Industry 4.0 Technologies Promote Micro-Level Circular Economy but Neglect Strong Sustainability in Textile Industry
Abstract
:1. Introduction
2. Systematic Literature Review and Hypothesis Development
2.1. Relationship between I4.0T, CECP, and SS in the Textile Industry
2.2. Hypothesis Development
3. Methodology
3.1. Data Collection Procedure
3.2. Data Analysis Procedure
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ghisellini, P.; Cialani, C.; Ulgiati, S. A Review on Circular Economy: The Expected Transition to a Balanced Interplay of Environmental and Economic Systems. J. Clean. Prod. 2016, 114, 11–32. [Google Scholar] [CrossRef]
- Franco, M.A. Circular economy at the micro level: A dynamic view of incumbents’ struggles and challenges in the textile industry. J. Clean. Prod. 2017, 168, 833–845. [Google Scholar] [CrossRef]
- Hens, L.; Block, C.; Cabello-Eras, J.; Sagastume-Gutierez, A.; Garcia-Lorenzo, D.; Chamorro, C.; Mendoza, K.H.; Haeseldonckx, D.; Vandecasteele, C. On the evolution of “Cleaner Production” as a concept and a practice. J. Clean. Prod. 2018, 172, 3323–3333. [Google Scholar] [CrossRef]
- Sousa-Zomer, T.T.; Magalhães, L.; Zancul, E.; Campos, L.M.; Cauchick-Miguel, P.A. Cleaner production as an antecedent for circular economy paradigm shift at the micro-level: Evidence from a home appliance manufacturer. J. Clean. Prod. 2018, 185, 740–748. [Google Scholar] [CrossRef]
- Periyasamy, A.; Wiener, J.; Militky, J. Life-Cycle Assessment of Denim. In Sustainability in Denim; Muthu, S.S., Ed.; Woodhead Publishing: Cambridge, UK, 2017; pp. 83–110. [Google Scholar] [CrossRef]
- Shirvanimoghaddam, K.; Motamed, B.; Ramakrishna, S.; Naebe, M. Death by waste: Fashion and textile circular economy case. Sci. Total. Environ. 2020, 718, 137317. [Google Scholar] [CrossRef]
- Rajput, S.; Singh, S.P. Connecting circular economy and industry 4.0. Int. J. Inf. Manag. 2019, 49, 98–113. [Google Scholar] [CrossRef]
- Aranda-Usón, A.; Portillo-Tarragona, P.; Scarpellini, S.; Llena-Macarulla, F. The progressive adoption of a circular economy by businesses for cleaner production: An approach from a regional study in Spain. J. Clean. Prod. 2020, 247, 119648. [Google Scholar] [CrossRef]
- De Oliveira Neto, G.C.; Lucato, W.C. Production planning and control as a tool for eco-efficency improvement and environmental impact reduction. Prod. Plan. Control. 2016, 27, 148–156. [Google Scholar] [CrossRef]
- Kalmykovaa, Y.; Sadagopanb, M.; Rosadoc, L. Circular economy—From review of theories and practices to development of implementation tools. Resour. Conserv. Recycl. 2018, 135, 190–201. [Google Scholar] [CrossRef]
- Fahimnia, B.; Sarkis, J.; Gunasekaran, A.; Farahani, R. Decision models for sustainable supply chain design and management. Ann. Oper. Res. 2017, 250, 277–278. [Google Scholar] [CrossRef]
- Macarthur, D.E.; Zumwinkel, K.; Stuchtey, M.R. Growth within: A Circular Economy Vision for a Competitive Europe. Report of Ellen MacArthur Foundation. 2015. Available online: https://www.ellenmacarthurfoundation.org/assets/downloads/publications/EllenMacArthurFoundation_Growth-Within_July15.pdf (accessed on 20 July 2022).
- Shayganmehr, M.; Kumar, A.; Garza-Reyes, J.A.; Moktadir, M.A. Industry 4.0 enablers for a cleaner production and circular economy within the context of business ethics: A study in a developing country. J. Clean. Prod. 2021, 281, 125280. [Google Scholar] [CrossRef]
- Neto, G.C.D.O.; Correia, J.M.F.; Tucci, H.N.P.; Librantz, A.F.H.; Giannetti, B.F.; de Almeida, C.M.V.B. Sustainable Resilience Degree assessment of the textile industrial by size: Incremental change in cleaner production practices considering circular economy. J. Clean. Prod. 2022, 380, 134633. [Google Scholar] [CrossRef]
- Silva, W.D.O.; Morais, D.C. Impacts and insights of circular business models’ outsourcing decisions on textile and fashion waste management: A multi-criteria decision model for sorting circular strategies. J. Clean. Prod. 2022, 370, 133551. [Google Scholar] [CrossRef]
- Jin, Y.; Song, X.; Tang, J.; Dong, X.; Ji, H. Business model of garment enterprises: A scientometric review. Text. Res. J. 2021, 91, 1609–1626. [Google Scholar] [CrossRef]
- Larsson, J.K.J. Digital innovation for sustainable apparel systems: Experiences based on projects in textile value chain development. Res. J. Text. Appar. 2018, 22, 370–389. [Google Scholar] [CrossRef]
- Kumar, L.; Kamil, I.; Ahmad, M.; Naqvi, S.A.; Deitch, M.J.; Amjad, A.Q.; Kumar, A.; Basheer, S.; Arshad, M.; Sassanelli, C. In-house resource efficiency improvements supplementing the end of pipe treatments in textile SMEs under a circular economy fashion. Front. Environ. Sci. 2022, 10, 1002319. [Google Scholar] [CrossRef]
- Bai, C.; Dallasega, P.; Orzes, G.; Sarkis, J. Industry 4.0 technologies assessment: A sustainability perspective. Int. J. Prod. Econ. 2020, 229, 107776. [Google Scholar] [CrossRef]
- Korhonen, J.; Honkasalo, A.; Seppälä, J. Circular Economy: The Concept and its Limitations. Ecol. Econ. 2018, 143, 37–46. [Google Scholar] [CrossRef]
- Oliveira Neto, G.C.; Shibao, F.Y.; Filho, M.G.; Chaves, L.E.C. Cleaner production: A study of the environmental and economic advantage in polymer recycling. Interciencia 2015, 40, 364–373. [Google Scholar]
- Angelis, R.; Feola, R. Circular business models in biological cycles: The case of an Italian spin-off. J. Clean. Prod. 2020, 247, 119603. [Google Scholar] [CrossRef]
- Fatimah, Y.A.; Govindan, K.; Murniningsih, R.; Setiawan, A. Industry 4.0 based sustainable circular economy approach for smart waste management system to achieve sustainable development goals: A case study of Indonesia. J. Clean. Prod. 2020, 269, 122263. [Google Scholar] [CrossRef]
- Tsai, W.-H. Green Production Planning and Control for the Textile Industry by Using Mathematical Programming and Industry 4.0 Techniques. Energies 2018, 11, 2072. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, S.; Singh, A.P. Performance evaluation of textile wastewater treatment techniques using sustainability index: An integrated fuzzy approach of assessment. J. Clean. Prod. 2022, 337, 130384. [Google Scholar] [CrossRef]
- Bloomfield, M.; Borstrock, S. Modeclix. The additively manufactured adaptable textile. Mater. Today Commun. 2018, 16, 212–216. [Google Scholar] [CrossRef]
- Chen, T.-L.; Kim, H.; Pan, S.-Y.; Tseng, P.-C.; Lin, Y.-P.; Chiang, P.-C. Implementation of green chemistry principles in circular economy system towards sustainable development goals: Challenges and perspectives. Sci. Total. Environ. 2020, 716, 136998. [Google Scholar] [CrossRef] [PubMed]
- Jia, F.; Yin, S.; Chen, L.; Chen, X. The circular economy in the textile and apparel industry: A systematic literature review. J. Clean. Prod. 2020, 259, 120728. [Google Scholar] [CrossRef]
- Faria, R.; Lopes, I.; Pires, I.M.; Marques, G.; Fernandes, S.; Garcia, N.M.; Lucas, J.; Jevremović, A.; Zdravevski, E.; Trajkovik, V. Circular Economy for Clothes Using Web and Mobile Technologies—A Systematic Review and a Taxonomy Proposal. Information 2020, 11, 161. [Google Scholar] [CrossRef] [Green Version]
- Alcayaga, A.; Wiener, M.; Hansen, E.G. Towards a framework of smart-circular systems: An integrative literature review. J. Clean. Prod. 2019, 221, 622–634. [Google Scholar] [CrossRef]
- de Oliveira Neto, G.C.; Silva, A.d.C.; Filho, M.G. How can Industry 4.0 technologies and circular economy help companies and researchers collaborate and accelerate the transition to strong sustainability? A bibliometric review and a systematic literature review. Int. J. Environ. Sci. Technol. 2023, 20, 3483–3520. [Google Scholar] [CrossRef]
- Luthra, S.; Mangla, S.K. Evaluating challenges to Industry 4.0 initiatives for supply chain sustainability in emerging economies. Process Saf. Environ. Prot. 2018, 117, 168–179. [Google Scholar] [CrossRef]
- Forza, C. Survey research in operations management: A process-based perspective. Int. J. Oper. Prod. Manag. 2002, 22, 152–194. [Google Scholar] [CrossRef] [Green Version]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Lawrence Erlbawn: Hillsdale, NJ, USA, 1988. [Google Scholar]
- Westland, J.C. Lower bounds on sample size in structural equation modeling. Electron. Commer. Res. Appl. 2010, 9, 476–487. [Google Scholar] [CrossRef]
- Jöreskog, K.G.; Sörbom, D. LISREL 8: Structural Equation Modeling with the SIMPLES Command Language; Scientific Software International: Lincolnwood, IL, USA, 1993. [Google Scholar]
- Ringle, C.M.; Wende, S.; Will, A. Smart Pls 2.0 M3; Book Smart Pls. M3; University of Hamburg: Hamburg, Germany, 2005; Volume 2. [Google Scholar]
- Hair, J.F.; Black, W.C.; Babin, B.J.; Anderson, R.E.; Tatham, R.L. Multivariate Data Analysis; Pearson Prentice Hall: Upper Saddle River, NJ, USA, 2006. [Google Scholar]
- Wold, H. Partial Least Squares. In Encyclopedia of Statistical Sciences; Kotz, S., Johnson, N.L., Eds.; Wiley: New York, NY, USA, 1985; pp. 581–591. [Google Scholar]
- Martens, H.; Naes, T. Assessment, validation and choice of calibration method. In Multivariate Calibration; John Wiley & Sons: Hoboken, NJ, USA, 1989; pp. 237–266. [Google Scholar]
- Vandenberg, R.J. Introduction: Statistical and methodological myths and urban legends: Where, pray tell, did they get this idea? Organ. Res. Methods 2006, 9, 194–201. [Google Scholar] [CrossRef]
- Rönkkö, M.; McIntosh, C.N.; Antonakis, J.; Edwards, J. Partial least squares path modeling: Time for some serious second thoughts. J. Oper. Manag. 2016, 47–48, 9–27. [Google Scholar] [CrossRef] [Green Version]
- Rönkkö, M.; Evermann, J. A Critical Examination of Common Beliefs About Partial Least Squares Path Modeling. Organ. Res. Methods 2013, 16, 425–448. [Google Scholar] [CrossRef]
- Hair, J.F.; Risher, J.J.; Sarstedt, M.; Ringle, C.M. When to use and how to report the results of PLS-SEM. Eur. Bus. Rev. 2019, 31, 2–24. [Google Scholar] [CrossRef]
- Sarstedt, M.; Hair, J.F.; Ringle, C.M.; Thiele, K.O.; Gudergan, S.P. Estimation issues with PLS and CBSSEM: Where the bias lies! J. Bus. Res. 2016, 69, 3998–4010. [Google Scholar] [CrossRef] [Green Version]
- Henseller, J.; Ringle, C.M.; Sinkovics, R.R. The use of partial least squares path modeling in international marketing. Adv. Int. Market. 2009, 20, 277–319. [Google Scholar]
- Lawrence, I.; Lin, K. A concordance correlation coefficient to evaluate reproducibility. Biometrics 1989, 45, 255–268. [Google Scholar]
- Schield, M. Correlation, determination and causality in introductory statistics. In Proceedings of the ASA Section of Statistical Education; American Statistical Association: Alexandria, VA, USA, 1995; pp. 189–194. [Google Scholar]
- Chen, P.Y.; Popovich, P.M. Correlation: Parametric and Nonparametric Measures; Sage Publications: Los Angeles, CA, USA, 2002. [Google Scholar]
- Dancey, C.P.; Reidy, J. Statistics without Maths for Psychology: Pearson Education. In Cannibals with Forks: The Triple Bottom Line of 21st Century Business; Elkington, J., Ed.; Capstone Publishing Limited: London, UK, 1997. [Google Scholar]
- Hair, J.F., Jr.; Hult, G.T.M.; Ringle, C.M.; Sarstedt, M. A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM); Sage Publications: Los Angeles, CA, USA, 2014. [Google Scholar]
- Tabachnick, B.G.; Fidell, L.S. Using Multivariate Statistics, 6th ed.; Pearson: Boston, MA, USA, 2012. [Google Scholar]
- Henseler, J.; Ringle, C.M.; Sarstedt, M. A new criterion for assessing discriminant validity in variance-based structural equation modeling. J. Acad. Mark. Sci. 2015, 43, 115–135. [Google Scholar] [CrossRef] [Green Version]
- Hair, J.F.; Hult, G.T.M.; Ringle, C.M.; Sarstedt, M.; Thiele, K.O. Mirror, mirror on the wall: A comparative evaluation of composite-based structural equation modeling methods. J. Acad. Mark. Sci. 2017, 45, 616–632. [Google Scholar] [CrossRef]
- Field, A.; Miles, J.; Field, Z. Discovering Statistics Using R; Sage Publications: Los Angeles, CA, USA, 2012. [Google Scholar]
Industry 4.0 Technologies | CERE - REGENERATE - seeks regeneration through changes to renewable energy and material, allowing the circulation of energy and materials in a closed cycle. | CES - SHARE - Aims at the shared economy, goods and assets are shared between individuals. | CEO - OPTIMISE - Optimize - aims to reduce waste in production systems and throughout the supply chain. | CEL - LOOP - Aims to recover the value from waste and restore the value of post-consumer products and packaging through repair, reuse, remanufacturing, and recycling. | CEV - VIRTUALISE - Formulate a strategy focused on services that replaces the physical with virtual and dematerialized products. | CEE- EXCHANGE - Involves the replacement of old, non-renewable assets with advanced, renewable products. | STRONG SUSTAINABILITY | ||||||||||||||||||||||||||||||||||||||
Author | Method | Country | T_1 Big Data Analytics | T_2 Autonomous Robots | T_3 Simulation | T_4 Internet of Things | T_5 Cloud Computing | T_6 Additive Manufacturing | T_7 Augmented Reality | T_8 Cyberphysical Systems | T_9 Cybersecurity Systems | T_10 Artificial Intelligence | CERE_1 - Seeks regeneration through renewable, reused, and recycled textile articles. | CERE_2 - Seeks regeneration through the adoption of clean technology supplied with energy from renewable sources. | CERE_3 - Seeks regeneration through the adoption of a closed-loop effluent treatment plant for water recovery, extracting hazardous products. | CERE_4 - Seeks regeneration by recovering textile articles at the end of their useful life. | CERE_5 - Seeks regeneration by reusing waste from other industries. | CES_1 - Seeks sharing through the implementation of a department in production to manage textile article recovery processes, even at third parties. | CES_2 - Seeks sharing through agreement with sewing workshops for post-consumption textile article recovery. | CES_3 - Seeks sharing with clothing merchants to sell recovered textile articles. | CEO_1 - Seeks optimization through development and redesign of textile articles and packaging for reuse, repair, recycling, and remanufacturing and without hazardous components. | CEO_2 - Seeks optimization using renewable energy in production. | CEO_3 - Seeks optimization by reducing as much as possible the use of water in production. | CEO_4 - Seeks optimization by reducing as much as possible the generation of residues in the manufacturing process. | CEO_5 - Seeks optimization by adopting machines and equipment that do not emit greenhouse gases. | CEL_1 - Seeks circularity by recycling textile article waste. | CEL_2 - Seeks circularity by reusing waste textile articles. | CEL_3 - Seeks circularity by tracking post-consumer textile waste for recycling.. | CEL_4 - Seeks circularity by reusing post-consumer textile packaging. | CEL_5 - Seeks circularity through reverse logistics aiming at remanufacturing, repair, recycling and/or reuse of post-consumption textile articles. | CEV_1 - Seeks virtualization through the deployment of the 3D printer, aiming dematerialization. | CEV _2 - Seeks virtualization with the use of virtual catalog of textile articles, aiming the dematerialization. | CEV_3 - Seeks virtualization using digital stylist services for the development of textile articles. | CEV_4 - Seeks virtualization through digital service for asset maintenance. | CEE_1 - Seeks the substitution of non-renewable productive resources by renewable ones. | CEE_2 - Search for the substitution of toxic components for non-toxic ones | CEE_3 - Search for the substitution of suppliers from non-renewable to renewable sources | SS_1 - Increase efficiency in resource consumption. | SS_2 - Limit consumption of renewable resources to their regeneration rate. | SS_3 - Reduce greenhouse gas emissions. | SS_4 - Reuse waste as an input in other processes. | SS_5 - Replace toxic inputs with organic materials. | SS_6 - Replace non-renewable energy resources with renewable alternatives. | SS_7 - Increase Access to Commodities. | SS_8 - Increase sustainable manufacturing. |
[15] | Case Study and Simulation | Brazil | X | X | X | X | X | X | X | X | X | X | X | X | X | X | |||||||||||||||||||||||||||||
[18] | Case Study and Simulation | Pakistan | X | X | X | X | X | X | X | X | X | X | X | X | |||||||||||||||||||||||||||||||
[25] | Case Study and Simulation | India | X | X | X | X | X | X | |||||||||||||||||||||||||||||||||||||
[14] | Survey | Brazil | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | |||||||||||||||||
[28] | Literature review | Null | X | X | X | X | X | X | |||||||||||||||||||||||||||||||||||||
[13] | Case Study and Simulation | Iran | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | ||||||||||||||||||||
[27] | Literature review | Null | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | |||||||||||||||||||||||||||
[22] | Case study | Italy | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | ||||||||||||||||||||||||||
[23] | Focus Group | Indonesia | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | |||||||||||||||||||||||||
[6] | Literature review | Null | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | ||||||||||||||||
[19] | Case study | China | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | |||||||||||||||||||
[28] | Literature review | Null | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | ||||||||||||||||||||||
[29] | Literature review | Null | X | X | X | X | X | X | X | X | |||||||||||||||||||||||||||||||||||
[30] | Literature review | Null | X | X | X | X | X | X | X | X | X | ||||||||||||||||||||||||||||||||||
[24] | Case Study and Simulation | Taiwan | X | X | X | X | X | X | X | X | X | X | X | X | |||||||||||||||||||||||||||||||
[26] | Case Study and Simulation | UK | X | X | X | X | X | X | X | X | X | ||||||||||||||||||||||||||||||||||
[17] | Action Research | Sweden | X | X | X | X | X | X | X | X | X | X | X | X | |||||||||||||||||||||||||||||||
[2] | multiple case studies | Austria and Italy | X | X | X | X | X | X | X | X | X | X | X |
Constructs | AVE | Cronbachs alpha | Composite Reliability | R2 | R2_adj | f2 |
---|---|---|---|---|---|---|
I4.0T | 0.623 | 0.925 | 0.937 | 0.866 | ||
SS | 0.732 | 0.926 | 0.942 | 0.658 | 0.654 | |
CERE | 0.745 | 0.914 | 0.936 | 0.859 | 0.858 | |
CES | 0.837 | 0.903 | 0.939 | 0.782 | 0.780 | |
CEO | 0.816 | 0.943 | 0.957 | 0.772 | 0.770 | |
CEL | 0.709 | 0.897 | 0.924 | 0.687 | 0.684 | |
CEV | 0.645 | 0.816 | 0.875 | 0.713 | 0.710 | |
CEE | 0.902 | 0.945 | 0.965 | 0.954 | 0.954 | |
Valores Referenciais (*) | ≥0.50 | ≥0.70 | ≥0.70 | (**) | R2 ≈ R2adj (***) | (****) |
I4.0T | SS | CERE | CES | CEO | CEL | CEV | CEE | |
---|---|---|---|---|---|---|---|---|
I4.0T | 0.623 | 0.435 | 0.273 | 0.361 | 0.312 | 0.382 | 0.389 | 0.348 |
SS | 0.435 | 0.732 | 0.474 | 0.498 | 0.440 | 0.448 | 0.470 | 0.612 |
CERE | 0.273 | 0.474 | 0.745 | 0.526 | 0.547 | 0.461 | 0.545 | 0.737 |
CES | 0.361 | 0.498 | 0.526 | 0.837 | 0.395 | 0.400 | 0.546 | 0.679 |
CEO | 0.312 | 0.440 | 0.547 | 0.395 | 0.816 | 0.343 | 0.350 | 0.655 |
CEL | 0.382 | 0.448 | 0.461 | 0.400 | 0.343 | 0.709 | 0.323 | 0.489 |
CEV | 0.389 | 0.470 | 0.545 | 0.546 | 0.350 | 0.323 | 0.645 | 0.649 |
CEE | 0.348 | 0.612 | 0.737 | 0.679 | 0.655 | 0.489 | 0.649 | 0.902 |
Correlations | Loading | Std_err | t_stat * | p_Value | CI_95%L ** | CI_95%U ** |
---|---|---|---|---|---|---|
I4.0T—T_1 | 0.790 | 0.026 | 30,896 | ≤0.001 | 0.759 | 0.802 |
I4.0T—T_2 | 0.881 | 0.010 | 84,505 | ≤0.001 | 0.873 | 0.892 |
I4.0T—T_3 | 0.794 | 0.057 | 13,823 | ≤0.001 | 0.766 | 0.864 |
I4.0T—T_4 | 0.698 | 0.065 | 10,703 | ≤0.001 | 0.605 | 0.727 |
I4.0T—T_6 | 0.748 | 0.076 | 9816 | ≤0.001 | 0.707 | 0.851 |
I4.0T—T_7 | 0.869 | 0.010 | 82,805 | ≤0.001 | 0.812 | 0.831 |
I4.0T—T_8 | 0.864 | 0.027 | 31,547 | ≤0.001 | 0.832 | 0.884 |
I4.0T—T_9 | 0.756 | 0.058 | 13,044 | ≤0.001 | 0.758 | 0.854 |
I4.0T—T_10 | 0.744 | 0.030 | 24,407 | ≤0.001 | 0.719 | 0.770 |
SS—SS_2 | 0.748 | 0.057 | 13,089 | ≤0.001 | 0.692 | 0.801 |
SS—SS_3 | 0.849 | 0.067 | 12,602 | ≤0.001 | 0.765 | 0.893 |
SS—SS_5 | 0.915 | 0.007 | 139,919 | ≤0.001 | 0.919 | 0.930 |
SS—SS_6 | 0.919 | 0.006 | 163,658 | ≤0.001 | 0.933 | 0.943 |
SS—SS_7 | 0.870 | 0.008 | 107,912 | ≤0.001 | 0.886 | 0.901 |
SS—SS_8 | 0.821 | 0.037 | 22,178 | ≤0.001 | 0.783 | 0.850 |
CERE—CERE_1 | 0.868 | 0.021 | 40,565 | ≤0.001 | 0.844 | 0.883 |
CERE—CERE_2 | 0.926 | 0.012 | 80,512 | ≤0.001 | 0.922 | 0.944 |
CERE—CERE_3 | 0.818 | 0.032 | 25,793 | ≤0.001 | 0.790 | 0.844 |
CERE—CERE_4 | 0.833 | 0.043 | 19,382 | ≤0.001 | 0.752 | 0.827 |
CERE—CERE_5 | 0.865 | 0.021 | 41,122 | ≤0.001 | 0.823 | 0.863 |
CES—CES_1 | 0.911 | 0.024 | 37,881 | ≤0.001 | 0.878 | 0.919 |
CES—CES_2 | 0.916 | 0.008 | 112,024 | ≤0.001 | 0.885 | 0.900 |
CES—CES_3 | 0.918 | 0.011 | 83,314 | ≤0.001 | 0.908 | 0.926 |
CEO—CEO_1 | 0.923 | 0.009 | 106,525 | ≤0.001 | 0.918 | 0.934 |
CEO—CEO_2 | 0.927 | 0.006 | 157,078 | ≤0.001 | 0.933 | 0.944 |
CEO—CEO_3 | 0.838 | 0.019 | 44,005 | ≤0.001 | 0.843 | 0.879 |
CEO—CEO_4 | 0.919 | 0.018 | 51,345 | ≤0.001 | 0.910 | 0.944 |
CEO—CEO_5 | 0.905 | 0.013 | 69,929 | ≤0.001 | 0.914 | 0.938 |
CEL—CEL_1 | 0.856 | 0.010 | 88,845 | ≤0.001 | 0.850 | 0.868 |
CEL—CEL_2 | 0.883 | 0.013 | 68,894 | ≤0.001 | 0.884 | 0.908 |
CEL—CEL_3 | 0.726 | 0.100 | 7267 | ≤0.001 | 0.636 | 0.817 |
CEL—CEL_4 | 0.856 | 0.028 | 30,052 | ≤0.001 | 0.806 | 0.860 |
CEL—CEL_5 | 0.879 | 0.021 | 42,738 | ≤0.001 | 0.878 | 0.917 |
CEV—CEV_1 | 0.536 | 0.071 | 7562 | ≤0.001 | 0.450 | 0.584 |
CEV—CEV_2 | 0.901 | 0.017 | 51,988 | ≤0.001 | 0.881 | 0.911 |
CEV—CEV_3 | 0.854 | 0.062 | 13,697 | ≤0.001 | 0.754 | 0.871 |
CEV—CEV_4 | 0.868 | 0.028 | 30,753 | ≤0.001 | 0.844 | 0.896 |
CEE—CEE_1 | 0.967 | 0.005 | 202,017 | ≤0.001 | 0.960 | 0.969 |
CEE—CEE_2 | 0.925 | 0.007 | 140,794 | ≤0.001 | 0.927 | 0.939 |
CEE—CEE_3 | 0.956 | 0.009 | 107,950 | ≤0.001 | 0.944 | 0.960 |
Causal Relation | Path Coefficients | Std_err | t_stat * | p_Value | CI_95%L ** | CI95%U ** |
---|---|---|---|---|---|---|
I4.0T-H1-> CECP | 0.68 | 0.02 | 42.72 | <0.001 | 0.68 | 0.71 |
CECP-H2-> SS | 0.43 | 0.02 | 35.17 | <0.001 | 0.77 | 0.82 |
CECP --> CERE | 0.93 | 0.00 | 266.75 | <0.001 | 0.90 | 0.90 |
CECP --> CES | 0.88 | 0.01 | 105.26 | <0.001 | 0.87 | 0.89 |
CECP --> CEO | 0.88 | 0.03 | 30.01 | <0.001 | 0.84 | 0.89 |
CECP --> CEL | 0.83 | 0.01 | 83.16 | <0.001 | 0.80 | 0.82 |
CECP --> CEV | 0.84 | 0.03 | 25.78 | <0.001 | 0.78 | 0.83 |
CECP --> CEE | 0.98 | 0.01 | 100.06 | <0.001 | 0.93 | 0.95 |
T1 | CERE_1 | CERE_2 | CERE_3 | CERE_4 | CERE_5 | CES_1 | CES_2 | CES_3 | CEO_1 | CEO_2 | CEO_3 | CEO_4 | CEO_5 | CEL_1 | CEL_2 | CEL_3 | CEL_4 | CEL_5 | CEV_1 | CEV_2 | CEV_3 | CEV_4 | CEE_1 | CEE_2 | CEE_3 | Higher number |
SS_2 | 0.39 | 0.45 | 0.24 | 0.34 | 0.48 | 0.43 | 0.47 | 0.38 | 0.48 | 0.42 | 0.27 | 0.43 | 0.48 | 0.52 | 0.41 | 0.27 | 0.37 | 0.46 | 0.20 | 0.43 | 0.22 | 0.43 | 0.49 | 0.45 | 0.47 | 0.52 |
SS_3 | 0.39 | 0.45 | 0.24 | 0.34 | 0.49 | 0.43 | 0.48 | 0.38 | 0.49 | 0.42 | 0.28 | 0.43 | 0.49 | 0.52 | 0.42 | 0.27 | 0.37 | 0.46 | 0.20 | 0.43 | 0.22 | 0.43 | 0.50 | 0.46 | 0.48 | 0.52 |
SS_5 | 0.40 | 0.47 | 0.24 | 0.35 | 0.50 | 0.44 | 0.49 | 0.39 | 0.50 | 0.44 | 0.28 | 0.45 | 0.50 | 0.54 | 0.44 | 0.27 | 0.38 | 0.48 | 0.20 | 0.44 | 0.22 | 0.45 | 0.51 | 0.47 | 0.49 | 0.54 |
SS_6 | 0.38 | 0.44 | 0.23 | 0.33 | 0.48 | 0.42 | 0.47 | 0.38 | 0.48 | 0.41 | 0.27 | 0.42 | 0.48 | 0.51 | 0.41 | 0.26 | 0.37 | 0.45 | 0.19 | 0.42 | 0.22 | 0.42 | 0.49 | 0.45 | 0.47 | 0.51 |
SS_7 | 0.34 | 0.39 | 0.21 | 0.30 | 0.42 | 0.37 | 0.41 | 0.33 | 0.42 | 0.36 | 0.24 | 0.37 | 0.42 | 0.36 | 0.44 | 0.24 | 0.32 | 0.39 | 0.18 | 0.37 | 0.20 | 0.37 | 0.42 | 0.39 | 0.41 | 0.44 |
SS_8 | 0.34 | 0.39 | 0.21 | 0.29 | 0.41 | 0.37 | 0.41 | 0.33 | 0.41 | 0.36 | 0.24 | 0.37 | 0.41 | 0.36 | 0.44 | 0.24 | 0.32 | 0.39 | 0.18 | 0.37 | 0.20 | 0.37 | 0.42 | 0.39 | 0.41 | 0.44 |
T2 | CERE_1 | CERE_2 | CERE_3 | CERE_4 | CERE_5 | CES_1 | CES_2 | CES_3 | CEO_1 | 0.47 | CEO_3 | CEO_4 | CEO_5 | CEL_1 | CEL_2 | CEL_3 | CEL_4 | CEL_5 | CEV_1 | CEV_2 | CEV_3 | CEV_4 | CEE_1 | CEE_2 | CEE_3 | Higher number |
SS_2 | 0.53 | 0.65 | 0.42 | 0.55 | 0.40 | 0.45 | 0.47 | 0.42 | 0.45 | 0.47 | 0.44 | 0.55 | 0.46 | 0.57 | 0.41 | 0.51 | 0.54 | 0.55 | 0.31 | 0.40 | 0.37 | 0.44 | 0.43 | 0.49 | 0.43 | 0.65 |
SS_3 | 0.43 | 0.43 | 0.35 | 0.29 | 0.40 | 0.42 | 0.46 | 0.42 | 0.41 | 0.47 | 0.36 | 0.45 | 0.54 | 0.47 | 0.49 | 0.34 | 0.36 | 0.45 | 0.26 | 0.43 | 0.31 | 0.46 | 0.41 | 0.48 | 0.41 | 0.54 |
SS_5 | 0.49 | 0.40 | 0.59 | 0.32 | 0.57 | 0.47 | 0.42 | 0.48 | 0.48 | 0.43 | 0.51 | 0.41 | 0.41 | 0.43 | 0.46 | 0.38 | 0.41 | 0.41 | 0.29 | 0.40 | 0.35 | 0.42 | 0.48 | 0.44 | 0.48 | 0.59 |
SS_6 | 0.46 | 0.56 | 0.37 | 0.31 | 0.43 | 0.44 | 0.49 | 0.45 | 0.44 | 0.50 | 0.38 | 0.48 | 0.41 | 0.49 | 0.42 | 0.36 | 0.39 | 0.48 | 0.28 | 0.46 | 0.33 | 0.49 | 0.44 | 0.41 | 0.44 | 0.56 |
SS_7 | 0.41 | 0.40 | 0.33 | 0.28 | 0.47 | 0.39 | 0.44 | 0.40 | 0.48 | 0.44 | 0.34 | 0.42 | 0.41 | 0.44 | 0.46 | 0.32 | 0.35 | 0.43 | 0.25 | 0.32 | 0.30 | 0.44 | 0.48 | 0.45 | 0.48 | 0.48 |
SS_8 | 0.54 | 0.54 | 0.36 | 0.30 | 0.41 | 0.43 | 0.47 | 0.43 | 0.42 | 0.58 | 0.37 | 0.46 | 0.55 | 0.51 | 0.40 | 0.35 | 0.37 | 0.50 | 0.27 | 0.44 | 0.32 | 0.47 | 0.42 | 0.49 | 0.42 | 0.58 |
T3 | CERE_1 | CERE_2 | CERE_3 | CERE_4 | CERE_5 | CES_1 | CES_2 | CES_3 | CEO_1 | CEO_2 | CEO_3 | CEO_4 | CEO_5 | CEL_1 | CEL_2 | CEL_3 | CEL_4 | CEL_5 | CEV_1 | CEV_2 | CEV_3 | CEV_4 | CEE_1 | CEE_2 | CEE_3 | Higher number |
SS_2 | 0.28 | 0.31 | 0.18 | 0.24 | 0.28 | 0.31 | 0.32 | 0.33 | 0.37 | 0.27 | 0.22 | 0.29 | 0.50 | 0.25 | 0.32 | 0.16 | 0.28 | 0.35 | 0.22 | 0.34 | 0.27 | 0.29 | 0.31 | 0.25 | 0.30 | 0.50 |
SS_3 | 0.27 | 0.30 | 0.18 | 0.24 | 0.28 | 0.30 | 0.31 | 0.32 | 0.36 | 0.27 | 0.21 | 0.28 | 0.51 | 0.25 | 0.31 | 0.16 | 0.27 | 0.34 | 0.22 | 0.33 | 0.26 | 0.28 | 0.30 | 0.25 | 0.30 | 0.51 |
SS_5 | 0.21 | 0.23 | 0.15 | 0.19 | 0.22 | 0.23 | 0.24 | 0.24 | 0.27 | 0.21 | 0.17 | 0.22 | 0.31 | 0.20 | 0.24 | 0.14 | 0.21 | 0.26 | 0.18 | 0.25 | 0.21 | 0.22 | 0.23 | 0.20 | 0.23 | 0.31 |
SS_6 | 0.24 | 0.26 | 0.16 | 0.21 | 0.24 | 0.26 | 0.27 | 0.28 | 0.31 | 0.24 | 0.19 | 0.25 | 0.36 | 0.22 | 0.27 | 0.15 | 0.24 | 0.29 | 0.19 | 0.29 | 0.23 | 0.25 | 0.26 | 0.22 | 0.26 | 0.36 |
SS_7 | 0.22 | 0.24 | 0.15 | 0.19 | 0.22 | 0.24 | 0.25 | 0.25 | 0.28 | 0.22 | 0.18 | 0.23 | 0.32 | 0.20 | 0.24 | 0.14 | 0.22 | 0.26 | 0.18 | 0.26 | 0.21 | 0.23 | 0.24 | 0.20 | 0.23 | 0.32 |
SS_8 | 0.23 | 0.25 | 0.16 | 0.20 | 0.24 | 0.25 | 0.26 | 0.27 | 0.30 | 0.23 | 0.19 | 0.24 | 0.35 | 0.21 | 0.26 | 0.15 | 0.23 | 0.28 | 0.19 | 0.28 | 0.22 | 0.24 | 0.26 | 0.21 | 0.25 | 0.35 |
T4 | CERE_1 | CERE_2 | CERE_3 | CERE_4 | CERE_5 | CES_1 | CES_2 | CES_3 | CEO_1 | CEO_2 | CEO_3 | CEO_4 | CEO_5 | CEL_1 | CEL_2 | CEL_3 | CEL_4 | CEL_5 | CEV_1 | CEV_2 | CEV_3 | CEV_4 | CEE_1 | CEE_2 | CEE_3 | Higher number |
SS_2 | 0.24 | 0.33 | 0.17 | 0.16 | 0.28 | 0.37 | 0.36 | 0.42 | 0.32 | 0.22 | 0.07 | 0.22 | 0.30 | 0.31 | 0.25 | 0.30 | 0.37 | 0.32 | 0.47 | 0.36 | 0.29 | 0.51 | 0.37 | 0.25 | 0.41 | 0.51 |
SS_3 | 0.19 | 0.24 | 0.14 | 0.14 | 0.21 | 0.27 | 0.26 | 0.29 | 0.24 | 0.18 | 0.08 | 0.17 | 0.22 | 0.23 | 0.19 | 0.22 | 0.27 | 0.23 | 0.33 | 0.26 | 0.22 | 0.35 | 0.27 | 0.19 | 0.29 | 0.35 |
SS_5 | 0.18 | 0.22 | 0.14 | 0.13 | 0.19 | 0.24 | 0.24 | 0.27 | 0.22 | 0.17 | 0.08 | 0.16 | 0.21 | 0.21 | 0.18 | 0.21 | 0.24 | 0.22 | 0.30 | 0.24 | 0.20 | 0.32 | 0.25 | 0.18 | 0.26 | 0.32 |
SS_6 | 0.17 | 0.22 | 0.14 | 0.13 | 0.19 | 0.24 | 0.23 | 0.26 | 0.21 | 0.16 | 0.08 | 0.16 | 0.20 | 0.21 | 0.18 | 0.20 | 0.24 | 0.21 | 0.29 | 0.23 | 0.20 | 0.31 | 0.24 | 0.18 | 0.26 | 0.31 |
SS_7 | 0.15 | 0.19 | 0.13 | 0.12 | 0.17 | 0.20 | 0.20 | 0.22 | 0.18 | 0.15 | 0.09 | 0.14 | 0.18 | 0.18 | 0.16 | 0.18 | 0.20 | 0.18 | 0.24 | 0.20 | 0.17 | 0.25 | 0.20 | 0.16 | 0.22 | 0.25 |
SS_8 | 0.21 | 0.27 | 0.15 | 0.14 | 0.23 | 0.30 | 0.29 | 0.33 | 0.26 | 0.19 | 0.08 | 0.19 | 0.25 | 0.26 | 0.21 | 0.25 | 0.30 | 0.26 | 0.37 | 0.29 | 0.24 | 0.40 | 0.30 | 0.21 | 0.33 | 0.40 |
T6 | CERE_1 | CERE_2 | CERE_3 | CERE_4 | CERE_5 | CES_1 | CES_2 | CES_3 | CEO_1 | CEO_2 | CEO_3 | CEO_4 | CEO_5 | CEL_1 | CEL_2 | CEL_3 | CEL_4 | CEL_5 | CEV_1 | CEV_2 | CEV_3 | CEV_4 | CEE_1 | CEE_2 | CEE_3 | Higher number |
SS_2 | 0.25 | 0.24 | 0.16 | 0.15 | 0.21 | 0.25 | 0.25 | 0.27 | 0.27 | 0.19 | 0.12 | 0.21 | 0.24 | 0.17 | 0.22 | 0.17 | 0.23 | 0.25 | 0.25 | 0.27 | 0.21 | 0.25 | 0.24 | 0.21 | 0.26 | 0.27 |
SS_3 | 0.20 | 0.19 | 0.14 | 0.13 | 0.17 | 0.20 | 0.20 | 0.21 | 0.21 | 0.16 | 0.12 | 0.17 | 0.19 | 0.14 | 0.18 | 0.14 | 0.18 | 0.20 | 0.20 | 0.21 | 0.17 | 0.20 | 0.19 | 0.17 | 0.21 | 0.21 |
SS_5 | 0.16 | 0.15 | 0.12 | 0.12 | 0.14 | 0.16 | 0.15 | 0.16 | 0.17 | 0.13 | 0.11 | 0.14 | 0.15 | 0.12 | 0.15 | 0.12 | 0.15 | 0.16 | 0.16 | 0.16 | 0.14 | 0.16 | 0.15 | 0.14 | 0.16 | 0.17 |
SS_6 | 0.21 | 0.20 | 0.14 | 0.13 | 0.17 | 0.21 | 0.20 | 0.22 | 0.22 | 0.16 | 0.12 | 0.18 | 0.20 | 0.15 | 0.19 | 0.15 | 0.19 | 0.20 | 0.20 | 0.22 | 0.18 | 0.21 | 0.20 | 0.18 | 0.21 | 0.22 |
SS_7 | 0.24 | 0.23 | 0.16 | 0.14 | 0.20 | 0.24 | 0.24 | 0.26 | 0.26 | 0.18 | 0.12 | 0.20 | 0.23 | 0.16 | 0.22 | 0.16 | 0.22 | 0.24 | 0.24 | 0.26 | 0.20 | 0.24 | 0.23 | 0.20 | 0.25 | 0.26 |
SS_8 | 0.23 | 0.22 | 0.16 | 0.14 | 0.19 | 0.24 | 0.23 | 0.25 | 0.25 | 0.18 | 0.12 | 0.20 | 0.22 | 0.16 | 0.21 | 0.16 | 0.21 | 0.23 | 0.23 | 0.25 | 0.20 | 0.24 | 0.22 | 0.20 | 0.24 | 0.25 |
T7 | CERE_1 | CERE_2 | CERE_3 | CERE_4 | CERE_5 | CES_1 | CES_2 | CES_3 | CEO_1 | CEO_2 | CEO_3 | CEO_4 | CEO_5 | CEL_1 | CEL_2 | CEL_3 | CEL_4 | CEL_5 | CEV_1 | CEV_2 | CEV_3 | CEV_4 | CEE_1 | CEE_2 | CEE_3 | Higher number |
SS_2 | 0.42 | 0.49 | 0.37 | 0.42 | 0.43 | 0.58 | 0.44 | 0.42 | 0.61 | 0.48 | 0.33 | 0.47 | 0.40 | 0.42 | 0.49 | 0.33 | 0.42 | 0.61 | 0.49 | 0.59 | 0.35 | 0.51 | 0.55 | 0.44 | 0.54 | 0.61 |
SS_3 | 0.47 | 0.44 | 0.34 | 0.38 | 0.48 | 0.43 | 0.49 | 0.47 | 0.46 | 0.44 | 0.31 | 0.43 | 0.44 | 0.48 | 0.43 | 0.31 | 0.47 | 0.55 | 0.28 | 0.43 | 0.32 | 0.46 | 0.40 | 0.49 | 0.49 | 0.55 |
SS_5 | 0.49 | 0.45 | 0.35 | 0.39 | 0.49 | 0.45 | 0.41 | 0.49 | 0.58 | 0.45 | 0.32 | 0.45 | 0.46 | 0.49 | 0.45 | 0.32 | 0.49 | 0.47 | 0.28 | 0.45 | 0.33 | 0.48 | 0.42 | 0.50 | 0.41 | 0.58 |
SS_6 | 0.42 | 0.49 | 0.37 | 0.42 | 0.44 | 0.49 | 0.44 | 0.42 | 0.42 | 0.48 | 0.33 | 0.47 | 0.47 | 0.42 | 0.39 | 0.33 | 0.42 | 0.44 | 0.30 | 0.49 | 0.35 | 0.41 | 0.55 | 0.44 | 0.44 | 0.55 |
SS_7 | 0.40 | 0.46 | 0.35 | 0.40 | 0.30 | 0.46 | 0.42 | 0.30 | 0.48 | 0.46 | 0.32 | 0.45 | 0.48 | 0.40 | 0.36 | 0.32 | 0.49 | 0.48 | 0.29 | 0.46 | 0.33 | 0.48 | 0.42 | 0.41 | 0.42 | 0.49 |
SS_8 | 0.43 | 0.48 | 0.31 | 0.35 | 0.43 | 0.48 | 0.44 | 0.43 | 0.40 | 0.40 | 0.28 | 0.39 | 0.49 | 0.43 | 0.48 | 0.28 | 0.42 | 0.45 | 0.25 | 0.48 | 0.29 | 0.42 | 0.45 | 0.44 | 0.44 | 0.49 |
T8 | CERE_1 | CERE_2 | CERE_3 | CERE_4 | CERE_5 | CES_1 | CES_2 | CES_3 | CEO_1 | CEO_2 | CEO_3 | CEO_4 | CEO_5 | CEL_1 | CEL_2 | CEL_3 | CEL_4 | CEL_5 | CEV_1 | CEV_2 | CEV_3 | CEV_4 | CEE_1 | CEE_2 | CEE_3 | Higher number |
SS_2 | 0.37 | 0.41 | 0.24 | 0.25 | 0.41 | 0.44 | 0.37 | 0.29 | 0.43 | 0.31 | 0.13 | 0.31 | 0.41 | 0.42 | 0.39 | 0.22 | 0.35 | 0.45 | 0.37 | 0.46 | 0.37 | 0.54 | 0.42 | 0.38 | 0.38 | 0.54 |
SS_3 | 0.32 | 0.35 | 0.22 | 0.22 | 0.36 | 0.38 | 0.32 | 0.26 | 0.37 | 0.27 | 0.12 | 0.27 | 0.35 | 0.37 | 0.34 | 0.20 | 0.30 | 0.39 | 0.32 | 0.39 | 0.32 | 0.57 | 0.37 | 0.33 | 0.33 | 0.57 |
SS_5 | 0.28 | 0.31 | 0.19 | 0.20 | 0.31 | 0.32 | 0.28 | 0.23 | 0.32 | 0.24 | 0.12 | 0.24 | 0.31 | 0.32 | 0.29 | 0.18 | 0.27 | 0.33 | 0.28 | 0.34 | 0.28 | 0.39 | 0.32 | 0.29 | 0.29 | 0.39 |
SS_6 | 0.29 | 0.32 | 0.20 | 0.21 | 0.32 | 0.34 | 0.30 | 0.24 | 0.34 | 0.25 | 0.12 | 0.25 | 0.32 | 0.33 | 0.31 | 0.18 | 0.28 | 0.35 | 0.29 | 0.35 | 0.29 | 0.42 | 0.33 | 0.30 | 0.30 | 0.42 |
SS_7 | 0.24 | 0.26 | 0.17 | 0.18 | 0.27 | 0.28 | 0.24 | 0.20 | 0.28 | 0.21 | 0.12 | 0.21 | 0.26 | 0.27 | 0.25 | 0.16 | 0.23 | 0.28 | 0.24 | 0.29 | 0.24 | 0.33 | 0.27 | 0.25 | 0.25 | 0.33 |
SS_8 | 0.23 | 0.25 | 0.17 | 0.17 | 0.25 | 0.26 | 0.23 | 0.19 | 0.26 | 0.20 | 0.11 | 0.20 | 0.25 | 0.25 | 0.24 | 0.16 | 0.22 | 0.27 | 0.23 | 0.27 | 0.23 | 0.31 | 0.25 | 0.23 | 0.24 | 0.31 |
T9 | CERE_1 | CERE_2 | CERE_3 | CERE_4 | CERE_5 | CES_1 | CES_2 | CES_3 | CEO_1 | CEO_2 | CEO_3 | CEO_4 | CEO_5 | CEL_1 | CEL_2 | CEL_3 | CEL_4 | CEL_5 | CEV_1 | CEV_2 | CEV_3 | CEV_4 | CEE_1 | CEE_2 | CEE_3 | Higher number |
SS_2 | 0.24 | 0.23 | 0.18 | 0.25 | 0.23 | 0.30 | 0.23 | 0.17 | 0.30 | 0.16 | 0.11 | 0.21 | 0.36 | 0.21 | 0.29 | 0.10 | 0.28 | 0.38 | 0.17 | 0.30 | 0.25 | 0.30 | 0.27 | 0.20 | 0.23 | 0.38 |
SS_3 | 0.22 | 0.22 | 0.17 | 0.23 | 0.21 | 0.28 | 0.21 | 0.16 | 0.27 | 0.15 | 0.11 | 0.19 | 0.32 | 0.20 | 0.26 | 0.10 | 0.25 | 0.34 | 0.16 | 0.28 | 0.22 | 0.27 | 0.24 | 0.19 | 0.21 | 0.34 |
SS_5 | 0.17 | 0.17 | 0.14 | 0.18 | 0.16 | 0.20 | 0.16 | 0.14 | 0.20 | 0.13 | 0.11 | 0.15 | 0.23 | 0.16 | 0.20 | 0.10 | 0.19 | 0.24 | 0.13 | 0.20 | 0.17 | 0.20 | 0.18 | 0.15 | 0.16 | 0.24 |
SS_6 | 0.20 | 0.19 | 0.16 | 0.20 | 0.19 | 0.24 | 0.19 | 0.15 | 0.24 | 0.14 | 0.11 | 0.17 | 0.27 | 0.18 | 0.23 | 0.10 | 0.22 | 0.29 | 0.14 | 0.24 | 0.20 | 0.23 | 0.21 | 0.17 | 0.19 | 0.29 |
SS_7 | 0.18 | 0.17 | 0.15 | 0.18 | 0.17 | 0.21 | 0.17 | 0.14 | 0.21 | 0.13 | 0.11 | 0.16 | 0.24 | 0.16 | 0.20 | 0.10 | 0.19 | 0.25 | 0.13 | 0.21 | 0.18 | 0.21 | 0.19 | 0.16 | 0.17 | 0.25 |
SS_8 | 0.16 | 0.16 | 0.13 | 0.16 | 0.15 | 0.18 | 0.15 | 0.13 | 0.18 | 0.13 | 0.11 | 0.14 | 0.21 | 0.15 | 0.18 | 0.10 | 0.17 | 0.22 | 0.13 | 0.18 | 0.16 | 0.18 | 0.17 | 0.14 | 0.15 | 0.22 |
T10 | CERE_1 | CERE_2 | CERE_3 | CERE_4 | CERE_5 | CES_1 | CES_2 | CES_3 | CEO_1 | CEO_2 | CEO_3 | CEO_4 | CEO_5 | CEL_1 | CEL_2 | CEL_3 | CEL_4 | CEL_5 | CEV_1 | CEV_2 | CEV_3 | CEV_4 | CEE_1 | CEE_2 | CEE_3 | Higher number |
SS_2 | 0.26 | 0.28 | 0.17 | 0.24 | 0.26 | 0.34 | 0.33 | 0.33 | 0.31 | 0.26 | 0.13 | 0.26 | 0.27 | 0.23 | 0.26 | 0.16 | 0.24 | 0.36 | 0.27 | 0.29 | 0.22 | 0.33 | 0.31 | 0.25 | 0.30 | 0.36 |
SS_3 | 0.22 | 0.25 | 0.16 | 0.21 | 0.23 | 0.29 | 0.29 | 0.28 | 0.27 | 0.23 | 0.13 | 0.23 | 0.24 | 0.21 | 0.23 | 0.15 | 0.22 | 0.31 | 0.24 | 0.25 | 0.19 | 0.28 | 0.27 | 0.22 | 0.26 | 0.31 |
SS_5 | 0.23 | 0.25 | 0.16 | 0.21 | 0.23 | 0.30 | 0.29 | 0.28 | 0.27 | 0.23 | 0.13 | 0.23 | 0.24 | 0.21 | 0.23 | 0.15 | 0.22 | 0.31 | 0.24 | 0.25 | 0.19 | 0.28 | 0.27 | 0.22 | 0.26 | 0.31 |
SS_6 | 0.26 | 0.29 | 0.17 | 0.24 | 0.27 | 0.35 | 0.34 | 0.33 | 0.31 | 0.27 | 0.13 | 0.26 | 0.28 | 0.24 | 0.26 | 0.16 | 0.25 | 0.36 | 0.28 | 0.30 | 0.22 | 0.33 | 0.31 | 0.26 | 0.31 | 0.36 |
SS_7 | 0.26 | 0.29 | 0.17 | 0.24 | 0.26 | 0.34 | 0.33 | 0.33 | 0.31 | 0.27 | 0.13 | 0.26 | 0.27 | 0.24 | 0.26 | 0.16 | 0.25 | 0.36 | 0.27 | 0.29 | 0.22 | 0.33 | 0.31 | 0.26 | 0.30 | 0.36 |
SS_8 | 0.24 | 0.27 | 0.16 | 0.23 | 0.25 | 0.32 | 0.31 | 0.31 | 0.29 | 0.25 | 0.13 | 0.25 | 0.26 | 0.22 | 0.25 | 0.15 | 0.23 | 0.34 | 0.26 | 0.28 | 0.21 | 0.31 | 0.29 | 0.24 | 0.28 | 0.34 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oliveira Neto, G.C.d.; Pinto, L.F.R.; de Silva, D.; Rodrigues, F.L.; Flausino, F.R.; Oliveira, D.E.P.d. Industry 4.0 Technologies Promote Micro-Level Circular Economy but Neglect Strong Sustainability in Textile Industry. Sustainability 2023, 15, 11076. https://doi.org/10.3390/su151411076
Oliveira Neto GCd, Pinto LFR, de Silva D, Rodrigues FL, Flausino FR, Oliveira DEPd. Industry 4.0 Technologies Promote Micro-Level Circular Economy but Neglect Strong Sustainability in Textile Industry. Sustainability. 2023; 15(14):11076. https://doi.org/10.3390/su151411076
Chicago/Turabian StyleOliveira Neto, Geraldo Cardoso de, Luiz Fernando Rodrigues Pinto, Dirceu de Silva, Flavio Luiz Rodrigues, Fabio Richard Flausino, and Douglas Eldo Pereira de Oliveira. 2023. "Industry 4.0 Technologies Promote Micro-Level Circular Economy but Neglect Strong Sustainability in Textile Industry" Sustainability 15, no. 14: 11076. https://doi.org/10.3390/su151411076
APA StyleOliveira Neto, G. C. d., Pinto, L. F. R., de Silva, D., Rodrigues, F. L., Flausino, F. R., & Oliveira, D. E. P. d. (2023). Industry 4.0 Technologies Promote Micro-Level Circular Economy but Neglect Strong Sustainability in Textile Industry. Sustainability, 15(14), 11076. https://doi.org/10.3390/su151411076