The Intertwined Renewable Energy–Water–Environment (REWE) Nexus Challenges and Opportunities: A Case Study of California
Abstract
:1. Introduction
2. Methodology
3. Results and Discussion
3.1. California’s Renewable Energy Legislative Information
3.2. Renewable Energy in California
3.3. The Renewable Energy–Water–Environment (REWE) Nexus
3.3.1. The Renewable Energy–Water Nexus
Water for Renewable Energy
Renewable Energy for Water
3.3.2. The Renewable Energy–Environment Nexus
3.3.3. The Water–Environment Nexus
3.4. Challenges and Opportunities
4. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ellabban, O.; Abu-Rub, H.; Blaabjerg, F. Renewable energy resources: Current status, future prospects and their enabling technology, Renew. Sustain. Energy Rev. 2014, 39, 748–764. [Google Scholar] [CrossRef]
- Nelson, V. Introduction to Renewable Energy; CRC Press: Boca Raton, FL, USA; Taylor & Francis Group: Abingdon, UK, 2011. [Google Scholar]
- Østergaard, P.A.; Duic, N.; Noorollahi, Y.; Kalogirou, S.A. Recent advances in renewable energy technology for the energy transition. Renew. Energy 2021, 179, 877–884. [Google Scholar] [CrossRef]
- Lund, H. Renewable Energy Systems, the Choice and Modeling of 100% Renewable Solutions; Academic Press: Cambridge, MA, USA; Elsevier: Amsterdam, The Netherlands, 2010. [Google Scholar]
- United States Department of Energy, Energy Efficiency and Renewable Energy. California State Summary: EERE Investments in California, DOE/GO-102013-3789. March 2013. Available online: https://www.nrel.gov/docs/fy13osti/56423.pdf (accessed on 16 December 2021).
- Newsom, G. California’s Electricity System of the Future. July 2021. Available online: https://www.gov.ca.gov/wp-content/uploads/2021/07/Electricity-System-of-the-Future-7.30.21.pdf (accessed on 16 December 2021).
- Jafarinejad, S.; Beckingham, L.E.; Kathe, M.; Henderson, K. The renewable energy (RE) industry workforce needs: RE simulation and analysis tools teaching as an effective way to enhance undergraduate engineering students’ learning. Sustainability 2021, 13, 11727. [Google Scholar] [CrossRef]
- U.S. Energy Information Administration (EIA). California State Energy Profile. Available online: https://www.eia.gov/state/print.php?sid=CA#77 (accessed on 16 December 2021).
- California Energy Commission. 2019 Total System Electric Generation. Available online: https://www.energy.ca.gov/data-reports/energy-almanac/california-electricity-data/2020-total-system-electric-generation/2019 (accessed on 16 December 2021).
- Surana, K.; Jordaan, S.M. The climate mitigation opportunity behind global power transmission and distribution. Nat. Clim. Change 2019, 9, 660–665. [Google Scholar] [CrossRef]
- Hoffacker, M.K.; Hernandez, R.R. Local energy: Spatial proximity of energy providers to their power resources. Front. Sustain. 2020, 7, 585110. [Google Scholar] [CrossRef]
- Nelson, J.H.; Wisland, L.M. Achieving 50 Percent Renewable Electricity in California, The Role of Non-Fossil Flexibility in a Cleaner Electricity Grid, Union of Concerned Scientists. August 2015. Available online: https://www.ucsusa.org/sites/default/files/attach/2015/08/Achieving-50-Percent-Renewable-Electricity-In-California.pdf (accessed on 16 December 2021).
- Wartsila. Path to 100% Renewables for California. 2020. Available online: https://www.pathto100.org/wp-content/uploads/2020/03/path-to-100-renewables-for-california.pdf (accessed on 16 December 2021).
- The Future of California’s Water-Energy-Climate Nexus, Produced by Next 10 (F. Noel Perry, Colleen Kredell, Marcia, E. Perry, Stephanie Leonard), Prepared by The Pacific Institute (Julia Szinai, Sonali Abraham, Heather Cooley, Peter Gleick). September 2021. Available online: https://www.next10.org/sites/default/files/2021-09/Next10-Water-Energy-Report_v2.pdf (accessed on 16 December 2021).
- Seager, R.; Hoerling, M.; Schubert, S.; Wang, H.; Lyon, B.; Kumar, A.; Nakamura, J.; Henderson, N. Causes of the 2011–14 California drought. J. Clim. 2015, 28, 6997–7024. [Google Scholar] [CrossRef] [Green Version]
- Diffenbaugh, N.S.; Swain, D.L.; Touma, D. Touma, Anthropogenic warming has increased drought risk in California. Proc. Natl. Acad. Sci. USA 2015, 112, 3931–3936. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Wada, Y.; Wanders, N.; Sheffield, J. Intensification of hydrological drought in California by human water management. Geophys. Res. Lett. 2017, 44, 1777–1785. [Google Scholar] [CrossRef] [Green Version]
- Germano, D.J.; Rathbun, G.B.; Saslaw, L.R.; Cypher, B.L.; Cypher, E.A.; Vredenburgh, L.M. The San Joaquin Desert of California: Ecologically Misunderstood and Overlooked. Nat. Areas J. 2011, 31, 138–147. [Google Scholar] [CrossRef]
- Moore, K.A.; André, J.M. Rare plant diversity in the California deserts: Priorities for research and conservation. Fremontia 2014, 42, 9–14. [Google Scholar]
- Mulvaney, D. Identifying the roots of Green Civil War over utility-scale solar energy projects on public lands across the American Southwest. J. Land Use Sci. 2017, 12, 493–515. [Google Scholar] [CrossRef]
- Iknayan, K.J.; Beissinger, S.R. Collapse of a desert bird community over the past century driven by climate change. Proc. Natl. Acad. Sci. USA 2018, 115, 8597–8602. [Google Scholar] [CrossRef] [Green Version]
- Grodsky, S.M.; Hernandez, R.R. Reduced ecosystem services of desert plants from ground-mounted solar energy development. Nat. Sustain. 2020, 3, 1036–1043. [Google Scholar] [CrossRef]
- Hobbs, A. Renewable Energy in California: What Has Policy Brought Us? Climate Policy Initiative. 21 September 2012. Available online: https://www.climatepolicyinitiative.org/renewable-energy-in-california-what-has-policy-brought-us/ (accessed on 16 December 2021).
- Public Utility Regulatory Policies Act of 1978, Public Law 95-617, 92 Stat. 3117. 9 November 1978. Available online: https://www.govinfo.gov/content/pkg/STATUTE-92/pdf/STATUTE-92-Pg3117.pdf (accessed on 16 December 2021).
- American Public Power Association, The Public Utility Regulatory Policies Act of 1978. Available online: https://www.publicpower.org/policy/public-utility-regulatory-policies-act-1978 (accessed on 16 December 2021).
- California Public Utilities Commission. Renewables Portfolio Standard (RPS) Program. Available online: https://www.cpuc.ca.gov/rps (accessed on 16 December 2021).
- California Legislative Information, SB-1078 Renewable Energy: California Renewables Portfolio Standard Program (2001–2002), Senate Bill No. 1078, Chapter 516. Available online: https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill_id=200120020SB1078 (accessed on 16 December 2021).
- California Legislative Information, SB-107 Renewable Energy: Public Interest Energy Research, Demonstration, and Develop-ment Program (2005–2006), Senate Bill No. 107, Chapter 464. Available online: https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill_id=200520060SB107 (accessed on 16 December 2021).
- SB X 1–2. 15 February 2011. Available online: http://www.leginfo.ca.gov/pub/11-12/bill/sen/sb_0001-0050/sbx1_2_bill_20110412_chaptered.html (accessed on 16 December 2021).
- California Legislative Information, SB-350 Clean Energy and Pollution Reduction Act of 2015 (2015–2016), Senate Bill No. 350, Chapter 547. Available online: https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill_id=201520160SB350 (accessed on 16 December 2021).
- California Legislative Information, SB-100 California Renewables Portfolio Standard Program: Emissions of Greenhouse Gases (2017–2018), Senate Bill No. 100, Chapter 312. Available online: https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill_id=201720180SB100 (accessed on 16 December 2021).
- Gill, L.; Gutierrez, A.; Weeks, T. 2021 SB 100 Joint Agency Report, Achieving 100 Percent Clean Electricity in California: An initial Assessment, Gavin Newsom (Governor), March 2021, CEC-200-2021-001. Available online: https://www.energy.ca.gov/publications/2021/2021-sb-100-joint-agency-report-achieving-100-percent-clean-electricity (accessed on 16 December 2021).
- California Energy Commission. 2019 Utility-Scale Renewable Electrical Generation by County (Types). 17 August 2020. Available online: https://cecgis-caenergy.opendata.arcgis.com/documents/CAEnergy:2019-utility-scale-renewable-electrical-generation-by-county-types/explore (accessed on 16 December 2021).
- California Energy Commission. 2019 Utility Scale Renewable Electrical Generation Totals by County (Energy Produced). 25 August 2020. Available online: https://cecgis-caenergy.opendata.arcgis.com/documents/CAEnergy::2019-utility-scale-renewable-electrical-generation-totals-by-county-energy-produced/explore (accessed on 16 December 2021).
- California Energy Commission-Tracking Progress. February 2020. Available online: https://www.energy.ca.gov/sites/default/files/2019-12/renewable_ada.pdf (accessed on 4 March 2022).
- Next 10, California Green Innovation Index, 2021, Renewable Energy. Available online: https://greeninnovationindex.org/2021-edition/renewable-energy/?gclid=EAIaIQobChMIio7x9bOq9gIVcgnnCh0-0QKdEAAYBCAAEgLYmfD_BwE (accessed on 4 March 2022).
- The American Heritage® Science Dictionary, Environment, Houghton Mifflin Harcourt Company. 2011. Available online: https://www.dictionary.com/browse/environment (accessed on 22 December 2021).
- Jafarinejad, S. Petroleum Waste Treatment and Pollution Control, 1st ed.; Butterworth-Heinemann: Oxford, UK, 2017. [Google Scholar]
- Fayiah, M.; Dong, S.; Singh, S.; Kwaku, E.A. A review of water–energy nexus trend, methods, challenges and future prospects. Int. J. Energy Water Resour. 2020, 4, 91–107. [Google Scholar] [CrossRef]
- Ali, B. Forecasting model for water-energy nexus in Alberta, Canada. Water-Energy Nexus 2018, 1, 104–115. [Google Scholar] [CrossRef]
- LaFrance, M.; King, J.W.; Oakley, B.A.; Pratt, S. A comparison of top-down and bottom-up approaches to benthic habitat mapping to inform offshore wind energy development. Cont. Shelf Res. 2014, 83, 24–44. [Google Scholar] [CrossRef]
- Suomalainen, K.; Wang, V.; Sharp, B. Rooftop solar potential based on LiDAR data: Bottom-up assessment at neighbourhood level. Renew. Energy 2017, 111, 463–475. [Google Scholar] [CrossRef]
- Kruitwagen, L.; Story, K.T.; Friedrich, J.; Byers, L.; Skillman, S.; Hepburn, C. A global inventory of photovoltaic solar energy generating units. Nature 2021, 598, 604–610. [Google Scholar] [CrossRef]
- Guoqing, L.; Hernandez, R.R.; Blackburn, G.A.; Davies, G.; Hunt, M.; Whyatt, J.D.; Armstrong, A. Ground-mounted photovoltaic solar parks promote land surface cool islands in arid ecosystems. Renew. Sustain. Energy Transit. 2021, 1, 100008. [Google Scholar] [CrossRef]
- Conkling, T.J.; Vander Zanden, H.B.; Allison, T.D.; Diffendorfer, J.E.; Dietsch, T.V.; Duerr, A.E.; Fesnock, A.L.; Hernandez, R.R.; Loss, S.R.; Nelson, D.M.; et al. Supplementary material from “Vulnerability of avian populations to renewable energy production”. R. Soc. Collect. 2022. [Google Scholar] [CrossRef]
- The U.S. Department of Energy’s (DOE) Water-Energy Technology Team, under the Direction of Diana Bauer, Office of Energy Policy and Systems Analysis (EPSA), The Water-Energy Nexus: Challenges and Opportunities. June 2014. Available online: https://www.energy.gov/sites/prod/files/2014/06/f16/Water%20Energy%20Nexus%20Report%20June%202014.pdf (accessed on 16 December 2021).
- Dai, J.; Wu, S.; Han, G.; Weinberg, J.; Xie, X.; Wu, X.; Song, X.; Jia, B.; Xue, W.; Yang, Q. Water-energy Nexus: A review of methods and tools for macro-assessment. Appl. Energy 2018, 210, 393–408. [Google Scholar] [CrossRef]
- Hamiche, A.M.; Stambouli, A.B.; Flazi, S. A review of the water-energy Nexus. Renew. Sustain. Energy Rev. 2016, 65, 319–331. [Google Scholar] [CrossRef]
- Tan, C.; Zhi, Q. The Energy-water Nexus: A literature Review of the Dependence of Energy on Water. Energy Procedia 2016, 88, 277–284. [Google Scholar] [CrossRef] [Green Version]
- Chini, C.M.; Excell, L.E.; Stillwell, A.S. A review of energy-for-water data in energy-water Nexus publications. Environ. Res. Lett. 2021, 15, 123011. [Google Scholar] [CrossRef]
- Rao, P.; Kostecki, R.; Dale, L.; Gadgil, A. Technology and Engineering of the Water-Energy Nexus. Annu. Rev. Environ. Resour. 2017, 42, 407–437. [Google Scholar] [CrossRef] [Green Version]
- Arthur, M.; Liu, G.; Hao, Y.; Zhang, L.; Liang, S.; Asamoah, E.F.; Lombardi, G.V. Urban food-energy-water Nexus indicators: A review. Resour. Conserv. Recycl. 2019, 151, 104481. [Google Scholar] [CrossRef]
- Zarei, S.; Bozorg-Haddad, O.; Kheirinejad, S.; Loáiciga, H.A. Environmental sustainability: A review of the water–energy–food Nexus. J. Water Supply Res. Technol. 2021, 70, 138–154. [Google Scholar] [CrossRef]
- Zhang, P.; Zhang, L.; Chang, Y.; Xu, M.; Hao, Y.; Liang, S.; Liu, G.; Yang, Z.; Wang, C. Food-energy-water (FEW) Nexus for urban sustainability: A comprehensive review. Resour. Conserv. Recycl. 2010, 142, 215–224. [Google Scholar] [CrossRef]
- Albrecht, T.R.; Crootof, A.; Scott, C.A. The Water-Energy-Food Nexus: A systematic review of methods for nexus assessment. Environ. Res. Lett. 2018, 13, 043002. [Google Scholar] [CrossRef]
- Wicaksono, A.; Jeong, G.; Kang, D. Water, energy, and food nexus: Review of global implementation and simulation model development. Water Policy 2017, 19, 440–462. [Google Scholar] [CrossRef] [Green Version]
- D’Odorico, P.; Davis, K.F.; Rosa, L.; Carr, J.A.; Chiarelli, D.; Dell’Angelo, J.; Gephart, J.; MacDonald, G.K.; Seekell, D.A.; Suweis, S.; et al. The Global Food-Energy-Water Nexus. Rev. Geophys. 2018, 56, 456–531. [Google Scholar] [CrossRef]
- Newell, J.P.; Goldstein, B.P.; Foster, A. A 40-year review of food–energy–water nexus literature and its application to the urban scale. Environ. Res. Lett. 2019, 14, 073003. [Google Scholar] [CrossRef] [Green Version]
- Borowski, P.F. Nexus between water, energy, food and climate change as challenges facing the modern global, European and Polish economy. AIMS Geosci. 2020, 6, 397–421. [Google Scholar] [CrossRef]
- International Renewable Energy Agency (IRENA). Renewable Energy in the Water, Energy & Food Nexus. 2015. Available online: https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2015/IRENA_Water_Energy_Food_Nexus_2015.pdf (accessed on 25 December 2021).
- Davies, E.G.; Kyle, P.; Edmonds, J.A. An integrated assessment of global and regional water demands for electricity generation to 2095. Adv. Water Resour. 2013, 52, 296–313. [Google Scholar] [CrossRef]
- Meldrum, J.; Nettles-Anderson, S.; Heath, G.; Macknick, J. Life cycle water use for electricity generation: A review and harmo-nization of literature estimates. Environ. Res. Lett. 2013, 8, 015031. [Google Scholar] [CrossRef]
- Burkhardt, J.J.; Heath, G.A.; Turchi, C.S. Life Cycle Assessment of a Parabolic Trough Concentrating Solar Power Plant and the Impacts of Key Design Alternatives. Environ. Sci. Technol. 2011, 45, 2457–2464. [Google Scholar] [CrossRef]
- Liqreina, A.; Qoaider, L. Dry cooling of concentrating solar power (CSP) plants, an economic competitive option for the desert regions of the MENA region. Sol. Energy 2014, 103, 417–424. [Google Scholar] [CrossRef]
- Mielke, E.; Anadon, L.D.; Narayanamurti, V. Water Consumption of Energy Resource Extraction, Processing, and Conversion, A Review of the Literature for Estimates of Water Intensity of Energy-Resource Extraction, Processing to Fuels, and Conversion to Electricity, Energy Technology Innovation Policy Discussion Paper No. 2010-15, Belfer Center for Science and International Affairs, Harvard Kennedy School, Harvard University. October 2010. Available online: https://www.belfercenter.org/sites/default/files/files/publication/ETIP-DP-2010-15-final-4.pdf (accessed on 25 December 2021).
- The U.S. Department of Energy. 20% Wind Energy by 2030, Increasing Wind Energy’s Contribution to U.S. Electric Supply, DOE/GO-102008-2567. July 2008. Available online: https://www.nrel.gov/docs/fy08osti/41869.pdf (accessed on 25 December 2021).
- Public Policy Institute of California (PPIC). Energy and Water. November 2018. Available online: https://www.ppic.org/wp-content/uploads/californias-water-energy-and-water-november-2018.pdf (accessed on 25 December 2021).
- Christian-Smith, J.; Wisland, L. Clean Energy Opportunities in California’s Water Sector, Union of Concerned Scientists. April 2015. Available online: https://www.ucsusa.org/sites/default/files/attach/2015/04/clean-energy-opportunities-in-california-water-sector.pdf (accessed on 25 December 2021).
- GEI Consultants/Navigant Consulting, Inc. Embedded Energy in Water Studies, Study 1: Statewide and Regional Water-Energy Relationship, Prepared for the California Public Utilities Commission, Energy Division, Managed by California Institute for Energy and Environment. 31 August 2010. Available online: https://www.mwdh2o.com/media/19098/embedded-energy-in-water-studies-study-1-puc-2010.pdf (accessed on 25 December 2021).
- Hernandez, R.R.; Jordaan, S.M.; Kaldunski, B.; Kumar, N. Aligning Climate Change and Sustainable Development Goals with an Innovation Systems Roadmap for Renewable Power. Front. Sustain. 2020, 1, 583090. [Google Scholar] [CrossRef]
- Union of Concerned Scientists. Environmental Impacts of Renewable Energy Technologies, Published 14 July 2008, Updated 5 March 2013. Available online: https://www.ucsusa.org/resources/environmental-impacts-renewable-energy-technologies (accessed on 25 December 2021).
- Hernandez, R.; Easter, S.; Murphy-Mariscal, M.; Maestre, F.; Tavassoli, M.; Allen, E.; Barrows, C.; Belnap, J.; Ochoa-Hueso, R.; Ravi, S.; et al. Environmental impacts of utility-scale solar energy. Renew. Sustain. Energy Rev. 2014, 29, 766–779. [Google Scholar] [CrossRef] [Green Version]
- Hernandez, R.R.; Armstrong, A.; Burney, J.; Ryan, G.; Moore-O’leary, K.; Diédhiou, I.; Grodsky, S.M.; Saul-Gershenz, L.; Davis, R.; Macknick, J.; et al. Techno–ecological synergies of solar energy for global sustainability. Nat. Sustain. 2019, 2, 560–568. [Google Scholar] [CrossRef] [Green Version]
- Union of Concerned Scientists. Environmental Impacts of Geothermal Energy, Published 5 March 2013. Available online: https://www.ucsusa.org/resources/environmental-impacts-geothermal-energy (accessed on 24 March 2022).
- Dhar, A.; Naeth, M.A.; Jennings, P.D.; El-Din, M.G. Geothermal energy resources: Potential environmental impact and land reclamation. Environ. Rev. 2020, 28, 415–427. [Google Scholar] [CrossRef]
- Union of Concerned Scientists, Benefits of Renewable Energy Use, Published 14 July 2008, Updated 20 December 2017. Available online: https://www.ucsusa.org/resources/benefits-renewable-energy-use (accessed on 25 December 2021).
- Flecker, A.S.; Shi, Q.; Almeida, R.M.; Angarita, H.; Gomes-Selman, J.M.; García-Villacorta, R.; Sethi, S.A.; Thomas, S.A.; Poff, N.L.; Forsberg, B.R.; et al. Reducing adverse impacts of Amazon hydropower expansion. Science 2022, 375, 753–760. [Google Scholar] [CrossRef]
- International Renewable Energy Agency (IRENA), Benefits: Research and Analysis into the Benefits of Renewables. Available online: https://www.irena.org/benefits (accessed on 25 December 2021).
- Petek, G. Assessing California’s Climate Policies—Electricity Generation, An LAO Report. January 2020. Available online: https://lao.ca.gov/reports/2020/4131/climate-policies-electricity-010320.pdf (accessed on 25 December 2021).
- California Department of Water Resources, Environment. Available online: https://water.ca.gov/Water-Basics/Environment# (accessed on 26 December 2021).
- Public Policy Institute of California (PPIC), PPIC Water Policy Center, California’s Water. November 2018. Available online: https://www.ppic.org/wp-content/uploads/californias-water-november-2018.pdf (accessed on 26 December 2021).
- Mount, J.; Hanak, E. Water Use in California, PPIC Water Policy Center. May 2019. Available online: https://cwc.ca.gov/-/media/CWC-Website/Files/Documents/2019/06_June/June2019_Item_12_Attach_2_PPICFactSheets.pdf (accessed on 26 December 2021).
- Carrillo, C.; Constantino, A.; Crane, C.; Danielczyk, M.; Duncan, D.; Edstrom, A.; Frink, R.; Heise, A.; Hollender, L.; Huang, D.; et al. Sustainable Water Strategies for California, Water Leaders Class of 2016, Water Education Foundation (WEF). November 2016. Available online: https://www.watereducation.org/sites/main/files/file-attachments/sustainable_water_solutions_for_california.pdf (accessed on 26 December 2021).
- Huber-Lee, A.; Ghosh, E.; Veysey, J.; Joyce, B. Water and Energy in California: Planning for a Sustainable Future under Political and Climatic Change, SEI Report. February 2020. Available online: https://www.sei.org/wp-content/uploads/2020/03/water-and-energy-in-california-planning-for-a-sustainable-future.pdf (accessed on 27 December 2021).
- Union of Concerned Scientists. The Big Water Supply Shift, Published 13 November 2015. Available online: https://www.ucsusa.org/sites/default/files/attach/2015/11/california-water-supply-shift.pdf (accessed on 27 December 2021).
- Belmecheri, S.; Babst, F.; Wahl, E.R.; Stahle, D.W.; Trouet, V. Multi-century evaluation of Sierra Nevada snowpack. Nat. Clim. Chang. 2015, 6, 2–3. [Google Scholar] [CrossRef]
- eeres4water. The Energy-Water Nexus: Challenges and Innovations. 18 September 2019. Available online: https://www.eeres4water.eu/energy-water-nexus-challenges/ (accessed on 27 December 2021).
- Bronstein, K. The Good, Bad, and Ugly About Renewable Energy in Developing Countries, RTI International. 11 June 2020. Available online: https://www.rti.org/insights/renewable-energy-developing-countries (accessed on 28 December 2021).
- Chowdhury, M.S.; Rahman, K.S.; Chowdhury, T.; Nuthammachot, N.; Techato, K.; Akhtaruzzaman, M.; Tiong, S.K.; Sopian, K.; Amin, N. An overview of solar photovoltaic panels’ end-of-life material recycling. Energy Strat. Rev. 2020, 27, 100431. [Google Scholar] [CrossRef]
- California Department of Resources Recycling and Recovery (CalRecycle), Photovoltaic Panels, Energy Storage Batteries, and Electric Vehicle Batteries. Available online: https://www.calrecycle.ca.gov/reducewaste/energystorage (accessed on 28 December 2021).
- Drobot, A.E. Transition to a sustainable energy economy: The call for national cooperative watershed planning. Environ. Law 2011, 41, 707–775. [Google Scholar]
- Union of Concerned Scientists. Renewables and Reliability. Published 2 March 2015. Available online: https://www.ucsusa.org/sites/default/files/attach/2015/03/california-renewables-and-reliability.pdf (accessed on 29 December 2021).
- U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy. Confronting the Duck Curve: How to Address Over-Generation of Solar Energy. 12 October 2017. Available online: https://www.energy.gov/eere/articles/confronting-duck-curve-how-address-over-generation-solar-energy (accessed on 29 December 2021).
- Resources for the Future–Renewables 101: Integrating Renewable Energy Resources into the Grid, Explainer by Kathryne Cleary and Karen Palmer—15 April 2020. Available online: https://media.rff.org/documents/Renewables_101.pdf (accessed on 29 December 2021).
- Umar, A. California: Renewables on the Frontline, Power Technology. 7 January 2020. Available online: https://www.power-technology.com/features/california-renewables-on-the-frontline/ (accessed on 29 December 2021).
- Cochran, J.; Denholm, P.; Speer, B.; Miller, M. Grid Integration and the Carrying Capacity of the U.S. Grid to Incorporate Variable Renewable Energy, National Renewable Energy Laboratory, Technical Report NREL/TP-6A20-62607. April 2015. Available online: https://www.energy.gov/sites/prod/files/2015/06/f22/QER%20Analysis%20-%20Grid%20Integration%20and%20the%20Carrying%20Capacity%20of%20the%20US%20Grid%20to%20Incorporate%20Variable%20Renewable%20Energy.pdf (accessed on 29 December 2021).
- International Energy Agency (IEA). Digitalisation, IEA, Paris. 2022. Available online: https://www.iea.org/reports/digitalisation (accessed on 3 July 2023).
- Thanh, T.T.; Ha, L.T.; Dung, H.P.; Huong, T.T.L. Impacts of digitalization on energy security: Evidence from European countries. Environ. Dev. Sustain. 2022, 1–46. [Google Scholar] [CrossRef] [PubMed]
- European Commission, Digitalisation of the Energy System. Available online: https://energy.ec.europa.eu/topics/energy-systems-integration/digitalisation-energy-system_en#:~:text=Digitalisation%20can%20help%20integrate%20the,Digital%20technologies%20and%20cyber%20security (accessed on 3 July 2023).
- Novo, C.; A Digital Path Towards a Sustainable Future for the Water Industry. Smart Water Magazine. 12 January 2022. Available online: https://smartwatermagazine.com/news/monom-grupo-alava/a-digital-path-towards-a-sustainable-future-water-industry (accessed on 3 July 2023).
- Quaranta, E.; Bejarano, M.D.; Comoglio, C.; Fuentes-Pérez, J.F.; Pérez-Díaz, J.I.; Sanz-Ronda, F.J.; Schletterer, M.; Szabo-Meszaros, M.; Tuhtan, J.A. Digitalization and real-time control to mitigate environmental impacts along rivers: Focus on artificial barriers, hydropower systems and European priorities. Sci. Total. Environ. 2023, 875, 162489. [Google Scholar] [CrossRef] [PubMed]
- Department of Toxic Substances Control (DTSC), State of California. California is the First in the Nation to Add Solar Panels to Universal Waste Program. 26 October 2020. Available online: https://dtsc.ca.gov/2020/10/26/news-release-t-17-20/ (accessed on 29 December 2021).
- Domínguez, A.; Geyer, R. Photovoltaic waste assessment of major photovoltaic installations in the United States of America. Renew. Energy 2018, 133, 1188–1200. [Google Scholar] [CrossRef]
- International Energy Agency (IEA). End-of-Life Management of Photovoltaic Panels: Trends in PV Module Recycling Technolo-Gies, Photovoltaic Power Systems Program, IEA PVPS Task12, Subtask 1, Recycling Report IEA-PVPS T12-10:2018. Available online: https://iea-pvps.org/wp-content/uploads/2020/01/End_of_Life_Management_of_Photovoltaic_Panels_Trends_in_PV_Module_Recycling_Technologies_by_task_12.pdf (accessed on 3 July 2023).
- The National Renewable Energy Laboratory. To Toss, Repair, or Recycle? How Human Behavior Affects the Fate of Aging Solar Panels, The, U.S. Department of Energy. 15 September 2021. Available online: https://www.nrel.gov/news/program/2021/to-toss-repair-or-recycle-how-human-behavior-affects-the-fate-of-aging-solar-panels.html (accessed on 3 July 2023).
- Rystad Energy. Reduce, Reuse: Solar PV Recycling Market to be Worth $2.7 Billion by 2030. 5 July 2022. Available online: https://www.rystadenergy.com/news/reduce-reuse-solar-pv-recycling-market-to-be-worth-2-7-billion-by-2030 (accessed on 3 July 2023).
- Dahiru, A.T.; Daud, D.; Tan, C.W.; Jagun, Z.T.; Samsudin, S.; Dobi, A.M. A comprehensive review of demand side management in distributed grids based on real estate perspectives. Environ. Sci. Pollut. Res. 2023, 1–30. [Google Scholar] [CrossRef]
- Saffari, M.; Crownshaw, T.; McPherson, M. Assessing the potential of demand-side flexibility to improve the performance of electricity systems under high variable renewable energy penetration. Energy 2023, 272, 127133. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jafarinejad, S.; Hernandez, R.R.; Bigham, S.; Beckingham, B.S. The Intertwined Renewable Energy–Water–Environment (REWE) Nexus Challenges and Opportunities: A Case Study of California. Sustainability 2023, 15, 10672. https://doi.org/10.3390/su151310672
Jafarinejad S, Hernandez RR, Bigham S, Beckingham BS. The Intertwined Renewable Energy–Water–Environment (REWE) Nexus Challenges and Opportunities: A Case Study of California. Sustainability. 2023; 15(13):10672. https://doi.org/10.3390/su151310672
Chicago/Turabian StyleJafarinejad, Shahryar, Rebecca R. Hernandez, Sajjad Bigham, and Bryan S. Beckingham. 2023. "The Intertwined Renewable Energy–Water–Environment (REWE) Nexus Challenges and Opportunities: A Case Study of California" Sustainability 15, no. 13: 10672. https://doi.org/10.3390/su151310672
APA StyleJafarinejad, S., Hernandez, R. R., Bigham, S., & Beckingham, B. S. (2023). The Intertwined Renewable Energy–Water–Environment (REWE) Nexus Challenges and Opportunities: A Case Study of California. Sustainability, 15(13), 10672. https://doi.org/10.3390/su151310672