Developing a Sustainability Vision for the Global Wine Industry
Abstract
:1. Introduction
2. Global Warming Impacts and Adaptation Strategies
2.1. Global Warming Impacts on Viticulture
- Soil and water management: This has the highest priority in many areas and includes better infrastructures for water storage and distribution (specifically in previously unirrigated regions) [24], improved cultivation practices for water conservation such as soil organic matter (on average, 1% increase in C content increases water storage capacity by 16 L/m2) [44], less intense tillage [42,45], altered canopy systems with reduced surface to volume ratios [46], increased trunk height to reduce temperature summation [24] or altered row distance to reduce water consumption [47]. Drought-tolerant rootstocks and varieties are also adaptive measures, as are reduced yields (price and consumer acceptance) to improve vineyard water relations [16,24,48].
- Ripening delay: In order to move grape ripening back to cooler months, options are ranging from choosing higher elevation sites [49], altered trellising systems, delayed pruning, increased crop charges (where water permits), late ripening-inducing rootstocks, varieties and clones or specific interventions in canopy management [24,39,48,50,51]. Crop load management in conjunction with the irrigation regime can help to delay ripening and positively modify fruit composition [52].
- Heat wave response: Heat stress and damage due to sunburn have increased over the past decades and can negatively alter grape composition [53,54]. Adaptive responses can include canopy system modifications, adapted timing and severity of leaf removal practices and improved water management [40,51,55].
- Biodiversity: Grapevine biodiversity losses based on the reduction to a few varieties for the vast majority of global production is increasing the hazard of severe climate change repercussions [56]. Thus, the within-crop diversity should be increased through different cultivars.
2.2. Improving Climate Adaptation and Sustainability of Viticulture via Grapevine Breeding
2.3. Outlook: Global Warming Impacts and Adaptation Strategies
3. Greenhouse Gas Emissions and C Sinks—On the Road to Carbon Neutrality
3.1. The Carbon Footprint of Wine Value Chains
3.2. Mitigation Options to Reach Carbon Neutrality
3.3. Outlook: Greenhouse Gas Emissions and C Sinks
4. Vineyard Inputs
4.1. Fertilizer
4.2. Pesticides
- Efficiency: An increased efficiency of pesticide use is achieved by combining decision support systems, technical improvements as well as agronomic practices. Several mathematical models on powdery and downy mildew development and decision support systems such as VitiMeteo for downy mildew have been developed worldwide, which help growers to adapt their plant protection strategy [57,149]. As a consequence, the number of fungicide applications as well as doses applied could be reduced, leading to an overall reduction of fungicide application [135]. Furthermore, adapted spraying techniques such as recycling sprayers or precision pesticide application allow pesticide reduction and further enhance sustainability [150,151]. In an integrated plant protection strategy, agronomic practices such as defoliation, topping or bunch thinning, adapted soil management and fertilization manipulate vine vigor and leaf area to fruit weight ratio and can thus indirectly contribute to pesticide reduction [152].
- Substitution: Against powdery mildew, alternatives to synthetic fungicides or sulfur exist. Potassium bicarbonate is successfully used to substitute synthetic fungicides or sulfur partially or entirely, especially in the second half of the growing season. Furthermore, substances such as plant extracts and seaweed, chitin or chitosan mainly act by inducing systemic resistance in the plant, and orange oil as well as antagonists such as Bacillus amyloliquefaciens are used to further reduce fungicide inputs [57]. Unlike powdery mildew, few alternative agents to synthetic chemicals or copper against downy mildew have been found [153]. Agents based on potassium phosphonates are successfully used against downy mildew in integrated viticulture [154]. Several substances such as COS-OGA, antagonists such as Bacillus amyloliquefaciens and Saccharomyces cereviciae, plant extracts or clay minerals can potentially be used at low disease pressure or to reduce amounts of synthetic fungicides/copper [57]. There is still an enormous effort put into finding new solutions to downy mildew infections in viticulture [155].Insecticide use against grape arthropods is usually nil to moderate in viticulture (0–4 applications per year). Grape berry moths Lobesia botrana and Eupoecilia ambiguella are of major importance in most wine-growing areas of the world. The biocontrol agent Bacillus thuringiensis as well as the mating disruption method based on pheromone dispensers are both successfully used to substitute insecticide applications [57,135].
- Redesign: Downy and powdery mildew-resistant/tolerant Vitis hybrids or varieties combine tolerance against downy/powdery mildew from American Vitis species with grape and wine quality of Vitis vinifera varieties and are considered as a redesign strategy of the cropping system. These varieties only require a minimal fungicide spraying schedule and allow at least halving the number of sprayings during the growing season [57,156].Herbicide application is still widely used in the under-vine area to control weeds. The frequency of application again is highly dependent on pedoclimatic conditions and their use in steep slope vineyards is debated because alternatives are labor-intensive. The use of glyphosate, a widely used systemic herbicide, is being discussed controversially because of its probably carcinogenic properties [157] and several further toxicological effects such as genotoxicity, cytotoxicity, nuclear aberration, DNA damage or chromosomal aberrations and hormonal disruptions [158]. Several strategies exist for redesigning the management of the under-vine area. Tillage and cover cropping are the most common strategies [159] with tillage contributing to CO2 emissions and cover crops competing for water. Furthermore, covers of straw or bark are successfully used to control weeds in the under-vine area [160].
4.3. Water
4.4. Outlook: Vineyard Inputs
5. Packaging
5.1. Requirements for Packaging
5.2. Current Packaging Concepts
5.3. Packaging Concepts for the Future
- responsible material sourcing;
- improvement of material efficiency through weight reduction, volume change, design optimization, standardization;
- volumetric efficiency;
- use of more environmentally friendly materials;
- substitution of unsuitable materials;
- use of secondary materials (recyclates from paper, metals, glass or plastics);
- improvement of recycling infrastructure;
- design optimization for reuse or recycling;
- increasing the proportion of reuse and recycling.
5.4. Outlook: Packaging
6. Social and Economic Challenges
6.1. Economic Sustainability in the Wine Industry
6.2. Labor and Human Resources
6.3. The Role of Education to Develop a Sustainable Wine Industry
6.4. Outlook: Social and Economic Challenges
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rockström, J.; Steffen, W.; Noone, K.; Persson, A.; Chapin, F.S.; Lambin, E.F.; Lenton, T.M.; Scheffer, M.; Folke, C.; Schellnhuber, H.J.; et al. A safe operating space for humanity. Nature 2009, 461, 472–475. [Google Scholar] [CrossRef] [PubMed]
- Persson, L.; Carney Almroth, B.M.; Collins, C.D.; Cornell, S.; de Wit, C.A.; Diamond, M.L.; Fantke, P.; Hassellöv, M.; MacLeod, M.; Ryberg, M.W.; et al. Outside the Safe Operating Space of the Planetary Boundary for Novel Entities. Environ. Sci. Technol. 2022, 56, 1510–1521. [Google Scholar] [CrossRef] [PubMed]
- Steffen, W.; Richardson, K.; Rockström, J.; Cornell, S.E.; Fetzer, I.; Bennett, E.M.; Biggs, R.; Carpenter, S.R.; De Vries, W.; De Wit, C.A.; et al. Sustainability. Planetary boundaries: Guiding human development on a changing planet. Science 2015, 347, 1259855. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Campbell, B.M.; Beare, D.J.; Bennett, E.M.; Hall-Spencer, J.M.; Ingram, J.S.I.; Jaramillo, F.; Ortiz, R.; Ramankutty, N.; Sayer, J.A.; Shindell, D. Agriculture production as a major driver of the Earth system exceeding planetary boundaries. Ecol. Soc. 2017, 22, 8. [Google Scholar] [CrossRef]
- OIV. State of the World Vine and Wine Sector 2021. 2022. Available online: https://www.oiv.int/sites/default/files/documents/eng-state-of-the-world-vine-and-wine-sector-april-2022-v6_0.pdf (accessed on 15 March 2023).
- Statista. Wine—Worldwide. 2022. Available online: https://www.statista.com/outlook/cmo/alcoholic-drinks/wine/worldwide (accessed on 2 November 2022).
- SWR. Our Organisation. Available online: https://swroundtable.org/ (accessed on 12 December 2022).
- Tait, P.; Saunders, C.; Dalziel, P.; Rutherford, P.; Driver, T.; Guenther, M. Estimating wine consumer preferences for sustainability attributes: A discrete choice experiment of Californian Sauvignon blanc purchasers. J. Clean. Prod. 2019, 233, 412–420. [Google Scholar] [CrossRef]
- Valenzuela, L.; Ortega, R.; Moscovici, D.; Gow, J.; Alonso Ugaglia, A.; Mihailescu, R. Consumer Willingness to Pay for Sustainable Wine—The Chilean Case. Sustainability 2022, 14, 10910. [Google Scholar] [CrossRef]
- European Commission. Just and Sustainable Economy: Commission Lays Down Rules for Companies to Respect Human Rights and Environment in Global Value Chains. 2022. Available online: https://ec.europa.eu/commission/presscorner/detail/en/ip_22_1145 (accessed on 12 December 2022).
- Baiano, A. An Overview on Sustainability in the Wine Production Chain. Beverages 2021, 7, 15. [Google Scholar] [CrossRef]
- Schultz, H.R. Climate change and viticulture: A European perspective on climatology, carbon dioxide and UV-B effects. Aust. J. Grape Wine Res. 2000, 6, 2–12. [Google Scholar] [CrossRef]
- Jones, G.V.; White, M.A.; Cooper, O.R.; Storchmann, K. Climate Change and Global Wine Quality. Clim. Change 2005, 73, 319–343. [Google Scholar] [CrossRef]
- Webb, L.B.; Whetton, P.H.; Barlow, E. Modelled impact of future climate change on the phenology of winegrapes in Australia. Aust. J. Grape Wine Res. 2007, 13, 165–175. [Google Scholar] [CrossRef]
- Webb, L.B.; Whetton, P.H.; Bhend, J.; Darbyshire, R.; Briggs, P.R.; Barlow, E.W.R. Earlier wine-grape ripening driven by climatic warming and drying and management practices. Nat. Clim. Change 2012, 2, 259–264. [Google Scholar] [CrossRef]
- Santos, J.A.; Fraga, H.; Malheiro, A.C.; Moutinho-Pereira, J.; Dinis, L.-T.; Correia, C.; Moriondo, M.; Leolini, L.; Dibari, C.; Costafreda-Aumedes, S.; et al. A Review of the Potential Climate Change Impacts and Adaptation Options for European Viticulture. Appl. Sci. 2020, 10, 3092. [Google Scholar] [CrossRef]
- Tonietto, J.; Carbonneau, A. A multicriteria climatic classification system for grape-growing regions worldwide. Agric. For. Meteorol. 2004, 124, 81–97. [Google Scholar] [CrossRef] [Green Version]
- Schultz, H.R.; Jones, G.V. Climate Induced Historic and Future Changes in Viticulture. J. Wine Res. 2010, 21, 137–145. [Google Scholar] [CrossRef]
- Moriondo, M.; Jones, G.V.; Bois, B.; Dibari, C.; Ferrise, R.; Trombi, G.; Bindi, M. Projected shifts of wine regions in response to climate change. Clim. Change 2013, 119, 825–839. [Google Scholar] [CrossRef]
- Jones, G.V.; Schultz, H.R. Climate change and emerging cool climate wine regions. Wine Vitic. J. 2016, 6, 51–53. [Google Scholar]
- Sadras, V.O.; Schultz, H.R.; Girona, J.; Marsal, J. Crop Yield Response to Water; FAO Irrigation and Drainage Paper, No. 66; Food and Agriculture Organization: Rome, Italy, 2012. [Google Scholar]
- IPCC. Climate Change 2021. The Physical Science Basis. In Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021. [Google Scholar]
- Williams, L.E.; Matthews, M.A. Irrigation of Agricultural Crops: Grapevine; Agronomy Monograph nor: Madison, MI, USA, 1990; Volume 30. [Google Scholar]
- Van Leeuwen,, C.; Destrac-Irvine, A.; Dubernet, M.; Duchêne, E.; Gowdy, M.; Marguerit, E.; Pieri, P.; Parker, A.; de Rességuier, L.; Ollat, N. An Update on the Impact of Climate Change in Viticulture and Potential Adaptations. Agronomy 2019, 9, 514. [Google Scholar] [CrossRef] [Green Version]
- Drappier, J.; Thibon, C.; Rabot, A.; Geny-Denis, L. Relationship between wine composition and temperature: Impact on Bordeaux wine typicity in the context of global warming-Review. Crit. Rev. Food Sci. Nutr. 2019, 59, 14–30. [Google Scholar] [CrossRef]
- Gambetta, G.A.; Herrera, J.C.; Dayer, S.; Feng, Q.; Hochberg, U.; Castellarin, S.D. The physiology of drought stress in grapevine: Towards an integrative definition of drought tolerance. J. Exp. Bot. 2020, 71, 4658–4676. [Google Scholar] [CrossRef]
- Savoi, S.; Herrera, J.C.; Carlin, S.; Lotti, C.; Bucchetti, B.; Peterlunger, E.; Castellarin, S.D.; Mattivi, F. From grape berries to wines: Drought impacts on key secondary metabolites. OENO One 2020, 54, 569–582. [Google Scholar] [CrossRef]
- Rienth, M.; Vigneron, N.; Darriet, P.; Sweetman, C.; Burbidge, C.; Bonghi, C.; Walker, R.P.; Famiani, F.; Castellarin, S.D. Grape Berry Secondary Metabolites and Their Modulation by Abiotic Factors in a Climate Change Scenario—A Review. Front. Plant Sci. 2021, 12, 643258. [Google Scholar] [CrossRef] [PubMed]
- Palai, G.; Caruso, G.; Gucci, R.; D’Onofrio, C. Deficit irrigation differently affects aroma composition in berries of Vitis vinifera L. (cvs Sangiovese and Merlot) grafted on two rootstocks. Aust. J. Grape Wine Res. 2022, 28, 590–606. [Google Scholar] [CrossRef]
- Yang, C.; Menz, C.; Fraga, H.; Costafreda-Aumedes, S.; Leolini, L.; Ramos, M.C.; Molitor, D.; van Leeuwen, C.; Santos, J.A. Assessing the grapevine crop water stress indicator over the flowering-veraison phase and the potential yield lose rate in important European wine regions. Agric. Water Manag. 2022, 261, 107349. [Google Scholar] [CrossRef]
- Hanel, M.; Rakovec, O.; Markonis, Y.; Máca, P.; Samaniego, L.; Kyselý, J.; Kumar, R. Revisiting the recent European droughts from a long-term perspective. Sci. Rep. 2018, 8, 9499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schultz, H.R. Issues to be considered for strategic adaptation to climate evolution—Is atmospheric evaporative demand changing? OENO One 2017, 51, 107–114. [Google Scholar] [CrossRef]
- Hofmann, M.; Volosciuk, C.; Dubrovský, M.; Maraun, D.; Schultz, H.R. Downscaling of climate change scenarios for a high-resolution, site-specific assessment of drought stress risk for two viticultural regions with heterogeneous landscapes. Earth Syst. Dynam. 2022, 13, 911–934. [Google Scholar] [CrossRef]
- Borrelli, P.; Robinson, D.A.; Panagos, P.; Lugato, E.; Yang, J.E.; Alewell, C.; Wuepper, D.; Montanarella, L.; Ballabio, C. Land use and climate change impacts on global soil erosion by water (2015–2070). Proc. Natl. Acad. Sci. USA 2020, 117, 21994–22001. [Google Scholar] [CrossRef]
- Hannah, L.; Roehrdanz, P.R.; Ikegami, M.; Shepard, A.V.; Shaw, M.R.; Tabor, G.; Zhi, L.; Marquet, P.A.; Hijmans, R.J. Climate change, wine, and conservation. Proc. Natl. Acad. Sci. USA 2013, 110, 6907–6912. [Google Scholar] [CrossRef]
- Sgubin, G.; Swingedouw, D.; Mignot, J.; Gambetta, G.A.; Bois, B.; Loukos, H.; Noël, T.; Pieri, P.; García de Cortázar-Atauri, I.; Ollat, N.; et al. Non-linear loss of suitable wine regions over Europe in response to increasing global warming. Glob. Change Biol. 2023, 29, 808–826. [Google Scholar] [CrossRef]
- García de Cortázar-Atauri, I.; Duchêne, E.; Destrac-Irvine, A.; Barbeau, G.; de Rességuier, L.; Lacombe, T.; Parker, A.K.; Saurin, N.; van Leeuwen, C. Grapevine phenology in France: From past observations to future evolutions in the context of climate change. OENO One 2017, 51, 115–126. [Google Scholar] [CrossRef] [Green Version]
- Parker, A.K.; García de Cortázar-Atauri, I.; Gény, L.; Spring, J.-L.; Destrac, A.; Schultz, H.; Molitor, D.; Lacombe, T.; Graça, A.; Monamy, C.; et al. Temperature-based grapevine sugar ripeness modelling for a wide range of Vitis vinifera L. cultivars. Agric. For. Meteorol. 2020, 285–286, 107902. [Google Scholar] [CrossRef]
- Cameron, W.; Petrie, P.R.; Barlow, E. The effect of temperature on grapevine phenological intervals: Sensitivity of budburst to flowering. Agric. For. Meteorol. 2022, 315, 108841. [Google Scholar] [CrossRef]
- Gambetta, G.A.; Kurtural, S.K. Global warming and wine quality: Are we close to the tipping point? OENO One 2021, 55, 353–361. [Google Scholar] [CrossRef]
- Bois, B.; Zito, S.; Calonnec, A. Climate vs grapevine pests and diseases worldwide: The first results of a global survey. OENO One 2017, 51, 133. [Google Scholar] [CrossRef]
- Romero, P.; Navarro, J.M.; Ordaz, P.B. Towards a sustainable viticulture: The combination of deficit irrigation strategies and agroecological practices in Mediterranean vineyards. A review and update. Agric. Water Manag. 2022, 259, 107216. [Google Scholar] [CrossRef]
- Yan, Y.; Song, C.; Falginella, L.; Castellarin, S.D. Day Temperature Has a Stronger Effect Than Night Temperature on Anthocyanin and Flavonol Accumulation in ‘Merlot’ (Vitis vinifera L.) Grapes During Ripening. Front. Plant Sci. 2020, 11, 1095. [Google Scholar] [CrossRef]
- Lal, R. Managing Soils and Ecosystems for Mitigating Anthropogenic Carbon Emissions and Advancing Global Food Security. BioScience 2010, 60, 708–721. [Google Scholar] [CrossRef] [Green Version]
- Wolff, M.W.; Alsina, M.M.; Stockert, C.M.; Khalsa, S.D.S.; Smart, D.R. Minimum tillage of a cover crop lowers net GWP and sequesters soil carbon in a California vineyard. Soil Tillage Res. 2018, 175, 244–254. [Google Scholar] [CrossRef]
- Santesteban, L.G.; Miranda, C.; Urrestarazu, J.; Loidi, M.; Royo, J.B. Severe trimming and enhanced competition of laterals as a tool to delay ripening in Tempranillo vineyards under semiarid conditions. OENO One 2017, 51, 191. [Google Scholar] [CrossRef] [Green Version]
- van Leeuwen, C.; Pieri, P.; Gowdy, M.; Ollat, N.; Roby, J.-P. Reduced density is an environmental friendly and cost effective solution to increase resilence to drought in vineyards in a contexte of climate change. OENO One 2019, 53, 129–146. [Google Scholar] [CrossRef] [Green Version]
- Ollat, N.; van Leeuwen, C.; Garcia de Cortazar-Atauri, I.; Touzard, J.-M. The challenging issue of climate change for sustainable grape and wine production. OENO One 2017, 51, 59. [Google Scholar] [CrossRef] [Green Version]
- Nocker, L. The Effects of Climate Change on Harvest Properties (Total Soluble Solids, Harvest Date) in the Wine Producing Region of South Tyrol, Italy, during 1996–2016. Master’s Thesis, Hochschule Geisenheim University, Geisenheim, Germany, Universität für Bodenkultur Wien, Vienna, Austria, 2022. [Google Scholar]
- Stoll, M.; Scheidweiler, M.; Lafontaine, M.; Schultz, H.R. (Eds.) Possibilities to reduce the velocity of berry maturation through various leaf area to fruit ratio modifications in Vitis vinifera L. Riesling. In Proceedings of the 16th International GiESCO Symposium, Davis, CA, USA, 12–15 July 2009. [Google Scholar]
- Poni, S.; Gatti, M.; Bernizzoni, F.; Civardi, S.; Bobeica, N.; Magnanini, E.; Palliotti, A. Late leaf removal aimed at delaying ripening in cv. Sangiovese: Physiological assessment and vine performance. Aust. J. Grape Wine Res. 2013, 19, 378–387. [Google Scholar] [CrossRef]
- Previtali, P.; Dokoozlian, N.K.; Pan, B.S.; Wilkinson, K.L.; Ford, C.M. Crop Load and Plant Water Status Influence the Ripening Rate and Aroma Development in Berries of Grapevine (Vitis vinifera L.) cv. Cabernet Sauvignon. J. Agric. Food Chem. 2021, 69, 7709–7724. [Google Scholar] [CrossRef]
- Martínez-Lüscher, J.; Chen, C.C.L.; Brillante, L.; Kurtural, S.K. Mitigating Heat Wave and Exposure Damage to “Cabernet Sauvignon” Wine Grape With Partial Shading Under Two Irrigation Amounts. Front. Plant Sci. 2020, 11, 579192. [Google Scholar] [CrossRef]
- Fraga, H.; Molitor, D.; Leolini, L.; Santos, J.A. What Is the Impact of Heatwaves on European Viticulture? A Modelling Assessment. Appl. Sci. 2020, 10, 3030. [Google Scholar] [CrossRef]
- Gambetta, J.M.; Holzapfel, B.P.; Stoll, M.; Friedel, M. Sunburn in Grapes: A Review. Front. Plant Sci. 2020, 11, 604691. [Google Scholar] [CrossRef] [PubMed]
- Morales-Castilla, I.; García de Cortázar-Atauri, I.; Cook, B.I.; Lacombe, T.; Parker, A.; van Leeuwen, C.; Nicholas, K.A.; Wolkovich, E.M. Diversity buffers winegrowing regions from climate change losses. Proc. Natl. Acad. Sci. USA 2020, 117, 2864–2869. [Google Scholar] [CrossRef]
- Pertot, I.; Caffi, T.; Rossi, V.; Mugnai, L.; Hoffmann, C.; Grando, M.S.; Gary, C.; Lafond, D.; Duso, C.; Thiery, D.; et al. A critical review of plant protection tools for reducing pesticide use on grapevine and new perspectives for the implementation of IPM in viticulture. Crop Prot. 2017, 97, 70–84. [Google Scholar] [CrossRef]
- CEEV. European Wine: A Solid Pillar of the European Union Economy; Comité Européen des Entreprises Vins: Bruxelles, Belgium, 2016. [Google Scholar]
- Mullins, M.G.; Bouquet, A.; Williams, L.E. The Biology of the Grapevine; Cambridge University Press: Cambridge, MA, USA, 1993; ISBN 9780521305075. [Google Scholar]
- Serra, I.; Strever, A.; Myburgh, P.A.; Deloire, A. Review: The interaction between rootstocks and cultivars (Vitis vinifera L.) to enhance drought tolerance in grapevine. Aust. J. Grape Wine Res. 2014, 20, 1–14. [Google Scholar] [CrossRef]
- Bert, P.-F.; Bordenave, L.; Donnart, M.; Hévin, C.; Ollat, N.; Decroocq, S. Mapping genetic loci for tolerance to lime-induced iron deficiency chlorosis in grapevine rootstocks (Vitis sp.). Theor. Appl. Genet. 2013, 126, 451–473. [Google Scholar] [CrossRef]
- Ruehl, E.H.; Schmid, J. Rootstock Breeding between Site Adaptation And Abiotic Stress Tolerance. Acta Hortic. 2014, 1045, 117–121. [Google Scholar] [CrossRef]
- Reynolds, A.G.; Wardle, D.A. Rootstocks Impact Vine Performance and Fruit Composition of Grapes in British Columbia. Horttechnology 2001, 11, 419–427. [Google Scholar] [CrossRef] [Green Version]
- Keller, M. The Science of Grapevines; Academic Press: London, UK, 2010; ISBN 9780128167021. [Google Scholar]
- Schmid, J.; Sopp, E.; Rühl, E.H. Breeding Rootstock Varieties with Complete Phylloxera Resistance. Acta Hortic. 1998, 473, 131–138. [Google Scholar] [CrossRef]
- Ollat, N.; Bordenave, L.; Tandonnet, J.P.; Boursiquot, J.M.; Marguerit, E. Grapevine rootstocks: Origins and perspectives. Acta Hortic. 2016, 1136, 11–22. [Google Scholar] [CrossRef]
- Vivier, M.A.; Pretorius, I.S. Genetically tailored grapevines for the wine industry. Trends Biotechnol. 2002, 20, 472–478. [Google Scholar] [CrossRef]
- Tandonnet, J.-P.; Marguerit, E.; Cookson, S.J.; Ollat, N. Genetic architecture of aerial and root traits in field-grown grafted grapevines is largely independent. Theor. Appl. Genet. 2018, 131, 903–915. [Google Scholar] [CrossRef]
- Voss-Fels, K.P.; Snowdon, R.J.; Hickey, L.T. Designer Roots for Future Crops. Trends Plant Sci. 2018, 23, 957–960. [Google Scholar] [CrossRef]
- Ramos-Madrigal, J.; Runge, A.K.W.; Bouby, L.; Lacombe, T.; Samaniego Castruita, J.A.; Adam-Blondon, A.-F.; Figueiral, I.; Hallavant, C.; Martínez-Zapater, J.M.; Schaal, C.; et al. Palaeogenomic insights into the origins of French grapevine diversity. Nat. Plants 2019, 5, 595–603. [Google Scholar] [CrossRef] [Green Version]
- This, P.; Lacombe, T.; Thomas, M.R. Historical origins and genetic diversity of wine grapes. Trends Genet. 2006, 22, 511–519. [Google Scholar] [CrossRef]
- Ruehl, E.; Schmid, J.; Eibach, R.; Töpfer, R. Grapevine breeding programmes in Germany. In Grapevine Breeding Programs for the Wine Industry; Elsevier: Amsterdam, The Netherlands, 2015; pp. 77–101. ISBN 9781782420750. [Google Scholar]
- Litskas, V.D.; Tzortzakis, N.; Stavrinides, M.C. Determining the Carbon Footprint and Emission Hotspots for the Wine Produced in Cyprus. Atmosphere 2020, 11, 463. [Google Scholar] [CrossRef]
- Matos, C.; Pirra, A. Energy Consumption and CO2 Emissions Related to Wine Production: The Case Study of a Winery in Douro Wine Region-Portugal. Sustainability 2022, 14, 4317. [Google Scholar] [CrossRef]
- Pattara, C.; Raggi, A.; Cichelli, A. Life cycle assessment and carbon footprint in the wine supply-chain. Environ. Manag. 2012, 49, 1247–1258. [Google Scholar] [CrossRef] [PubMed]
- Ponstein, H.J.; Meyer-Aurich, A.; Prochnow, A. Greenhouse gas emissions and mitigation options for German wine production. J. Clean. Prod. 2019, 212, 800–809. [Google Scholar] [CrossRef]
- Trombly, A.J.; Fortier, M.-O.P. Carbon Footprint of Wines from the Finger Lakes Region in New York State. Sustainability 2019, 11, 2945. [Google Scholar] [CrossRef] [Green Version]
- Point, E.; Tyedmers, P.; Naugler, C. Life cycle environmental impacts of wine production and consumption in Nova Scotia, Canada. J. Clean. Prod. 2012, 27, 11–20. [Google Scholar] [CrossRef]
- Vázquez-Rowe, I.; Rugani, B.; Benetto, E. Tapping carbon footprint variations in the European wine sector. J. Clean. Prod. 2013, 43, 146–155. [Google Scholar] [CrossRef]
- Da Pinto Silva, L.; Da Esteves Silva, J.C. Evaluation of the carbon footprint of the life cycle of wine production: A review. Clean. Circ. Bioecon. 2022, 2, 100021. [Google Scholar] [CrossRef]
- Navarro, A.; Puig, R.; Kılıç, E.; Penavayre, S.; Fullana-i-Palmer, P. Eco-innovation and benchmarking of carbon footprint data for vineyards and wineries in Spain and France. J. Clean. Prod. 2017, 142, 1661–1671. [Google Scholar] [CrossRef]
- Reich-Weiser, C.; Paster, P.; Erickson, C.; Dornfeld, D. The Role of Transportation on the GHG Emissions of Wine. J. Wine Res. 2010, 21, 197–206. [Google Scholar] [CrossRef]
- Ponstein, H.J.; Ghinoi, S.; Steiner, B. How to increase sustainability in the Finnish wine supply chain? Insights from a country of origin based greenhouse gas emissions analysis. J. Clean. Prod. 2019, 226, 768–780. [Google Scholar] [CrossRef]
- Chiriacò, M.V.; Belli, C.; Chiti, T.; Trotta, C.; Sabbatini, S. The potential carbon neutrality of sustainable viticulture showed through a comprehensive assessment of the greenhouse gas (GHG) budget of wine production. J. Clean. Prod. 2019, 225, 435–450. [Google Scholar] [CrossRef]
- Trommsdorff, M.; Kang, J.; Reise, C.; Schindele, S.; Bopp, G.; Ehmann, A.; Weselek, A.; Högy, P.; Obergfell, T. Combining food and energy production: Design of an agrivoltaic system applied in arable and vegetable farming in Germany. Renew. Sustain. Energy Rev. 2021, 140, 110694. [Google Scholar] [CrossRef]
- Gorjian, S.; Bousi, E.; Özdemir, Ö.E.; Trommsdorff, M.; Kumar, N.M.; Anand, A.; Kant, K.; Chopra, S.S. Progress and challenges of crop production and electricity generation in agrivoltaic systems using semi-transparent photovoltaic technology. Renew. Sustain. Energy Rev. 2022, 158, 112126. [Google Scholar] [CrossRef]
- Veste, M.; Geldenhuys, H.; Lötze, E.; Du Toit, B.; Frechen, N.; Kast, G.; Kunneke, A.; Littmann, T.; Recke, T.; Otto, L.-H.; et al. FarmImpact -Integration of tree shelterbelts into vineyards and fruit orchards for climate-smart agricultural systems in the Western Cape, South Africa. In Proceedings of the Landscape 2021—Diversity for Sustainable and Resilient Agriculture, Berlin, Germany, 20–22 September 2021. [Google Scholar]
- Wagner, M.; Lask, J.; Kiesel, A.; Lewandowski, I.; Weselek, A.; Högy, P.; Trommsdorff, M.; Schnaiker, M.-A.; Bauerle, A. Agrivoltaics: The Environmental Impacts of Combining Food Crop Cultivation and Solar Energy Generation. Agronomy 2023, 13, 299. [Google Scholar] [CrossRef]
- Weselek, A.; Ehmann, A.; Zikeli, S.; Lewandowski, I.; Schindele, S.; Högy, P. Agrophotovoltaic systems: Applications, challenges, and opportunities. A review. Agron. Sustain. Dev. 2019, 39, 35. [Google Scholar] [CrossRef]
- Lal, R. Soil organic matter content and crop yield. J. Soil Water Conserv. 2020, 75, 27A–32A. [Google Scholar] [CrossRef] [Green Version]
- Seitz, D.; Fischer, L.M.; Dechow, R.; Wiesmeier, M.; Don, A. The potential of cover crops to increase soil organic carbon storage in German croplands. Plant Soil 2022. [Google Scholar] [CrossRef]
- Riekötter, N.; Hassler, M. Agroforestry Systems in Wine Production-Mitigating Climate Change in the Mosel Region. Forests 2022, 13, 1755. [Google Scholar] [CrossRef]
- Lang, C.P.; Merkt, N.; Geilfus, C.-M.; Graeff–Hönninger, S.; Simon, J.; Rennenberg, H.; Zörb, C. Interaction between grapevines and trees: Effects on water relations, nitrogen nutrition, and wine. Arch. Agron. Soil Sci. 2019, 65, 224–239. [Google Scholar] [CrossRef]
- Poeplau, C.; Prietz, R.; Don, A. Plot-scale variability of organic carbon in temperate agricultural soils—Implications for soil monitoring#. J. Plant Nutr. Soil Sci. 2022, 185, 403–416. [Google Scholar] [CrossRef]
- Jacobs, A.; Poeplau, C.; Weiser, C.; Fahrion-Nitschke, A.; Don, A. Exports and inputs of organic carbon on agricultural soils in Germany. Nutr. Cycl. Agroecosyst. 2020, 118, 249–271. [Google Scholar] [CrossRef]
- Woolf, D.; Lehmann, J.; Ogle, S.; Kishimoto-Mo, A.W.; McConkey, B.; Baldock, J. Greenhouse Gas Inventory Model for Biochar Additions to Soil. Environ. Sci. Technol. 2021, 55, 14795–14805. [Google Scholar] [CrossRef] [PubMed]
- Lehmann, J.; Cowie, A.; Masiello, C.A.; Kammann, C.; Woolf, D.; Amonette, J.E.; Cayuela, M.L.; Camps-Arbestain, M.; Whitman, T. Biochar in climate change mitigation. Nat. Geosci. 2021, 14, 883–892. [Google Scholar] [CrossRef]
- Schmidt, H.P.; Abiven, S.; Hagemann, N.; Meyer zu Drewer, J. Permanence of soil applied biochar. Biochar J. 2022, 69–74. Available online: https://www.biochar-journal.org/en/ct/109 (accessed on 22 March 2023).
- Schmidt, H.-P.; Anca-Couce, A.; Hagemann, N.; Werner, C.; Gerten, D.; Lucht, W.; Kammann, C. Pyrogenic carbon capture and storage. GCB Bioenergy 2019, 11, 573–591. [Google Scholar] [CrossRef] [Green Version]
- Smith, S.M.; Geden, O.; Nemet, G.; Gidden, M.; Lamb, W.F.; Powis, C.; Bellamy, R.; Callaghan, M.; Cowie, A.; Cox, E.; et al. The State of Carbon Dioxide Removal—1st Edition. 2023. Available online: https://www.stateofcdr.org/resources (accessed on 6 February 2023).
- Schmidt, H.-P.; Kammann, C.; Hagemann, N.; Leifeld, J.; Bucheli, T.D.; Sánchez Monedero, M.A.; Cayuela, M.L. Biochar in agriculture—A systematic review of 26 global meta-analyses. GCB Bioenergy 2021, 13, 1708–1730. [Google Scholar] [CrossRef]
- Werner, C.; Lucht, W.; Gerten, D.; Kammann, C. Potential of Land-Neutral Negative Emissions Through Biochar Sequestration. Earth’s Future 2022, 10, e2021EF002583. [Google Scholar] [CrossRef]
- Godlewska, P.; Schmidt, H.P.; Ok, Y.S.; Oleszczuk, P. Biochar for composting improvement and contaminants reduction. A review. Bioresour. Technol. 2017, 246, 193–202. [Google Scholar] [CrossRef]
- Gao, S.; Harrison, B.P.; Thao, T.; Gonzales, M.L.; An, D.; Ghezzehei, T.A.; Diaz, G.; Ryals, R.A. Biochar co-compost improves nitrogen retention and reduces carbon emissions in a winter wheat cropping system. GCB Bioenergy 2023, 15, 462–477. [Google Scholar] [CrossRef]
- Borchard, N.; Schirrmann, M.; Cayuela, M.L.; Kammann, C.; Wrage-Mönnig, N.; Estavillo, J.M.; Fuertes-Mendizábal, T.; Sigua, G.; Spokas, K.; Ippolito, J.A.; et al. Biochar, soil and land-use interactions that reduce nitrate leaching and N2O emissions: A meta-analysis. Sci. Total Environ. 2019, 651, 2354–2364. [Google Scholar] [CrossRef]
- Peng, X.; Deng, Y.; Peng, Y.; Yue, K. Effects of biochar addition on toxic element concentrations in plants: A meta-analysis. Sci. Total Environ. 2018, 616–617, 970–977. [Google Scholar] [CrossRef]
- Schmidt, H.-P.; Kammann, C.; Niggli, C.; Evangelou, M.W.; Mackie, K.A.; Abiven, S. Biochar and biochar-compost as soil amendments to a vineyard soil: Influences on plant growth, nutrient uptake, plant health and grape quality. Agric. Ecosyst. Environ. 2014, 191, 117–123. [Google Scholar] [CrossRef]
- García-Jaramillo, M.; Meyer, K.M.; Phillips, C.L.; Acosta-Martínez, V.; Osborne, J.; Levin, A.D.; Trippe, K.M. Biochar addition to vineyard soils: Effects on soil functions, grape yield and wine quality. Biochar 2021, 3, 565–577. [Google Scholar] [CrossRef]
- Sharifi, M.; Hajiaghaei-Kamrani, M. Biochar–compost mixture and cover crop effects on soil carbon and nitrogen dynamics, yield, and fruit quality in an irrigated vineyard. Can. J. Soil. Sci. 2022. [Google Scholar] [CrossRef]
- Baronti, S.; Vaccari, F.P.; Miglietta, F.; Calzolari, C.; Lugato, E.; Orlandini, S.; Pini, R.; Zulian, C.; Genesio, L. Impact of biochar application on plant water relations in Vitis vinifera (L.). Eur. J. Agron. 2014, 53, 38–44. [Google Scholar] [CrossRef]
- Genesio, L.; Miglietta, F.; Baronti, S.; Vaccari, F.P. Biochar increases vineyard productivity without affecting grape quality: Results from a four years field experiment in Tuscany. Agric. Ecosyst. Environ. 2015, 201, 20–25. [Google Scholar] [CrossRef]
- Baronti, S.; Magno, R.; Maienza, A.; Montagnoli, A.; Ungaro, F.; Vaccari, F.P. Long term effect of biochar on soil plant water relation and fine roots: Results after 10 years of vineyard experiment. Sci. Total Environ. 2022, 851, 158225. [Google Scholar] [CrossRef] [PubMed]
- Weber, K.; Quicker, P. Properties of biochar. Fuel 2018, 217, 240–261. [Google Scholar] [CrossRef]
- Ippolito, J.A.; Cui, L.; Kammann, C.; Wrage-Mönnig, N.; Estavillo, J.M.; Fuertes-Mendizabal, T.; Cayuela, M.L.; Sigua, G.; Novak, J.; Spokas, K.; et al. Feedstock choice, pyrolysis temperature and type influence biochar characteristics: A comprehensive meta-data analysis review. Biochar 2020, 2, 421–438. [Google Scholar] [CrossRef]
- EBC. EBC-Guidelines for the Certification of Biochar Based Carbon Sinks: Version 2.1 from 1st February 2021, Arbaz, Switzerland. 2020. Available online: https://www.european-biochar.org/media/doc/2/c_en_sink-value_2-1.pdf (accessed on 6 February 2023).
- Döring, J.; Friedel, M.; Hendgen, M.; Stoll, M.; Kauer, R. Soil management in sustainable viticultural systems. In Improving Sustainable Viticulture and Winemaking Practices; Elsevier: Amsterdam, The Netherlands, 2022; pp. 85–103. ISBN 9780323851503. [Google Scholar]
- Williams, L.E. Recovery of 15 N-labeled Fertilizer by Thompson Seedless Grapevines: Effects of N Fertilizer Type and Irrigation Method. Am. J. Enol. Vitic. 2015, 66, 509–517. [Google Scholar] [CrossRef]
- Jackson, D.I.; Lombard, P.B. Environmental and Management Practices Affecting Grape Composition and Wine Quality—A Review. Am. J. Enol. Vitic. 1993, 44, 409–430. [Google Scholar] [CrossRef]
- Müller, W.; Gärtel, W.; Zakosek, H. Nährstoffauswaschung aus Weinbergsböden an der Mittelmosel. Z. Pflanzenernaehr. Bodenk. 1985, 148, 417–428. [Google Scholar] [CrossRef]
- Tian, D.; Niu, S. A global analysis of soil acidification caused by nitrogen addition. Environ. Res. Lett. 2015, 10, 24019. [Google Scholar] [CrossRef]
- European Commission. Commission Implementing Regulation (EU) 2021/1165 Comission Implementing Regulation (EU) 2021/1165 of 15 July 2021 Authorising Certain Products and Substances for Use in Organic Production and Establishing Their Lists; Publications Office of the European Union: Luxembourg, 2021. [Google Scholar]
- Pizzigallo, A.C.I.; Granai, C.; Borsa, S. The joint use of LCA and emergy evaluation for the analysis of two Italian wine farms. J. Environ. Manag. 2008, 86, 396–406. [Google Scholar] [CrossRef]
- Litskas, V.; Mandoulaki, A.; Vogiatzakis, I.N.; Tzortzakis, N.; Stavrinides, M. Sustainable Viticulture: First Determination of the Environmental Footprint of Grapes. Sustainability 2020, 12, 8812. [Google Scholar] [CrossRef]
- Letamendi, J.; Sevigne-Itoiz, E.; Mwabonje, O. Environmental impact analysis of a Chilean organic wine through a life cycle assessment. J. Clean. Prod. 2022, 371, 133368. [Google Scholar] [CrossRef]
- Muhammad, I.; Sainju, U.M.; Zhao, F.; Khan, A.; Ghimire, R.; Fu, X.; Wang, J. Regulation of soil CO2 and N2O emissions by cover crops: A meta-analysis. Soil Tillage Res. 2019, 192, 103–112. [Google Scholar] [CrossRef]
- Marschner, P.; Rengel, Z. Nutrient Availability in Soils. Marschner’s Mineral Nutrition of Higher Plants; Elsevier: Amsterdam, The Netherlands, 2012; pp. 315–330. ISBN 9780123849052. [Google Scholar]
- Poni, S.; Gatti, M.; Palliotti, A.; Dai, Z.; Duchêne, E.; Truong, T.-T.; Ferrara, G.; Matarrese, A.M.S.; Gallotta, A.; Bellincontro, A.; et al. Grapevine quality: A multiple choice issue. Sci. Hortic. 2018, 234, 445–462. [Google Scholar] [CrossRef] [Green Version]
- Garde-Cerdan, T.; Gutiérrez-Gamboa, G.; López, R.; Rubio-Bretón, P.; Pérez-Álvarez, E.P. Influence of foliar application of phenylalanine and urea at two doses to vineyards on grape volatile composition and amino acids content. Vitis 2018, 57, 137–141. [Google Scholar] [CrossRef]
- Reynolds, A.G.; Lowrey, W.D.; De Savigny, C. Influence of Irrigation and Fertigation on Fruit Composition, Vine Performance, and Water Relations of Concord and Niagara Grapevines. Am. J. Enol. Vitic. 2005, 56, 110–128. [Google Scholar] [CrossRef]
- Walg, O. Effiziente und umweltfreundliche N-Düngung mit Side-Dressing und CULTAN. In Deutsches Weinbau Jahrbuch 2023; Ulmer: Stuttgart, Germany, 2023; pp. 164–172. [Google Scholar]
- Ferrara, C.; De Feo, G. Life Cycle Assessment Application to the Wine Sector: A Critical Review. Sustainability 2018, 10, 395. [Google Scholar] [CrossRef] [Green Version]
- Neto, B.; Dias, A.C.; Machado, M. Life cycle assessment of the supply chain of a Portuguese wine: From viticulture to distribution. Int. J. Life Cycle Assess. 2013, 18, 590–602. [Google Scholar] [CrossRef]
- Reiff, J.M.; Kolb, S.; Entling, M.H.; Herndl, T.; Möth, S.; Walzer, A.; Kropf, M.; Hoffmann, C.; Winter, S. Organic Farming and Cover-Crop Management Reduce Pest Predation in Austrian Vineyards. Insects 2021, 12, 220. [Google Scholar] [CrossRef] [PubMed]
- Winter, S.; Bauer, T.; Strauss, P.; Kratschmer, S.; Paredes, D.; Popescu, D.; Landa, B.; Guzmán, G.; Gómez, J.A.; Guernion, M.; et al. Effects of vegetation management intensity on biodiversity and ecosystem services in vineyards: A meta-analysis. J. Appl. Ecol. 2018, 55, 2484–2495. [Google Scholar] [CrossRef] [Green Version]
- Fouillet, E.; Delière, L.; Chartier, N.; Munier-Jolain, N.; Cortel, S.; Rapidel, B.; Merot, A. Reducing pesticide use in vineyards. Evidence from the analysis of the French DEPHY network. Eur. J. Agron. 2022, 136, 126503. [Google Scholar] [CrossRef]
- Urruty, N.; Deveaud, T.; Guyomard, H.; Boiffin, J. Impacts of agricultural land use changes on pesticide use in French agriculture. Eur. J. Agron. 2016, 80, 113–123. [Google Scholar] [CrossRef]
- European Commission. Farm to Fork Strategy: For a Fair, Healthy and For a Fair, Healthy and Environmentally-Friendly Food System. 2020. Available online: https://food.ec.europa.eu/system/files/2020-05/f2f_action-plan_2020_strategy-info_en.pdf (accessed on 21 January 2023).
- Julius-Kühn-Institut. Wirkstoffmengen Wein 2020. 2020. Available online: https://papa.julius-kuehn.de/index.php?menuid=54&reporeid=390 (accessed on 12 January 2023).
- Mailly, F.; Hossard, L.; Barbier, J.-M.; Thiollet-Scholtus, M.; Gary, C. Quantifying the impact of crop protection practices on pesticide use in wine-growing systems. Eur. J. Agron. 2017, 84, 23–34. [Google Scholar] [CrossRef]
- Pons, A.; Mouakka, N.; Deliere, L.; Crachereau, J.C.; Davidou, L.; Sauris, P.; Guilbault, P.; Darriet, P. Impact of Plasmopara viticola infection of Merlot and Cabernet Sauvignon grapes on wine composition and flavor. Food Chem. 2018, 239, 102–110. [Google Scholar] [CrossRef]
- Jermini, M.; Blaise, P.; Gessler, C. Quantitative effect of leaf damage caused by downy mildew (Plasmopara viticola) on growth and yield quality of grapevine ‘Merlot’ (Vitis vinifera). Vitis 2015, 49, 77. [Google Scholar] [CrossRef]
- Fermaud, M.; Smits, N.; Merot, A.; Roudet, J.; Thiéry, D.; Wery, J.; Delbac, L. New multipest damage indicator to assess protection strategies in grapevine cropping systems. Aust. J. Grape Wine Res. 2016, 22, 450–461. [Google Scholar] [CrossRef]
- European Commission. Directive 2009/128/Ec of the European Parliament and of the Council of 21 October 2009 Establishing a Framework for Community Action to Achieve the Sustainable use of Pesticides; Publications Office of the European Union: Luxembourg, 2009. [Google Scholar]
- European Commission. Regulation (EC) No 1107/2009 of the European Parliament and of the Council of 21 October 2009 Concerning the Placing of Plant Protection Products on the Market and Repealing Council Directives 79/117/EEC and 91/414/EEC; Publications Office of the European Union: Luxembourg, 2009. [Google Scholar]
- European Commission. Regulation (Ec) No 396/2005 of the European Parliament and of the Council of 23 February 2005 on Maximum Residue Levels of Pesticides in or on Food and Feed of Plant and Animal Origin and Amending Council Directive 91/414/EEC; Publications Office of the European Union: Luxembourg, 2005. [Google Scholar]
- Parat, C.; Chaussod, R.; Lévêque, J.; Dousset, S.; Andreux, F. The relationship between copper accumulated in vineyard calcareous soils and soil organic matter and iron. Eur. J. Soil Sci. 2002, 53, 663–670. [Google Scholar] [CrossRef]
- Trevors, J.T.; Cotter, C.M. Copper toxicity and uptake in microorganisms. J. Ind. Microbiol. 1990, 6, 77–84. [Google Scholar] [CrossRef]
- Hill, S.B.; MacRae, R.J. Conceptual Framework for the Transition from Conventional to Sustainable Agriculture. J. Sustain. Agric. 1996, 7, 81–87. [Google Scholar] [CrossRef]
- Dubuis, P.H.; Bleyer, G.; Krause, R.; Viret, O.; Fabre, A.-L.; Werder, M.; Naef, A.; Breuer, M.; Gindro, K. VitiMeteo and Agrometeo: Two platforms for plant protection management based on an international collaboration. BIO Web Conf. 2019, 15, 1036. [Google Scholar] [CrossRef] [Green Version]
- Siegfried, W.; Viret, O.; Huber, B.; Wohlhauser, R. Dosage of plant protection products adapted to leaf area index in viticulture. Crop Prot. 2007, 26, 73–82. [Google Scholar] [CrossRef]
- Viret, O.; Siegfried, W.; Holliger, E.; Raisigl, U. Comparison of spray deposits and efficacy against powdery mildew of aerial and ground-based spraying equipment in viticulture. Crop Prot. 2003, 22, 1023–1032. [Google Scholar] [CrossRef]
- Molitor, D.; Baron, N.; Sauerwein, T.; André, C.M.; Kicherer, A.; Döring, J.; Stoll, M.; Beyer, M.; Hoffmann, L.; Evers, D. Postponing First Shoot Topping Reduces Grape Cluster Compactness and Delays Bunch Rot Epidemic. Am. J. Enol. Vitic. 2015, 66, 164–176. [Google Scholar] [CrossRef]
- Dagostin, S.; Schärer, H.-J.; Pertot, I.; Tamm, L. Are there alternatives to copper for controlling grapevine downy mildew in organic viticulture? Crop Prot. 2011, 30, 776–788. [Google Scholar] [CrossRef]
- Bleyer, G.; Lösch, F.; Schumacher, S.; Fuchs, R. Together for the Better: Improvement of a Model Based Strategy for Grapevine Downy Mildew Control by Addition of Potassium Phosphonates. Plants 2020, 9, 710. [Google Scholar] [CrossRef]
- Schumacher, S.; Mertes, C.; Wohlfahrt, Y.; Kaltenbach, T.; Schwab, S.; Eisenmann, B.; Kauer, R.; Bleyer, G.; Berkelmann-Loehnertz, B.; Fuchs, R. VITIFIT: Aiming for copper reduction in organic viticulture—Improvement of established strategies and new techniques for plant protection against Plasmopara viticola. BIO Web Conf. 2022, 50, 3008. [Google Scholar] [CrossRef]
- Wingerter, C.; Eisenmann, B.; Weber, P.; Dry, I.; Bogs, J. Grapevine Rpv3-, Rpv10- and Rpv12-mediated defense responses against Plasmopara viticola and the impact of their deployment on fungicide use in viticulture. BMC Plant Biol. 2021, 21, 470. [Google Scholar] [CrossRef]
- Foote, N. Temporary Extension of EU Glyphosate Approval Hits Roadblock. 2022. Available online: https://www.euractiv.com/section/agriculture-food/news/temporary-extension-of-eu-glyphosate-approval-hits-roadblock/ (accessed on 12 January 2023).
- Gill, J.P.K.; Sethi, N.; Mohan, A.; Datta, S.; Girdhar, M. Glyphosate toxicity for animals. Env. Chem. Lett. 2018, 16, 401–426. [Google Scholar] [CrossRef]
- Abad, J.; Diana, M.; Gonzaga, S.L.; José Félix, C.; Ana, S. Under-vine cover crops: Impact on weed development, yield and grape composition. OENO One 2020, 54, 975–983. [Google Scholar] [CrossRef]
- Nordblom, T.; Penfold, C.; Whitelaw-Weckert, M.; Norton, M.; Howie, J.; Hutchings, T. Financial comparisons of under-vine management systems in four South Australian vineyard districts. Aust. J. Agric. Resour. Econ. 2021, 65, 246–263. [Google Scholar] [CrossRef]
- Ene, S.A.; Teodosiu, C.; Robu, B.; Volf, I. Water footprint assessment in the winemaking industry: A case study for a Romanian medium size production plant. J. Clean. Prod. 2013, 43, 122–135. [Google Scholar] [CrossRef]
- Medrano, H.; Tomás, M.; Martorell, S.; Escalona, J.-M.; Pou, A.; Fuentes, S.; Flexas, J.; Bota, J. Improving water use efficiency of vineyards in semi-arid regions. A review. Agron. Sustain. Dev. 2015, 35, 499–517. [Google Scholar] [CrossRef] [Green Version]
- Flexas, J.; Galmãs, J.; Gallã, A.; Gulãas, J.; Pou, A.; Ribas-Carbo, M.; Tomãs, M.; Medrano, H. Improving water use efficiency in grapevines: Potential physiological targets for biotechnological improvement. Aust. J. Grape Wine Res. 2010, 16, 106–121. [Google Scholar] [CrossRef]
- Friedel, M. Own Data. 2022; Unpublished. [Google Scholar]
- Heßdörfer, D. Der Zeitpunkt machts. Rebe Wein 2020, 4, 24–26. [Google Scholar]
- Torres, N.; Yu, R.; Martínez-Lüscher, J.; Kostaki, E.; Kurtural, S.K. Effects of Irrigation at Different Fractions of Crop Evapotranspiration on Water Productivity and Flavonoid Composition of Cabernet Sauvignon Grapevine. Front. Plant Sci. 2021, 12, 712622. [Google Scholar] [CrossRef]
- Retallack, M. Murray Valley & Riverina Water Use Efficiency Study 2011/12. 2012. Available online: https://www.viti.com.au/pdf/Murray%20Valley%20&%20Riverina%20WUE%20study%202011-12%20Final%20Report.pdf (accessed on 18 March 2023).
- Phogat, V.; Cox, J.W.; Šimůnek, J. Identifying the future water and salinity risks to irrigated viticulture in the Murray-Darling Basin, South Australia. Agric. Water Manag. 2018, 201, 107–117. [Google Scholar] [CrossRef] [Green Version]
- Marín, D.; Armengol, J.; Carbonell-Bejerano, P.; Escalona, J.M.; Gramaje, D.; Hernández-Montes, E.; Intrigliolo, D.S.; Martínez-Zapater, J.M.; Medrano, H.; Mirás-Avalos, J.M.; et al. Challenges of viticulture adaptation to global change: Tackling the issue from the roots. Aust. J. Grape Wine Res. 2021, 27, 8–25. [Google Scholar] [CrossRef]
- Crossman, N.D.; Connor, J.D.; Bryan, B.A.; Summers, D.M.; Ginnivan, J. Reconfiguring an irrigation landscape to improve provision of ecosystem services. Ecol. Econ. 2010, 69, 1031–1042. [Google Scholar] [CrossRef]
- Du Toit, P.G.; Dry, P.R.; Loveys, B.R. A Preliminary Investigation on Partial Rootzone Drying (PRD) Effects on Grapevine Performance, Nitrogen Assimilation and Berry Composition. S. Afr. J. Enol. Vitic. 2003, 24, 43–54. [Google Scholar] [CrossRef] [Green Version]
- Stoll, M.; Loveys, B.; Dry, P. Hormonal changes induced by partial rootzone drying of irrigated grapevine. J. Exp. Bot. 2000, 51, 1627–1634. [Google Scholar] [CrossRef] [Green Version]
- Costa, J.M.; Vaz, M.; Escalona, J.; Egipto, R.; Lopes, C.; Medrano, H.; Chaves, M.M. Modern viticulture in southern Europe: Vulnerabilities and strategies for adaptation to water scarcity. Agric. Water Manag. 2016, 164, 5–18. [Google Scholar] [CrossRef]
- Rinaldi, S.; Bonamente, E.; Scrucca, F.; Merico, M.; Asdrubali, F.; Cotana, F. Water and Carbon Footprint of Wine: Methodology Review and Application to a Case Study. Sustainability 2016, 8, 621. [Google Scholar] [CrossRef] [Green Version]
- Aivazidou, E.; Aidonis, D.; Tsolakis, N.; Achillas, C.; Vlachos, D. Wine Supply Chain Network Configuration under a Water Footprint Cap. Sustainability 2022, 14, 9494. [Google Scholar] [CrossRef]
- Päällysaho, M.; Leino, K.; Saario, M. Update of Wine Packaging LCA—Final Report Alko Oy. 2018. Available online: https://www.omsystembolaget.se/globalassets/pdf/hallbarhet/alko-wine-packaging-lca-update_final-report.pdf (accessed on 10 February 2023).
- Eurostat. Waste Statistics. 2023. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Waste_statistics (accessed on 10 March 2023).
- Eurostat. Packaging Waste Statistics. 2022. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Packaging_waste_statistics (accessed on 10 March 2023).
- Statista. Volume of Wine Sold in Italy in 2019, by Packaging Format. 2019. Available online: https://www.statista.com/statistics/788761/wine-packaging-types-distribution-in-italy/ (accessed on 10 March 2023).
- Avelin, C. Ventes et Achats de Vins Tranquilles: Bilan 2021, Montreuil. 2022. Available online: https://www.franceagrimer.fr/content/download/69688/document/bilan-2021-ventes-achats-vins-tranquilles.pdf (accessed on 10 March 2023).
- APCO. Sustainable Packaging Guidelines (SPGs), Sydney. 2020. Available online: https://documents.packagingcovenant.org.au/public-documents/Sustainable%20Packaging%20Guidelines%20(SPGs) (accessed on 10 March 2023).
- Gerber, A.; Binder, C.; Dylla, R.; Seidel, K.; Weishaupt, R. Nachhaltige Verpackung von Bio-Lebensmitteln: Ein Leitfaden für Unternehmen. 2011. Available online: https://orgprints.org/id/eprint/19241/1/hb-1545-verpackungsleitfaden-1.pdf (accessed on 10 March 2023).
- Lee, C.L.; Chin, K.L.; H’ng, P.S.; Hafizuddin, M.S.; Khoo, P.S. Valorisation of Underutilized Grass Fibre (Stem) as a Potential Material for Paper Production. Polymers 2022, 14, 5203. [Google Scholar] [CrossRef]
- IFBB. Biopolymers Facts and Statistics, Hannover. 2019. Available online: https://www.ifbb-hannover.de/files/IfBB/downloads/faltblaetter_broschueren/f+s/Biopolymers-Facts-Statistics-2019.pdf (accessed on 10 March 2023).
- BioIs. Nordic Life Cycle Assessment Wine Package Study, Paris. 2010. Available online: https://b-i-b.com/bib/web/downloads/LCA_Nordic_Wine_comparative_Executive_summary_V1.2_September_2010.pdf (accessed on 10 March 2023).
- Ferrara, C.; De Feo, G. Comparative life cycle assessment of alternative systems for wine packaging in Italy. J. Clean. Prod. 2020, 259, 120888. [Google Scholar] [CrossRef]
- Jung, R.; Schüßler, S. Untersuchung Von Alternativen Verpackungsformen Für Wein; ATW-Bericht No. 168; ATW: Darmstadt, Germany, 2014. [Google Scholar]
- Jung, R. Einflussfaktoren auf die Lagerfähigkeit von Wein. In Deutsches Weinbau-Jahrbuch 2007; Ulmer: Stuttgart, Germany, 2007; pp. 184–192. [Google Scholar]
- Gitzhofer, K.; Goppe, R. Überarbeitung der Emissionsfaktoren für Luftschadstoffe in den Branchen Zementklinkerproduktion und Glasherstellung, Dessau-Roßlau. 2020. Available online: https://www.bmuv.de/fileadmin/Daten_BMU/Pools/Forschungsdatenbank/fkz_3719_52_1010_emissionsfaktoren_zement_glas_bf.pdf (accessed on 10 March 2023).
- Adekomaya, O.; Majozi, T. Mitigating environmental impact of waste glass materials: Review of the existing reclamation options and future outlook. Environ. Sci. Pollut. Res. Int. 2021, 28, 10488–10502. [Google Scholar] [CrossRef]
- UBA. ProBas: Prozessorientierte Basisdaten Für Umweltmanagementsysteme, Dessau-Roßlau. 2015. Available online: https://www.probas.umweltbundesamt.de/php/index.php (accessed on 10 March 2023).
- Farrukh, A.; Mathrani, S.; Sajjad, A. A Systematic Literature Review on Environmental Sustainability Issues of Flexible Packaging: Potential Pathways for Academic Research and Managerial Practice. Sustainability 2022, 14, 4737. [Google Scholar] [CrossRef]
- Morashti, J.; An, Y.; Jang, H. A Systematic Literature Review of Sustainable Packaging in Supply Chain Management. Sustainability 2022, 14, 4921. [Google Scholar] [CrossRef]
- Mankiw, N.G. Principles of Economics Instructor’s Edition, 6th ed.; South-Western Cengage Learning; Matson: Honolulu, HI, USA, 2012; ISBN 978-0538453059. [Google Scholar]
- Chouinard, Y.; Ellison, J.; Ridgeway, J. The Sustainable Economy. Harv. Bus. Rev. 2011, 89, 52–62. [Google Scholar]
- Balaman, S.Y. Decision-Making for Biomass-Based Production Chains: The Basic Concepts and Methodologies; Academic Press: London, UK; San Diego, CA, USA, 2019; ISBN 978-0-12-814278-3. [Google Scholar]
- Figge, F.; Hahn, T. Is green and profitable sustainable? Assessing the trade-off between economic and environmental aspects. Int. J. Prod. Econ. 2012, 140, 92–102. [Google Scholar] [CrossRef]
- Hahn, T.; Figge, F.; Pinkse, J.; Preuss, L. Trade-offs in corporate sustainability: You can’t have your cake and eat it. Bus. Strat. Env. 2010, 19, 217–229. [Google Scholar] [CrossRef]
- van der Byl, C.A.; Slawinski, N. Embracing Tensions in Corporate Sustainability. Organ. Environ. 2015, 28, 54–79. [Google Scholar] [CrossRef]
- Schulz, F.N.; Richter, B.; Hanf, J.H. Current Developments in European Alcohol Policy: An Analysis of Possible Impacts on the German Wine Industry. Beverages 2022, 8, 75. [Google Scholar] [CrossRef]
- Deloitte. Deloitte 2023 CxO Sustainability Report: Accelerating the Green Transition. 2023. Available online: https://www2.deloitte.com/content/dam/Deloitte/de/Documents/risk/CxO%20Survey_Deloitte_Germany.pdf (accessed on 4 May 2023).
- OIV. Digital Trends Applied to the Vine and Wine Sector: A Comprehensive Study on the Digitalisation of the Sector OIV; Digital Transformation Observatory Hub: Paris, France, 2021. [Google Scholar]
- Kramer, M.P.; Bitsch, L.; Hanf, J. Blockchain and Its Impacts on Agri-Food Supply Chain Network Management. Sustainability 2021, 13, 2168. [Google Scholar] [CrossRef]
- Ewert, J.; Du Toit, A. A Deepening Divide in the Countryside: Restructuring and Rural Livelihoods in the South African Wine Industry. J. S. Afr. Stud. 2005, 31, 315–332. [Google Scholar] [CrossRef]
- Williams, G.; Vink, N. Co-operation, Regulation and Monopoly in the South African wine industry 1905–2000. In Proceedings of the I Symposion Internacional de Historia v Civilizacion de la Vid v el Vino, El Puerto de Santa Maria, Spain, 18–20 March 1999. [Google Scholar]
- Fridjhon, M. The High and Low Road Scenarios for SA Wine. Available online: https://winemag.co.za/wine/opinion/michael-fridjhon-what-makes-sa-wine-different-and-why-should-the-world-buy-it/ (accessed on 11 April 2023).
- Ponte, S.; Ewert, J. Which Way is “Up” in Upgrading? Trajectories of Change in the Value Chain for South African Wine. World Dev. 2009, 37, 1637–1650. [Google Scholar] [CrossRef]
- Cloete, B. Climate Vulnerability Monitor 3. 2023. Available online: https://www.v-20.org/climatevulnerabilitymonitor (accessed on 3 April 2023).
- Vink, N.; Deloire, A.; Bonnardot, V.; Ewert, J. Climate change and the future of South Africa’s wine industry. Int. J. Clim. Change Strateg. Manag. 2012, 4, 420–441. [Google Scholar] [CrossRef] [Green Version]
- Davids, T.; Vink, N.; Cloete, K. COVID-19 and the South African wine industry. Agrekon 2022, 61, 42–51. [Google Scholar] [CrossRef]
- Basson, R. Winning in Wine. In Proceedings of the Nedbank Vinpro Information Day 2023, Cape Town, South Africa, 19 January 2023. [Google Scholar]
- United Nations. Report of the United Nations Conference on Environment and Development, Rio de Janeiro, 3–14 June 1992. In Proceedings of the Conference, New York, NY, USA; 1993; Volume 2. Available online: https://www.un.org/esa/dsd/agenda21/Agenda%2021.pdf (accessed on 11 May 2023).
- United Nations. Report of the World Summit on Sustainable Development: Johannesburg, South Africa, 26 August–4 September 2002; United Nations: New York, NY, USA, 2002; ISBN 92-1-104521-5. [Google Scholar]
- Buckler, C.; Creech, H. Shaping the Future We Want: UN Decade of Education for Sustainable Development (2005–2014): Final Report; UNESCO: Paris, France, 2014; ISBN 978-92-3-100053-9. [Google Scholar]
- UNESCO. Education for Sustainable Development: A Roadmap, Paris, France. 2020. Available online: https://unesdoc.unesco.org/ark:/48223/pf0000374802 (accessed on 11 May 2023).
Materials | Recovery Rate | Recycling Rate | ||
---|---|---|---|---|
Germany | EU-27 | Germany | EU-27 | |
Paper/cardboard | 99.8% | 90.7% | 84.2% | 81.5% |
Plastics | 99.9% | 76.2% | 46.2% | 37.6% |
Container glass | 79.7% | 76.2% | 79.7% | 75.9% |
Wood | 99.8% | 61.2% | 32.6% | 31.9% |
Metal | 89.4% | 77.7% | 83.4% | 75.7% |
Packaging Type | kg CO2-eq per 0.75 L |
---|---|
Average Bottle, EU | 0.472 |
Light Bottle, EU | 0.387 |
Heavy Bottle, EU | 0.728 |
Bag-in-Box 3 L | 0.052 |
Beverage Carton 1 L | 0.063 |
PET 0.75 L | 0.182 |
Pouch 1.5 L | 0.071 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wagner, M.; Stanbury, P.; Dietrich, T.; Döring, J.; Ewert, J.; Foerster, C.; Freund, M.; Friedel, M.; Kammann, C.; Koch, M.; et al. Developing a Sustainability Vision for the Global Wine Industry. Sustainability 2023, 15, 10487. https://doi.org/10.3390/su151310487
Wagner M, Stanbury P, Dietrich T, Döring J, Ewert J, Foerster C, Freund M, Friedel M, Kammann C, Koch M, et al. Developing a Sustainability Vision for the Global Wine Industry. Sustainability. 2023; 15(13):10487. https://doi.org/10.3390/su151310487
Chicago/Turabian StyleWagner, Moritz, Peter Stanbury, Tabea Dietrich, Johanna Döring, Joachim Ewert, Carlotta Foerster, Maximilian Freund, Matthias Friedel, Claudia Kammann, Mirjam Koch, and et al. 2023. "Developing a Sustainability Vision for the Global Wine Industry" Sustainability 15, no. 13: 10487. https://doi.org/10.3390/su151310487