Remediation of Heavy Metal (Cu, Pb) Contaminated Fine Soil Using Stabilization with Limestone and Livestock Bone Powder
Abstract
:1. Introduction
2. Experimental Methodology
2.1. Heavy Metal Contaminated Soil
2.2. Stabilization Agents
2.3. Stabilization Experiments
2.4. Mineralogical Characterization
2.5. Stabilization Mechanism Analytics
2.6. Physicochemical Testing
3. Results and Discussion
3.1. Mineralogy of Soil and Stabilizing Agents
3.2. Stabilization Treatment Effectiveness
3.3. SEM-EDX Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- USEPA Fed. Regist. 1988, 53. Available online: https://archives.federalregister.gov/issue_slice/1988/8/17/31135-31222.pdf (accessed on 14 July 2023).
- “Copper: Health Information Summary” (PDF). Environmental Fact Sheet. New Hampshire Department of Environmental Services. 2005. ARD-EHP-9. Available online: https://sswm.info/sites/default/files/reference_attachments/DES%202013.%20Copper%2C%20Health%20Information%20Summary.pdf (accessed on 14 July 2023).
- Lin, S.L.; Cross, W.H.; Chian, E.S.K.; Lai, J.S.; Giabbai, M.; Hung, C.H. Stabilization and solidification of lead in contaminated soils. J. Hazard. Mater. 1996, 48, 95–110. [Google Scholar] [CrossRef]
- Long, R.P.; Zhang, X. Treating lead-contaminated soil by stabilization and solidification. Transp. Res. Rec. 1998, 1615, 72–78. [Google Scholar] [CrossRef]
- Park, S.H.; Moon, D.H.; Koutsospyros, A. Optimization of a high-pressure soil washing system for emergency recovery of heavy metal-contaminated soil. Agriculture 2022, 12, 2054. [Google Scholar] [CrossRef]
- Mahedi, M.; Cetin, B.; Dayioglu, A.Y. Leaching behavior of aluminum, copper, iron and zinc from cement activated fly ash and slag stabilized soils. Waste Manag. 2019, 95, 334–355. [Google Scholar] [CrossRef]
- Ouhadi, V.T.; Yong, R.N.; Deiranlou, M. Enhancement of cement-based solidification/stabilization of a lead-contaminated smectite clay. J. Hazard. Mater. 2021, 403, 123969. [Google Scholar] [CrossRef] [PubMed]
- Zha, F.; Ji, C.; Xu, L.; Kang, B.; Yang, C.; Chu, C. Assessment of strength and leaching characteristics of heavy metal–contaminated soils solidified/stabilized by cement/fly ash. Environ. Sci. Pollut. Res. 2019, 26, 30206–30219. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.; Shin, W.S.; Choi, S.J.; Lee, H.-H. Solidification/Stabilization of heavy metals in sewage sludge prior to use as a landfill cover material. J. Korean Soc. Environ. Eng. 2010, 32, 665–675. [Google Scholar]
- Torres-Quiroz, C.; Dissanayake, J.; Park, J. Oyster Shell Powder, Zeolite and Red Mud as Binders for Immobilising Toxic Metals in Fine Granular Contaminated Soils (from Industrial Zones in South Korea). Int. J. Environ. Res. Public Health 2021, 18, 2530. [Google Scholar] [CrossRef]
- Zheng, X.; Zou, M.; Zhang, B.; Lai, W.; Zeng, X.; Chen, S.; Wang, M.; Yi, X.; Tao, X.; Lu, G. Remediation of Cd-, Pb-, Cu-, and Zn-contaminated soil using cow bone meal and oyster shell meal. Ecotoxicol. Environ. Saf. 2022, 229, 113073. [Google Scholar] [CrossRef]
- Ahmad, M.; Hashimoto, Y.; Moon, D.H.; Lee, S.S.; Ok, Y.S. Immobilization of lead in a Korean military shooting range soil using eggshell. J. Hazard. Mater. 2012, 209–210, 392–401. [Google Scholar] [CrossRef] [PubMed]
- Ok, Y.S.; Lee, S.S.; Jeon, W.-T.; Oh, S.-E.; Usman, A.R.A.; Moon, D.H. Application of eggshell waste for the immobilization of cadmium and lead in a contaminated soil. Environ. Geochem. Health 2011, 33, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Lim, J.E.; Sung, J.K.; Sarkar, B.; Wang, H.; Hashimoto, Y.; Tsang, D.C.W.; Ok, Y.S. Impact of natural and calcined starfish (Asterina pectinifera) on the stabilization of Pb, Zn and As in contaminated agricultural soil. Environ. Geochem. Health 2017, 39, 431–441. [Google Scholar] [CrossRef]
- Ashrafi, M.; Mohamad, S.; Yusoff, I.; Hamidwaste, F.S. Immobilization of Pb, Cd, and Zn in a contaminated soil using eggshell and banana stem amendments: Metal leachability. Environ. Sci. Pollut. Res. 2015, 22, 223–230. [Google Scholar] [CrossRef] [PubMed]
- Moon, D.H.; Cheong, K.H.; Kim, T.S.; Khim, J.; Choi, S.B.; Ok, Y.S.; Moon, O.R. Stabilization of Pb contaminated army firing range soil using calcined waste oyster shells. J. Korean Soc. Environ. Eng. 2010, 32, 185–192. [Google Scholar]
- Shin, Y.-S.; Kang, K.; Park, S.-J.; Um, B.-H.; Kim, Y.-K. Application of red mud and oyster shell for the stabilization of heavy metals (Pb, Zn and Cu) in marine contaminated sediment. J. Korean Soc. Environ. Eng. 2012, 34, 751–756. [Google Scholar] [CrossRef] [Green Version]
- Moon, D.H.; Cheong, K.H.; Khim, J.; Grubb, D.G.; Ko, I. Stabilization of Cu-contaminated army firing range soils using waste oyster shells. Environ. Geochem. Health. 2011, 33, 159–166. [Google Scholar] [CrossRef]
- Gruden, E.; Bukovec, P.; Zupancic, M. Preliminary evaluation of animal bone char as potential metal stabilization agent in metal contaminated soil. Acta Chim. Slov. 2017, 64, 577–581. [Google Scholar] [CrossRef] [Green Version]
- Andrunik, M.; Wołowiec, M.; Wojnarski, D.; Zelek-Pogudz, S.; Bajda, T. Transformation of Pb, Cd, and Zn minerals using phosphates. Minerals 2020, 10, 342. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Guo, G.; Wang, N.; Zhang, J.; Wang, Z.; Li, F.; Chen, H. Enhanced stabilization of Pb, Zn, and Cd in contaminated soils using oxalic acid-activated phosphate rocks. Environ. Sci. Pollut. Res. 2018, 25, 2861–2868. [Google Scholar] [CrossRef]
- Moon, D.H.; Park, J.-W.; Chang, Y.-Y.; Ok, Y.S.; Lee, S.S.; Ahmad, M.; Koutsospyros, A.; Park, J.-H.; Baek, K. Immobilization of lead in contaminated firing range soil using biochar. Environ. Sci. Pollut. Res. 2013, 20, 8464–8471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, J.-W.; Choi, T.-B.; Seon, Y.-H.; Chang, Y.-Y. Stabilization of contaminated soils by heavy metals using ca-phosphates. J. Korean Soc. Environ. Eng. 2003, 25, 554–559. [Google Scholar]
- Ren, J.; Zhang, Z.; Wang, M.; Guo, G.; Du, P.; Li, F. Phosphate-induced differences in stabilization efficiency for soils contaminated with lead, zinc, and cadmium. Front. Environ. Sci. Eng. 2018, 12, 10. [Google Scholar] [CrossRef]
- Lim, M.; Kim, M.-J. Stabilization of residual heavy metals after soil washing of mine tailings contaminated with arsenic and heavy metals. J. Korean Soc. Environ. Eng. 2014, 36, 67–73. [Google Scholar] [CrossRef]
- Song, H.; Song, D.-S.; Cho, D.-W.; Park, S.-W.; Choi, S.-H.; Jeon, B.-H.; Lee, J.; Park, J. Stabilization of heavy metals using ca-citrate-phosphate solution: Effect of soil microorganisms. J. Korean Soc. Environ. Eng. 2009, 31, 241–248. [Google Scholar]
- Ball, D.F. Loss-on-ignition as an estimate of organic matter and organic carbon in non-calcareous soil. J. Soil Sci. 1964, 15, 84–92. [Google Scholar] [CrossRef]
- FitzPatrick, E.A. Soils: Their Formation, Classification and Distribution; Longman Science & Technical: London, UK, 1983; p. 353. [Google Scholar]
- MDI. Jade Version 7.1; Material’s Data Inc.: Livermore, CA, USA, 2005. [Google Scholar]
- ICDD. Powder Diffraction file.PDF-2 Database Release; International Centre for Diffraction Data: Newtown Square, PA, USA, 2002. [Google Scholar]
- Ministry of Environment (MOE). The Korean Standard Test (KST) Methods for Soils; Korean Ministry of Environment: Gwachun, Republic of Korea, 2010; p. 225. (In Korean)
- National Academy of Agricultural Science (NAAS). Method of Soil Chemical Analysis; Rural Development Administration: Suwon, Republic of Korea, 2010.
- Harter, R.D. Effect of soil pH on adsorption of lead, copper, zinc and nickel. Soil Sci. Soc. Am. J. 1983, 47, 47–51. [Google Scholar] [CrossRef]
- Naidu, R.; Bolan, N.S.; Kookana, R.S.; Tiller, K.G. Ionic-strength and pH effects on the sorption of cadmium and the surface charge of soils. Eur. J. Soil Sci. 1994, 45, 419–429. [Google Scholar] [CrossRef]
- Hooda, P.S.; Alloway, B.J. Cadmium and Lead sorption behaviour of selected English and Indian soils. Geoderma 1998, 84, 121–134. [Google Scholar] [CrossRef]
- James, B.R.; Bartlett, R.J. Behavior of chromium in soils. VII. Adsorption and reduction of hexavalent forms. J. Environ. Qual. 1983, 12, 177–181. [Google Scholar] [CrossRef]
- Cao, X.; Dermatas, D.; Xu, X.; Shen, G. Immobilization of lead in shooting range soils by means of cement, quick lime, and phosphate amendments. Environ. Sci. Pollut. R. 2008, 15, 120–127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paulose, B.; Datta, S.P.; Rattan, R.K.; Chhonkar, P.K. Effect of amendments on the extractability, retention and plant uptake of metals on a sewage-irrigated soil. Environ. Pollut. 2007, 146, 19–24. [Google Scholar] [CrossRef] [PubMed]
- Ok, Y.S.; Oh, S.-E.; Ahmad, M.; Hyun, S.; Kim, K.-R.; Moon, D.H.; Lee, S.S.; Lim, K.J.; Jeon, W.-T.; Yang, J.E. Effects of natural and calcined oyster shells on Cd and Pb immobilization in contaminated soils. Environ. Earth Sci. 2010, 61, 1301–1308. [Google Scholar] [CrossRef]
- Youyuan, S.; Tao, Y.; Kai, W.; Simin, H.; Wuzhi, Y.; Qin, F.G.F. Soil heavy metal lead pollution and its stabilization remediation technology. Energy Rep. 2020, 6, 122–127. [Google Scholar]
- Zhang, H.; Shao, J.; Zhang, S.; Zhang, X.; Chen, H. Effect of phosphorus-modified biochars on immobilization of Cu (II), Cd (II), and As (V) in paddy soil. J. Hazard. Mater. 2020, 390, 121349. [Google Scholar] [CrossRef]
- Xu, Y.P.; Schwartz, F.W.; Traina, S.J. Sorption of Zn2+ and Cd2+ on hydroxyapatite surfaces. Environ. Sci. Technol. 1994, 28, 1472–1480. [Google Scholar] [CrossRef]
- Moon, D.H.; Cheong, K.H.; Khim, J.; Wazne, M.; Hyun, S.; Park, J.-H.; Chang, Y.-Y.; Ok, Y.S. Stabilization of Pb2+ and Cu2+ contaminated firing range soil using calcined oyster shells and waste cow bones. Chemosphere 2013, 91, 1349–1354. [Google Scholar] [CrossRef]
- Ahmad, M.; Moon, D.H.; Lim, K.J.; Shope, C.L.; Lee, S.S.; Usman, A.R.A.; Kim, K.R.; Park, J.-H.; Hur, S.-O.; Yang, J.E.; et al. An assessment of the utilization of waste resources for the immobilization of Pb and Cu in the soil from a Korean military shooting range. Environ. Earth Sci. 2012, 67, 1023–1031. [Google Scholar] [CrossRef]
Soil Properties | Contaminated Soil | Korean Warning Standards 1 |
---|---|---|
pH (1:5) CEC (cmolc/kg) | 5.91 16.12 | |
Organic matter content (%) 2 | 3.84 | |
EC (dS/m) | 0.58 | |
Composition (%) 3 | ||
Sand | 54.1 | |
Silt | 0.5 | |
Clay | 45.4 | |
Texture 4 | Sandy loam | |
Total Pb (mg/kg) Total Cu (mg/kg) | 514.6 667.7 | 400 500 |
Major mineral compositions 5 | ||
Quartz, Muscovite | ||
Albite, Montmorillonite | ||
Kaolinite |
Major Chemical Composition (%) | Contaminated Soil | Ca-Limestone (Ca-LS) | Mg-Limestone (Mg-LS) | Livestock Bone Powder (LSBP) |
---|---|---|---|---|
SiO2 | 57.43 | 0.56 | 17.52 | 0.48 |
Al2O3 | 26.74 | 0.30 | 0.86 | 0.30 |
P2O5 | 0.48 | - | 0.06 | 40.58 |
Na2O | 0.82 | 0.19 | - | 0.97 |
MgO | 2.05 | 0.54 | 28.27 | 1.08 |
K2O | 3.02 | 0.04 | 0.02 | 0.07 |
CaO | 1.55 | 97.84 | 50.91 | 55.82 |
Fe2O3 | 6.14 | 0.23 | 2.11 | 0.04 |
SO3 | 0.19 | 0.02 | 0.02 | 0.57 |
MnO | 0.11 | 0.04 | 0.09 | - |
pH (1:5) | 5.91 | 9.42 | 8.36 | 7.77 |
Sample ID | Contaminated Mine Soil (wt%) | Ca-LS/Mg-LS/LSBP (wt%) | L:S Ratio |
---|---|---|---|
Control | 100 | 0 | 20:1 |
2 wt% Ca-LS/Mg-LS/LSBP | 100 | 2 | 20:1 |
4 wt% Ca-LS/Mg-LS/LSBP | 100 | 4 | 20:1 |
6 wt% Ca-LS/Mg-LS/LSBP | 100 | 6 | 20:1 |
8 wt% Ca-LS/Mg-LS/LSBP | 100 | 8 | 20:1 |
10 wt% Ca-LS/Mg-LS/LSBP | 100 | 10 | 20:1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moon, D.H.; An, J.; Park, S.H.; Koutsospyros, A. Remediation of Heavy Metal (Cu, Pb) Contaminated Fine Soil Using Stabilization with Limestone and Livestock Bone Powder. Sustainability 2023, 15, 11244. https://doi.org/10.3390/su151411244
Moon DH, An J, Park SH, Koutsospyros A. Remediation of Heavy Metal (Cu, Pb) Contaminated Fine Soil Using Stabilization with Limestone and Livestock Bone Powder. Sustainability. 2023; 15(14):11244. https://doi.org/10.3390/su151411244
Chicago/Turabian StyleMoon, Deok Hyun, Jinsung An, Sang Hyeop Park, and Agamemnon Koutsospyros. 2023. "Remediation of Heavy Metal (Cu, Pb) Contaminated Fine Soil Using Stabilization with Limestone and Livestock Bone Powder" Sustainability 15, no. 14: 11244. https://doi.org/10.3390/su151411244
APA StyleMoon, D. H., An, J., Park, S. H., & Koutsospyros, A. (2023). Remediation of Heavy Metal (Cu, Pb) Contaminated Fine Soil Using Stabilization with Limestone and Livestock Bone Powder. Sustainability, 15(14), 11244. https://doi.org/10.3390/su151411244