Comprehensive Performance of Green Infrastructure through a Life-Cycle Perspective: A Review
Abstract
:1. Introduction
2. Methodology
2.1. Research Methods
2.2. Data Processing
3. Results and Discussion
3.1. Overview
- (1)
- Countries and authors
- (2)
- Highly cited papers
- (3)
- Hot topics
3.2. Green Roofs
3.2.1. Life-Cycle Environmental Performance
3.2.2. Life Cycle Economic Performance
3.2.3. Life Cycle Social Performance
3.3. Constructed Wetlands
3.3.1. Life Cycle Environmental and Economic Performance
3.3.2. Life Cycle Social Performance
3.4. Bioretention
3.4.1. Life Cycle Environmental Performance
3.4.2. Life Cycle Economic Performance
3.4.3. Life Cycle Social Performance
3.5. Limitation and Future Research Perspectives
3.5.1. Considering the Water Footprint and the Carbon Footprint
3.5.2. High Initial Construction Costs
3.5.3. Social Life Cycle Assessment
3.5.4. Multi-Objective Optimization
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Woodruff, S.C.; Meerow, S.; Stults, M.; Wilkins, C. Adaptation to Resilience Planning: Alternative Pathways to Prepare for Climate Change. J. Plan. Educ. Res. 2022, 42, 64–75. [Google Scholar] [CrossRef]
- Reckien, D.; Salvia, M.; Heidrich, O.; Church, J.M.; Pietrapertosa, F.; de Gregorio-Hurtado, S.; D’Alonzo, V.; Foley, A.; Simoes, S.G.; Krkoška Lorencová, E.; et al. How are cities planning to respond to climate change? Assessment of local climate plans from 885 cities in the EU-28. J. Clean. Prod. 2018, 191, 207–219. [Google Scholar] [CrossRef]
- Li, L.; Uyttenhove, P.; Vaneetvelde, V. Planning green infrastructure to mitigate urban surface water flooding risk—A methodology to identify priority areas applied in the city of Ghent. Landsc. Urban Plan. 2020, 194, 103703. [Google Scholar] [CrossRef]
- Chan, F.K.S.; Griffiths, J.A.; Higgitt, D.; Xu, S.; Zhu, F.; Tang, Y.-T.; Xu, Y.; Thorne, C.R. “Sponge City” in China—A breakthrough of planning and flood risk management in the urban context. Land Use Policy 2018, 76, 772–778. [Google Scholar] [CrossRef]
- Demuzere, M.; Orru, K.; Heidrich, O.; Olazabal, E.; Geneletti, D.; Orru, H.; Bhave, A.G.; Mittal, N.; Feliu, E.; Faehnle, M. Mitigating and adapting to climate change: Multi-functional and multi-scale assessment of green urban infrastructure. J. Environ. Manag. 2014, 146, 107–115. [Google Scholar] [CrossRef]
- Norton, B.A.; Coutts, A.M.; Livesley, S.J.; Harris, R.J.; Hunter, A.M.; Williams, N.S. Planning for cooler cities: A framework to prioritise green infrastructure to mitigate high temperatures in urban landscapes. Landsc. Urban Plan. 2015, 134, 127–138. [Google Scholar] [CrossRef]
- Kavehei, E.; Jenkins, G.A.; Adame, M.F.; Lemckert, C. Carbon sequestration potential for mitigating the carbon footprint of green stormwater infrastructure. Renew. Sustain. Energy Rev. 2018, 94, 1179–1191. [Google Scholar] [CrossRef]
- Zhu, Z.; Ren, J.; Liu, X. Green infrastructure provision for environmental justice: Application of the equity index in Guangzhou, China. Urban For. Urban Green. 2019, 46, 126443. [Google Scholar] [CrossRef]
- Xu, C.; Jia, M.; Xu, M.; Long, Y.; Jia, H. Progress on environmental and economic evaluation of low-impact development type of best management practices through a life cycle perspective. J. Clean. Prod. 2019, 213, 1103–1114. [Google Scholar] [CrossRef]
- Leng, L.; Mao, X.; Jia, H.; Xu, T.; Chen, A.S.; Yin, D.; Fu, G. Performance assessment of coupled green-grey-blue systems for Sponge City construction. Sci. Total Environ. 2020, 728, 138608. [Google Scholar] [CrossRef]
- Croeser, T.; Garrard, G.; Sharma, R.; Ossola, A.; Bekessy, S. Choosing the right nature-based solutions to meet diverse urban challenges. Urban For. Urban Green. 2021, 65, 127337. [Google Scholar] [CrossRef]
- Liu, H.; Kong, F.; Yin, H.; Middel, A.; Zheng, X.; Huang, J.; Xu, H.; Wang, D.; Wen, Z. Impacts of green roofs on water, temperature, and air quality: A bibliometric review. Build. Environ. 2021, 196, 107794. [Google Scholar] [CrossRef]
- Shafique, M.; Azam, A.; Rafiq, M.; Ateeq, M.; Luo, X. An overview of life cycle assessment of green roofs. J. Clean. Prod. 2020, 250, 119471. [Google Scholar] [CrossRef]
- Davis, A.P.; Hunt, W.F.; Traver, R.G.; Clar, M. Bioretention Technology: Overview of Current Practice and Future Needs. J. Environ. Eng. 2009, 135, 109–117. [Google Scholar] [CrossRef]
- Yao, J.; Wang, G.; Jiang, X.; Xue, B.; Wang, Y.; Duan, L. Exploring the spatiotemporal variations in regional rainwater harvesting potential resilience and actual available rainwater using a proposed method framework. Sci. Total Environ. 2023, 858, 160005. [Google Scholar] [CrossRef]
- Cole, L.J.; Stockan, J.; Helliwell, R. Managing riparian buffer strips to optimise ecosystem services: A review. Agric. Ecosyst. Environ. 2020, 296, 106891. [Google Scholar] [CrossRef]
- Venkataramanan, V.; Lopez, D.; McCuskey, D.J.; Kiefus, D.; McDonald, R.I.; Miller, W.M.; Packman, A.I.; Young, S.L. Knowledge, attitudes, intentions, and behavior related to green infrastructure for flood management: A systematic literature review. Sci. Total Environ. 2020, 720, 137606. [Google Scholar] [CrossRef]
- Campisano, A.; Butler, D.; Ward, S.; Burns, M.J.; Friedler, E.; DeBusk, K.; Fisher-Jeffes, L.N.; Ghisi, E.; Rahman, A.; Furumai, H.; et al. Urban rainwater harvesting systems: Research, implementation and future perspectives. Water Res. 2017, 115, 195–209. [Google Scholar] [CrossRef]
- Styles, D.; Borjesson, P.; D’Hertefeldt, T.; Birkhofer, K.; Dauber, J.; Adams, P.; Patil, S.; Pagella, T.; Pettersson, L.B.; Peck, P.; et al. Climate regulation, energy provisioning and water purification: Quantifying ecosystem service delivery of bioenergy willow grown on riparian buffer zones using life cycle assessment. Ambio 2016, 45, 872–884. [Google Scholar] [CrossRef] [Green Version]
- Mander, U.; Tournebize, J.; Tonderski, K.; Verhoeven, J.T.A.; Mitsch, W.J. Planning and establishment principles for constructed wetlands and riparian buffer zones in agricultural catchments. Ecol. Eng. 2017, 103, 296–300. [Google Scholar] [CrossRef]
- Li, G.; Xiong, J.; Zhu, J.; Liu, Y.; Dzakpasu, M. Design influence and evaluation model of bioretention in rainwater treatment: A review. Sci. Total Environ. 2021, 787, 147592. [Google Scholar] [CrossRef]
- Santos, J.; Flintsch, G.; Ferreira, A. Environmental and economic assessment of pavement construction and management practices for enhancing pavement sustainability. Resour. Conserv. Recycl. 2017, 116, 15–31. [Google Scholar] [CrossRef] [Green Version]
- Antunes, L.; Ghisi, E.; Thives, L. Permeable Pavements Life Cycle Assessment: A Literature Review. Water 2018, 10, 1575. [Google Scholar] [CrossRef] [Green Version]
- Vijayaraghavan, K.; Biswal, B.K.; Adam, M.G.; Soh, S.H.; Tsen-Tieng, D.L.; Davis, A.P.; Chew, S.H.; Tan, P.Y.; Babovic, V.; Balasubramanian, R. Bioretention systems for stormwater management: Recent advances and future prospects. J. Environ. Manag. 2021, 292, 112766. [Google Scholar] [CrossRef]
- Romanovska, L. Urban green infrastructure: Perspectives on life-cycle thinking for holistic assessments. IOP Conf. Ser. Earth Environ. Sci. 2019, 294, 12011. [Google Scholar] [CrossRef]
- Sala, S.; Anton, A.; McLaren, S.J.; Notarnicola, B.; Saouter, E.; Sonesson, U. In quest of reducing the environmental impacts of food production and consumption. J. Clean. Prod. 2017, 140, 387–398. [Google Scholar] [CrossRef]
- Manso, M.; Teotónio, I.; Silva, C.M.; Cruz, C.O. Green roof and green wall benefits and costs: A review of the quantitative evidence. Renew. Sustain. Energy Rev. 2021, 135, 110111. [Google Scholar] [CrossRef]
- Mongeon, P.; Paul-Hus, A. The journal coverage of Web of Science and Scopus: A comparative analysis. Scientometrics 2016, 106, 213–228. [Google Scholar] [CrossRef]
- He, K.; Zhang, J.; Wang, X.; Zeng, Y.; Zhang, L. A scientometric review of emerging trends and new developments in agricultural ecological compensation. Environ. Sci. Pollut. Res. Int. 2018, 25, 16522–16532. [Google Scholar] [CrossRef]
- Berardi, U.; GhaffarianHoseini, A.; GhaffarianHoseini, A. State-of-the-art analysis of the environmental benefits of green roofs. Appl. Energy 2014, 115, 411–428. [Google Scholar] [CrossRef]
- Kosareo, L.; Ries, R. Comparative environmental life cycle assessment of green roofs. Build. Environ. 2007, 42, 2606–2613. [Google Scholar] [CrossRef]
- Saiz, S.; Kennedy, C.; Bass, B.; Pressnail, K. Comparative life cycle assessment of standard and green roofs. Environ. Sci. Technol. 2006, 40, 4312–4316. [Google Scholar] [CrossRef]
- Susca, T.; Gaffin, S.R.; Dell’osso, G.R. Positive effects of vegetation: Urban heat island and green roofs. Environ. Pollut. 2011, 159, 2119–2126. [Google Scholar] [CrossRef]
- Wang, R.; Eckelman, M.J.; Zimmerman, J.B. Consequential environmental and economic life cycle assessment of green and gray stormwater infrastructures for combined sewer systems. Environ. Sci. Technol. 2013, 47, 11189–11198. [Google Scholar] [CrossRef]
- Shafique, M.; Kim, R.; Rafiq, M. Green roof benefits, opportunities and challenges—A review. Renew. Sustain. Energy Rev. 2018, 90, 757–773. [Google Scholar] [CrossRef]
- Nieuwenhuijsen, M.J. Green Infrastructure and Health. Annu. Rev. Public Health 2021, 42, 317–328. [Google Scholar] [CrossRef]
- Getter, K.L.; Rowe, D.B.; Robertson, G.P.; Cregg, B.M.; Andresen, J.A. Carbon sequestration potential of extensive green roofs. Environ. Sci. Technol. 2009, 43, 7564–7570. [Google Scholar] [CrossRef]
- Shafique, M.; Kim, R. Low Impact Development Practices: A Review of Current Research and Recommendations for Future Directions. Ecol. Chem. Eng. S 2015, 22, 543–563. [Google Scholar] [CrossRef] [Green Version]
- Bozorg Chenani, S.; Lehvävirta, S.; Häkkinen, T. Life cycle assessment of layers of green roofs. J. Clean. Prod. 2015, 90, 153–162. [Google Scholar] [CrossRef]
- El Bachawati, M.; Manneh, R.; Belarbi, R.; Dandres, T.; Nassab, C.; El Zakhem, H. Cradle-to-gate Life Cycle Assessment of traditional gravel ballasted, white reflective, and vegetative roofs: A Lebanese case study. J. Clean. Prod. 2016, 137, 833–842. [Google Scholar] [CrossRef]
- Vacek, P.; Struhala, K.; Matějka, L. Life-cycle study on semi intensive green roofs. J. Clean. Prod. 2017, 154, 203–213. [Google Scholar] [CrossRef]
- Peng, L.L.; Jim, C.Y. Economic evaluation of green-roof environmental benefits in the context of climate change: The case of Hong Kong. Urban For. Urban Green. 2015, 14, 554–561. [Google Scholar] [CrossRef]
- Koroxenidis, E.; Theodosiou, T. Comparative environmental and economic evaluation of green roofs under Mediterranean climate conditions—Extensive green roofs a potentially preferable solution. J. Clean. Prod. 2021, 311, 127563. [Google Scholar] [CrossRef]
- Peri, G.; Traverso, M.; Finkbeiner, M.; Rizzo, G. The cost of green roofs disposal in a life cycle perspective: Covering the gap. Energy 2012, 48, 406–414. [Google Scholar] [CrossRef]
- Yao, L.; Chini, A.; Zeng, R. Integrating cost-benefits analysis and life cycle assessment of green roofs: A case study in Florida. Hum. Ecol. Risk Assess. 2020, 26, 443–458. [Google Scholar] [CrossRef]
- Illankoon, I.M.; Chethana, S.; Tam, V.W.Y.; Le, K.N.; Wang, X.; Wang, J. Optimal roofing solutions for Australian green buildings: A life-cycle cost perspective. Proc. Inst. Civ. Eng.-Eng. Sustain. 2020, 173, 30–41. [Google Scholar] [CrossRef]
- Zhan, W.; Chui, T.F.M. Evaluating the life cycle net benefit of low impact development in a city. Urban For. Urban Green. 2016, 20, 295–304. [Google Scholar] [CrossRef]
- Bianchini, F.; Hewage, K. Probabilistic social cost-benefit analysis for green roofs: A lifecycle approach. Build. Environ. 2012, 58, 152–162. [Google Scholar] [CrossRef]
- Li, L.; Huo, C.; Zhang, M. Economy Efficiency Assessment in Full Life Cycle of Green Roof Project. In Proceedings of the 2015 International Conference on Architectural, Civil and Hydraulics Engineering (ICACHE 2015), Guangzhou, China, 28–29 November 2015; Volume 44, pp. 315–319. [Google Scholar]
- Toboso-Chavero, S.; Madrid-López, C.; Villalba, G.; Gabarrell Durany, X.; Hückstädt, A.B.; Finkbeiner, M.; Lehmann, A. Environmental and social life cycle assessment of growing media for urban rooftop farming. Int. J. Life Cycle Assess. 2021, 26, 2085–2102. [Google Scholar] [CrossRef]
- Resende, J.D.; Nolasco, M.A.; Pacca, S.A. Life cycle assessment and costing of wastewater treatment systems coupled to constructed wetlands. Resour. Conserv. Recycl. 2019, 148, 170–177. [Google Scholar] [CrossRef]
- Dixon, A.; Simon, M.; Burkitt, T. Assessing the environmental impact of two options for small-scale wastewater treatment: Comparing a reedbed and an aerated biological filter using a life cycle approach. Ecol. Eng. 2003, 20, 297–308. [Google Scholar] [CrossRef]
- Garfí, M.; Flores, L.; Ferrer, I. Life Cycle Assessment of wastewater treatment systems for small communities: Activated sludge, constructed wetlands and high rate algal ponds. J. Clean. Prod. 2017, 161, 211–219. [Google Scholar] [CrossRef]
- Shakya, R.; Ahiablame, L. A Synthesis of Social and Economic Benefits Linked to Green Infrastructure. Water 2021, 13, 3651. [Google Scholar] [CrossRef]
- Liu, J.; Sample, D.; Bell, C.; Guan, Y. Review and Research Needs of Bioretention Used for the Treatment of Urban Stormwater. Water 2014, 6, 1069–1099. [Google Scholar] [CrossRef] [Green Version]
- Bhatt, A.; Bradford, A.; Abbassi, B.E. Cradle-to-grave life cycle assessment (LCA) of low-impact-development (LID) technologies in southern Ontario. J. Environ. Manag. 2019, 231, 98–109. [Google Scholar] [CrossRef]
- Vineyard, D.; Ingwersen, W.W.; Hawkins, T.R.; Xue, X.; Demeke, B.; Shuster, W. Comparing Green and Grey Infrastructure Using Life Cycle Cost and Environmental Impact: A Rain Garden Case Study in Cincinnati, OH. J. Am. Water Resour. Assoc. 2015, 51, 1342–1360. [Google Scholar] [CrossRef]
- Xu, X.; Zhang, Q. Sustainable Configuration of Bioretention Systems for Nutrient Management through Life-Cycle Assessment and Cost Analysis. J. Environ. Eng. 2019, 145, 04019016. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, D.; Adhityan, A.; Ng, W.J.; Dong, J.; Tan, S.K. Assessing cost-effectiveness of bioretention on stormwater in response to climate change and urbanization for future scenarios. J. Hydrol. 2016, 543, 423–432. [Google Scholar] [CrossRef]
- Li, Y.; Huang, J.J.; Hu, M.; Yang, H.; Tanaka, K. Design of low impact development in the urban context considering hydrological performance and life-cycle cost. J. Flood Risk Manag. 2020, 13, e12625. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, Y.; Zhang, D.; Zheng, Y.; Li, S.; Tan, S.K. Life-cycle cost analysis and resilience consideration for coupled grey infrastructure and low-impact development practices. Sustain. Cities Soc. 2021, 75, 103358. [Google Scholar] [CrossRef]
- Koc, K.; Ekmekcioğlu, Ö.; Özger, M. An integrated framework for the comprehensive evaluation of low impact development strategies. J. Environ. Manag. 2021, 294, 113023. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Guo, J.; Yuan, J.; Liu, H.J.; Edwards, D.J. Exploring the Key Indicators of Social Impact Assessment for Sponge City PPPs: A Sustainable Development Perspective. Buildings 2022, 12, 1329. [Google Scholar] [CrossRef]
- Liu, J.; Gong, X.; Li, L.; Chen, F.; Zhang, J. Innovative design and construction of the sponge city facilities in the Chaotou Park, Talent Island, Jiangmen, China. Sustain. Cities Soc. 2021, 70, 102906. [Google Scholar] [CrossRef]
- Moore, T.L.; Hunt, W.F. Predicting the carbon footprint of urban stormwater infrastructure. Ecol. Eng. 2013, 58, 44–51. [Google Scholar] [CrossRef]
- Bledsoe, R.B.; Bean, E.Z.; Austin, S.S.; Peralta, A.L. A microbial perspective on balancing trade-offs in ecosystem functions in a constructed stormwater wetland. Ecol. Eng. 2020, 158, 106000. [Google Scholar] [CrossRef]
- Bianchini, F.; Hewage, K. How “green” are the green roofs? Lifecycle analysis of green roof materials. Build. Environ. 2012, 48, 57–65. [Google Scholar] [CrossRef]
- Sala, S.; Farioli, F.; Zamagni, A. Life cycle sustainability assessment in the context of sustainability science progress (part 2). Int. J. Life Cycle Assess. 2013, 18, 1686–1697. [Google Scholar] [CrossRef]
- Jungels, J.; Rakow, D.A.; Allred, S.B.; Skelly, S.M. Attitudes and aesthetic reactions toward green roofs in the Northeastern United States. Landsc. Urban Plan. 2013, 117, 13–21. [Google Scholar] [CrossRef]
- Xu, C.; Tang, T.; Jia, H.; Xu, M.; Xu, T.; Liu, Z.; Long, Y.; Zhang, R. Benefits of coupled green and grey infrastructure systems: Evidence based on analytic hierarchy process and life cycle costing. Resour. Conserv. Recycl. 2019, 151, 104478. [Google Scholar] [CrossRef]
- Leng, L.; Jia, H.; Chen, A.S.; Zhu, D.Z.; Xu, T.; Yu, S. Multi-objective optimization for green-grey infrastructures in response to external uncertainties. Sci. Total Environ. 2021, 775, 145831. [Google Scholar] [CrossRef]
- Liu, Z.; Xu, C.; Xu, T.; Jia, H.; Zhang, X.; Chen, Z.; Yin, D. Integrating socioecological indexes in multiobjective intelligent optimization of green-grey coupled infrastructures. Resour. Conserv. Recycl. 2021, 174, 105801. [Google Scholar] [CrossRef]
- Xu, C.; Hong, J.; Jia, H.; Liang, S.; Xu, T. Life cycle environmental and economic assessment of a LID-BMP treatment train system: A case study in China. J. Clean. Prod. 2017, 149, 227–237. [Google Scholar] [CrossRef]
- Xu, C.; Liu, Z.; Chen, Z.; Zhu, Y.; Yin, D.; Leng, L.; Jia, H.; Zhang, X.; Xia, J.; Fu, G. Environmental and economic benefit comparison between coupled grey-green infrastructure system and traditional grey one through a life cycle perspective. Resour. Conserv. Recycl. 2021, 174, 105804. [Google Scholar] [CrossRef]
- Huang, J.J.; Xiao, M.; Li, Y.; Yan, R.; Zhang, Q.; Sun, Y.; Zhao, T. The optimization of Low Impact Development placement considering life cycle cost using Genetic Algorithm. J. Environ. Manag. 2022, 309, 114700. [Google Scholar] [CrossRef]
- Wang, M.; Liu, M.; Zhang, D.; Qi, J.; Fu, W.; Zhang, Y.; Rao, Q.; Bakhshipour, A.E.; Tan, S.K. Assessing and optimizing the hydrological performance of Grey-Green infrastructure systems in response to climate change and non-stationary time series. Water Res. 2023, 232, 119720. [Google Scholar] [CrossRef]
Period | 1995–2007 | 2008–2022 | Overall (1995–2022) |
---|---|---|---|
Number of articles | 51 | 1073 | 1124 |
Number of journals | 32 | 333 | 349 |
Average citations per article | 65.24 | 28.93 | 30.57 |
Authors | 130 | 3302 | 3417 |
Co-authors per doc. | 2.88 | 4.34 | 4.27 |
Authors of single-authored articles | 14 | 45 | 59 |
Annual growth rate (%) | 21.15 | 17.66 | 19.29 |
No. | Paper | DOI | Total Citations | TC per Year | Normalized TC |
---|---|---|---|---|---|
1 | DE VRIES M, 2010, LIVEST SCI | 10.1016/j.livsci.2009.11.007 | 668 | 47.71 | 6.58 |
2 | HABERT G, 2011, J CLEAN PROD | 10.1016/j.jclepro.2011.03.012 | 622 | 47.85 | 6.09 |
3 | DAVIS AP, 2009, J ENVIRON ENG | 10.1061/(ASCE)0733-9372(2009)135:3(109) | 503 | 33.53 | 4.69 |
4 | DAVIS AP, 2009, J ENVIRON ENG-a | 10.1061/(ASCE)0733-9372(2009)135:3(109) | 503 | 33.53 | 4.69 |
5 | MARTINS CIM, 2010, AQUACULT ENG | 10.1016/j.aquaeng.2010.09.002 | 467 | 33.36 | 4.60 |
6 | SUSCA T, 2011, ENVIRON POLLUT | 10.1016/j.envpol.2011.03.007 | 405 | 31.15 | 3.97 |
7 | BERARDI U, 2014, APPL ENERG | 10.1016/j.apenergy.2013.10.047 | 401 | 40.10 | 8.48 |
8 | ROWE DB, 2011, ENVIRON POLLUT | 10.1016/j.envpol.2010.10.029 | 358 | 27.54 | 3.51 |
9 | NEVENS F, 2013, J CLEAN PROD | 10.1016/j.jclepro.2012.12.001 | 350 | 31.82 | 6.53 |
10 | ESTEVES AM, 2012, IMPACT ASSESS PROJ A | 10.1080/14615517.2012.660356 | 348 | 29.00 | 7.97 |
11 | AZAPAGIC A, 1999, CHEM ENG J | 10.1016/S1385-8947(99)00042-X | 338 | 13.52 | 2.59 |
12 | PIRES A, 2011, J ENVIRON MANAGE | 10.1016/j.jenvman.2010.11.024 | 296 | 22.77 | 2.90 |
13 | CAMPISANO A, 2017, WATER RES | 10.1016/j.watres.2017.02.056 | 272 | 38.86 | 8.55 |
14 | GUDE VG, 2016, J CLEAN PROD | 10.1016/j.jclepro.2016.02.022 | 262 | 32.75 | 5.98 |
15 | LAURENT A, 2014, WASTE MANAGE | 10.1016/j.wasman.2013.12.004 | 255 | 25.50 | 5.40 |
16 | HOFFMANN CC, 2009, J ENVIRON QUAL | 10.2134/jeq2008.0087 | 236 | 15.73 | 2.20 |
17 | SHAFIQUE M, 2018, RENEW SUST ENERG REV | 10.1016/j.rser.2018.04.006 | 235 | 39.17 | 8.65 |
18 | OULTON RL, 2010, J ENVIRON MONITOR | 10.1039/c0em00068j | 224 | 16.00 | 2.21 |
19 | ODUM WE, 1995, ESTUARIES | 10.2307/1352375 | 219 | 7.55 | 1.00 |
20 | CARTER T, 2008, J ENVIRON MANAGE | 10.1016/j.jenvman.2007.01.024 | 219 | 13.69 | 4.89 |
21 | KOSAREO L, 2007, BUILD ENVIRON | 10.1016/j.buildenv.2006.06.019 | 218 | 12.82 | 2.22 |
22 | GHOLAMPOUR A, 2020, J MATER SCI | 10.1007/s10853-019-03990-y | 213 | 53.25 | 12.21 |
23 | MO WW, 2013, J ENVIRON MANAGE | 10.1016/j.jenvman.2013.05.007 | 202 | 18.36 | 3.77 |
24 | SAIZ S, 2006, ENVIRON SCI TECHNOL | 10.1021/es0517522 | 193 | 10.72 | 2.95 |
25 | LIPPKE B, 2011, CARBON MANAG | 10.4155/CMT.11.24 | 189 | 14.54 | 1.85 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, M.; Zhong, X.; Sun, C.; Chen, T.; Su, J.; Li, J. Comprehensive Performance of Green Infrastructure through a Life-Cycle Perspective: A Review. Sustainability 2023, 15, 10857. https://doi.org/10.3390/su151410857
Wang M, Zhong X, Sun C, Chen T, Su J, Li J. Comprehensive Performance of Green Infrastructure through a Life-Cycle Perspective: A Review. Sustainability. 2023; 15(14):10857. https://doi.org/10.3390/su151410857
Chicago/Turabian StyleWang, Mo, Xu Zhong, Chuanhao Sun, Tong Chen, Jin Su, and Jianjun Li. 2023. "Comprehensive Performance of Green Infrastructure through a Life-Cycle Perspective: A Review" Sustainability 15, no. 14: 10857. https://doi.org/10.3390/su151410857
APA StyleWang, M., Zhong, X., Sun, C., Chen, T., Su, J., & Li, J. (2023). Comprehensive Performance of Green Infrastructure through a Life-Cycle Perspective: A Review. Sustainability, 15(14), 10857. https://doi.org/10.3390/su151410857