, Y.; Guo, N.; Chen, L.; Gong, Q.; Li, J. A Parallel Processing Model for Accelerating High-Resolution Geo-Spatial Accessibility Analysis. IEEE Access 2018, 6, 52936–52952. [Google Scholar] [CrossRef]
- Mundial, B. La Revolución Tecnológica Está Cambiando la Manera en que Medimos la Pobreza. 2017. Available online: https://www.bancomundial.org/es/news/immersive-story/2017/07/26/the-tech-revolution-thats-changing-how-we-measure-poverty (accessed on 27 April 2023).
- World Bank. The World by Income and Region. Available online: https://datatopics.worldbank.org/world-development-indicators/the-world-by-income-and-region.html (accessed on 25 April 2023).
- ITU. Connecting Humanity Assessing Investment Needs of Connecting Humanity to the Internet by 2030; ITU: Geneva, Switzerland, 2020.
- Ali, S.M.; Appolloni, A.; Cavallaro, F.; D’Adamo, I.; Di Vaio, A.; Ferella, F.; Gastaldi, M.; Ikram, M.; Kumar, N.M.; Martin, M.A.; et al. Development Goals towards Sustainability. Sustainability 2023, 15, 9443. [Google Scholar] [CrossRef]
Database Source | Number of Related Items | Predominant Language |
---|---|---|
Scopus | 8 | English |
IEEE Xplore | 10 | English |
ScienceDirect | 15 | English |
Dialnet | 3 | English |
EBSCO Host | 7 | English |
Others | 6 | English |
Filter | Description |
---|---|
Article title | 5G AND (Hunger OR Income OR poverty OR rural) |
Keywords | 5G AND poverty AND technology poverty reduction, sustainability |
Document Type | Journal Article |
Language | English, Spanish |
Sector | Quantity | Articles |
---|---|---|
Health | 7 | [123,124,125,126,127,128,129] |
Education | 5 | [130,131,132,133,134] |
Agriculture | 12 | [135,136,137,138,139,140,141,142,143,144,145,146] |
Finance | 3 | [147,148,149] |
Economy/employment | 8 | [119,150,151,152,153,154,155,156] |
Government/society | 13 | [157,158,159,160,161,162,163,164,165,166,167,168,169] |
Contribution | Sector | Description | Articles |
---|---|---|---|
Entrepreneurship and employment | economy, government | The 5G network can drive job creation and entrepreneurship by enabling innovation in different industries. The low latency and high speed of the 5G network facilitate the adoption of advanced technologies such as virtual, augmented, and mixed reality, the Internet of Things (IoT), and Artificial Intelligence. These technologies can drive the development of new products and services, generate employment opportunities in emerging sectors, and foster the creation of new businesses, which in turn helps to reduce poverty. | [119,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169] |
Agriculture and food security | agriculture | Agriculture is a crucial sector for combating poverty, especially in rural areas. The 5G network can improve agricultural efficiency and productivity by enabling the use of advanced technologies such as connected sensors, smart irrigation systems, and remote crop monitoring. These solutions can help farmers optimize resource use, improve yields, and reduce production costs, which in turn can increase incomes and improve food security for vulnerable communities. | [135,136,137,138,139,140,141,142,143,144,145,146] |
Access to basic services | health, education, finance | The 5G network can improve access to basic services such as energy, drinking water, and medical care in remote or hard-to-reach areas. The fast and reliable connectivity of the 5G network enables the deployment of smart solutions for energy distribution, water supply monitoring, and telemedicine. These solutions can improve the quality of life of disadvantaged communities by providing essential services more efficiently and affordably. | [123,124,125,126,127,128,129,130,131,132,133,147,148,149] |
Access to information and education | education, society | Access to information and education is fundamental to overcoming poverty. The 5G network offers faster and more reliable connectivity, facilitating access to online educational courses, learning platforms, and digital content. This provides training and education opportunities for people in rural or low-income areas, which can improve their employment prospects and generate greater economic development. | [130,130,131,132,133,157,158,159,168,169,170] |
5G Network-Based Technologies | Quantity | Articles |
---|---|---|
Internet of things | 8 | [126,135,141,143,144,152,155,168] |
Artificial Intelligence | 6 | [128,129,140,145,148,149] |
Mobile application | 5 | [132,136,147,153,169] |
Blockchain | 5 | [137,142,156,158,162] |
Big data | 4 | [138,159,161,164] |
Telemedicine | 4 | [123,124,125,127] |
E-learning | 4 | [130,130,131,133] |
Machine learning | 4 | [146,157,160,167] |
E-commerce | 3 | [139,150,154] |
Deep learning | 2 | [151,163] |
Contribution | 5G Technology | Articles |
---|---|---|
Entrepreneurship and employment | Big data Blockchain Deep learning E-commerce Internet of things Machine learning Mobile application | [159,161,164] [156,158,162] [151,163] [150,154] [152,155,168] [157,160,167] [153,169] |
Agriculture and food security | Artificial Intelligence Big data Blockchain E-commerce Internet of things Machine learning Mobile application | [140,145] [138] [137,142] [139] [135,141,143,144] [146] [136] |
Access to basic services | Telemedicine Artificial Intelligence Internet of things Mobile application | [123,124,125,127] [128,129,148,149] [126] [147] |
Access to information and education | E-learning Image processing Mobile application | [130,131,133] [170] [132] |
Technological Application | Area of Application | Articles |
---|---|---|
Precision agriculture | Crop and soil monitoring for improved productivity. | [135,136,137,143,144,145,146,167] |
Online education | Access to online education in remote areas. | [130,131,133] |
Digital banking/internet banking | Access to financial and banking services in remote areas. | [134,147,148,149] |
Smart City | Manage the proper functioning of public and private transportation systems. | [129,162,168,169] |
Precision medicine | Improve the effectiveness and safety of treatments, as well as reduce long-term health care costs. | [126,127,128] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cabanillas-Carbonell, M.; Pérez-Martínez, J.; Zapata-Paulini, J. Contributions of the 5G Network with Respect to Poverty (SDG1), Systematic Literature Review. Sustainability 2023, 15, 11301. https://doi.org/10.3390/su151411301
Cabanillas-Carbonell M, Pérez-Martínez J, Zapata-Paulini J. Contributions of the 5G Network with Respect to Poverty (SDG1), Systematic Literature Review. Sustainability. 2023; 15(14):11301. https://doi.org/10.3390/su151411301
Chicago/Turabian StyleCabanillas-Carbonell, Michael, Jorge Pérez-Martínez, and Joselyn Zapata-Paulini. 2023. "Contributions of the 5G Network with Respect to Poverty (SDG1), Systematic Literature Review" Sustainability 15, no. 14: 11301. https://doi.org/10.3390/su151411301
APA StyleCabanillas-Carbonell, M., Pérez-Martínez, J., & Zapata-Paulini, J. (2023). Contributions of the 5G Network with Respect to Poverty (SDG1), Systematic Literature Review. Sustainability, 15(14), 11301. https://doi.org/10.3390/su151411301