Effects of Domestic Sewage on the Photosynthesis and Chromium Migration of Coix lacryma-jobi L. in Chromium-Contaminated Constructed Wetlands
Abstract
:1. Introduction
2. Material and Methods
2.1. Material
2.2. Experiment Design
2.3. Sample Collection
2.4. Experimental Methods
2.4.1. Measurement of Stem Diameters and Plant Heights
2.4.2. Measurement of Root Activity
2.4.3. Measurement of Photosynthetic Parameters and Chlorophyll Fluorescence Parameters
2.4.4. Measurement of GSH Content in Different Parts of Coix lacryma-jobi L.
2.4.5. Measurement of Cr Content in Different Parts of Coix lacryma-jobi L., Substrate, and the Water Discharged
2.4.6. Measurement of Organic Matter Content in Substrate
2.5. Statistical Analysis
3. Results and Analysis
3.1. Plant Height and Stem Diameter
3.2. Root Activity
3.3. Photosynthetic Gas Exchange Parameters of Coix lacryma-jobi L.
3.4. Chlorophyll Fluorescence Properties of Coix lacryma-jobi L.
Initial Fluorescence (Fo) and Maximum Fluorescence (Fm)
3.5. Glutathione (GSH) Content in Different Organs of Coix lacryma-jobi L.
3.6. Cr Content in Roots, Stems, and Leaves of Coix lacryma-jobi L.
3.7. Organic Matter Content in Substrate
3.8. Total Cr Content in Substrate and the Water Discharged
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ray, A.; Jankar, J.S. A Comparative Study of Chromium: Therapeutic Uses and Toxicological Effects on Human Health. J. Pharmacol. Pharmacother. 2022, 13, 239–245. [Google Scholar] [CrossRef]
- Shahid, M.; Shamshad, S.; Rafiq, M.; Khalid, S.; Bibi, I.; Niazi, N.K.; Dumat, C.; Rashid, M.I. Chromium speciation, bioavailability, uptake, toxicity and detoxification in soil-plant system: A review. Chemosphere 2017, 178, 513–533. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Hu, H.; Ying, C.; Zheng, J.; Zhou, F.; Jiang, H.; Ma, Y. Study on Chromium Uptake and Transfer of Different Maize Varieties in Chromium-Polluted Farmland. Sustainability 2022, 14, 14311. [Google Scholar] [CrossRef]
- Duan, W. In the “Fur Capital of China” Excessive Chromium Discharge of Sewage? Sentenced and given an industry restraining order! Dahe News, 4 June 2020. [Google Scholar]
- Mei, Y. Sentenced for Environmental Pollution by Excessive Discharge of Electroplating Wastewater. 12 March 2022. Available online: https://www.163.com/dy/article/H27UCC7A0514JN6C.html (accessed on 19 June 2023).
- Li, Z.; Li, S.; Mei, L.; Wan, X.; Liang, H.; Chen, W.; Chen, H.; Zhou, Z. Purification effect of canna (Canna indica Linn.) and reed (Phragmites australis L.) constructed wetlands on chromium-containing domestic sewage and the physiological and ecological changes of plants. J. Agro-Environ. Sci. 2011, 30, 358–365. [Google Scholar]
- Reis, M.M.; Tuffi Santos, L.D.; da Silva, A.J.; de Pinho, G.P.; Montes, W.G. Metal Contamination of Water and Sediments of the Vieira River, Montes Claros, Brazil. Arch. Environ. Contam. Toxicol. 2019, 77, 527–536. [Google Scholar] [CrossRef]
- Addo-Bediako, A.; Rasifudi, L. Spatial distribution of heavy metals in the Ga-Selati River of the Olifants River System, South Africa. Chem. Ecol. 2021, 37, 450–463. [Google Scholar] [CrossRef]
- Mohanty, B.; Anirban, D. Heavy metals in agricultural cultivated products irrigated with wastewater in India: A review. AQUA-Water Infrastruct. Ecosyst. Soc. 2023, 1, 1–12. [Google Scholar] [CrossRef]
- Lou, Y. Research on Pollutant Removal Effect of Joint Treatment of Domestic Sewage and Acidic Mine Wastewater. Master’s Thesis, Guizhou University, Guiyang, China, 16 February 2017. [Google Scholar]
- Chen, J.; Deng, S.; Jia, W.; Li, X.; Chang, J. Removal of multiple heavy metals from mining-impacted water by biochar-filled constructed wetlands: Adsorption and biotic removal routes. Bioresour. Technol. 2021, 331, 125061. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, M.; Lv, Q.; Xue, J.; Yang, J.; Han, X. Effective co-treatment of synthetic acid mine drainage and domestic sewage using multi-unit passive treatment system supplemented with silage fermentation broth as carbon source. J. Environ. Manag. 2022, 310, 114803. [Google Scholar] [CrossRef]
- Peng, Z.; Li, Z.; He, B.; Li, S.; Yang, P.; Li, Z.; Liang, H. Root decomposition and chromium release and chemical form changes of barley constructed wetland. J. Environ. Sci. 2015, 35, 238–244. [Google Scholar]
- Li, K.; Gu, C.; Liu, J.; Huang, H.; Gao, Y. Experiment of Li Shihe purifying domestic sewage containing heavy metals. Environ. Sci. Technol. 2014, 37, 151–155. [Google Scholar]
- Li, S. Study on the Purification Mechanism of Chromium (VI) Containing Wastewater by Barley Constructed Wetland. Master’s Thesis, Guangxi University, Nanning, China, 16 January 2016. [Google Scholar]
- Xu, R.; Wang, Y.-N.; Sun, Y.; Wang, H.; Gao, Y.; Li, S.; Guo, L.; Gao, L. External sodium acetate improved Cr (VI) stabilization in a Cr-spiked soil during chemical-microbial reduction processes: Insights into Cr (VI) reduction performance, microbial community and metabolic functions. Ecotoxicol. Environ. Saf. 2023, 251, 114566. [Google Scholar] [CrossRef]
- Li, Y.; Cheng, C.; Li, X. Research progress on water purification efficiency of multiplant combination in constructed wetland. In Proceedings of the IOP Conference Series, Earth and Environmental Science, Philadelphia, PA, USA, 11 October 2020. [Google Scholar]
- Sun, C.; Tan, Q.; Liu, X.; Zhang, Z.; Sun, J. Effects of exogenous melatonin on photosynthetic characteristics and nutrient uptake of wheat seedlings under chromium (Cr~(6+)) stress. J. Wheat Crops 2022, 42, 1535–1542. [Google Scholar]
- Wu, M.; Jia, Y.; Li, H.; Yang, L.; Wang, G. Effects of chromium stress on chlorophyll fluorescence characteristics and active oxygen metabolism system of tobacco leaves. Jiangsu Agric. Sci. 2014, 42, 92–95. [Google Scholar]
- Fatma, M.; Sehar, Z.; Iqbal, N.; Alvi, A.F.; Abdi, G.; Proestos, C.; Khan, N.A. Sulfur supplementation enhances nitric oxide efficacy in reversal of chromium-inhibited Calvin cycle enzymes, photosynthetic activity, and carbohydrate metabolism in wheat. Sci. Rep. 2023, 13, 6858. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Jiang, Y.; Li, S.; Huang, H.; Chen, W.; Chen, H. Effects of constructed wetland wastewater treatment on photosynthesis and chlorophyll fluorescence characteristics of three plants. Ecol. Environ. 2008, 17, 2187–2191. [Google Scholar]
- Long, H.; Zhang, D. Preliminary results of drought resistance identification of 22 Stylophyllum materials at seedling stage. Trop. Agric. Sci. 2015, 35, 26–30. [Google Scholar]
- Castañares, J.L.; Bouzo, C.A. Effect of exogenous melatonin on seed germination and seedling growth in melon (Cucumis melo L.) under salt stress. Hortic. Plant J. 2019, 5, 79–87. [Google Scholar] [CrossRef]
- Bu, Y. Physiological Mechanism of Barley in Response to Different Concentrations of Chromium (VI). Master’s Thesis, Guangxi University, Nanning, China, 16 June 2011. [Google Scholar]
- Xie, B.; Jin, T.; Liu, P.; Jin, H.; Kong, L. Changes of phytochelatin and metallothionein in soybean roots and leaves under aluminum stress. Chin. J. Oil Crops 2008, 116, 191–197. [Google Scholar]
- Wang, A.; Huang, S.; Zhong, G.; Xu, G.; Liu, Z.; Shen, X. Effects of chromium stress on growth and chromium accumulation of three herbaceous plants. Environ. Sci. 2012, 33, 2028–2037. [Google Scholar]
- Liu, X.; Nong, Y.; Huang, J.; Li, S.; Li, L.; Cheng, X.; Wang, X.; Li, Z.; Li, Z. Effects of Cr6+ on Photosynthetic Characteristics and Trace Element Absorption of Coix in Constructed Wetlands. Guangxi Plant 2022, 42, 1959–1970. [Google Scholar]
- Ribas, T.C.; Mesquita, R.B.; Machado, A.; Miranda, J.L.; Marshall, G.; Bordalo, A.; Rangel, A.O. A Robust Flow-Based System for the Spectrophotometric Determination of Cr (VI) in Recreational Waters. Molecules 2022, 27, 2073. [Google Scholar] [CrossRef]
- Le, H.; Luo, L.; Liu, S. Condition optimization for the simultaneous determination of Cr(VI), Cr(III) and total chromium in water by spectrophotometry. Ind. Water Treat. 2007, 195, 73–75. [Google Scholar]
- Wang, M. Discussion on the determination of organic carbon content in soil by potassium dichromate oxidation-external heating method. Xinjiang Nonferrous Met. 2019, 42, 98–99. [Google Scholar]
- Stambulska, U.Y.; Bayliak, M.M.; Lushchak, V.I. Chromium (VI) Toxicity in Legume Plants: Modulation Effects of Rhizobial Symbiosis. BioMed Res. Int. 2018, 2018, 8031213. [Google Scholar] [CrossRef]
- Adhikari, A.; Adhikari, S.; Ghosh, S.; Azahar, I.; Shaw, A.; Roy, D.; Roy, S.; Saha, S.; Hossain, Z. Imbalance of redox homeostasis and antioxidant defense status in maize under chromium (VI) stress. Environ. Exp. Bot. 2020, 169, 103873. [Google Scholar] [CrossRef]
- Hussain, A.; Ali, S.; Rizwan, M.; Zia ur Rehman, M.; Hameed, A.; Hafeez, F.; Alamri, S.A.; Alyemeni, M.N.; Wijaya, L. Role of zinc–lysine on growth and chromium uptake in rice plants under Cr stress. J. Plant Growth Regul. 2018, 37, 1413–1422. [Google Scholar] [CrossRef]
- Saleem, M.; Asghar, H.N.; Khan, M.Y.; Zahir, Z.A. Gibberellic acid in combination with pressmud enhances the growth of sunflower and stabilizes chromium (VI)-contaminated soil. Environ. Sci. Pollut. Res. 2015, 14, 10610–10617. [Google Scholar] [CrossRef]
- Sharma, A.; Kumar, V.; Shahzad, B.; Ramakrishnan, M.; Singh Sidhu, G.P.; Bali, A.S.; Handa, N.; Kapoor, D.; Yadav, P.; Khanna, K.; et al. Photosynthetic Response of Plants Under Different Abiotic Stresses: A Review. J. Plant Growth Regul. 2020, 39, 509–531. [Google Scholar] [CrossRef]
- Zhang, Y. Research progress on the effect of heavy metal chromium on plant photosynthetic system. Mod. Hortic. 2016, 313, 25. [Google Scholar] [CrossRef]
- Ali, S.; Rizwan, M.; Bano, R.; Bharwana, S.A.; Rehman, M.Z.U.; Hussain, M.B.; Al-Wabel, M.I. Effects of biochar on growth, photosynthesis, and chromium (Cr) uptake in Brassica rapa L. under Cr stress. Arab. J. Geosci. 2018, 11, 507. [Google Scholar] [CrossRef]
- Emamverdian, A.; Ding, Y.; Mokhberdoran, F.; Xie, Y. Growth Responses and Photosynthetic Indices of Bamboo Plant (Indocalamus latifolius) under Heavy Metal Stress. Sci. World J. 2018, 2018, 121936. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vernay, P.; Gauthier-Moussard, C.; Jean, L.; Bordas, F.; Faure, O.; Ledoigt, G.; Hitmi, A. Effect of chromium species on phytochemical and physiological parameters in Datura innoxia. Chemosphere 2008, 72, 763–771. [Google Scholar] [CrossRef] [PubMed]
- Yu, A.; Yang, T.; Gao, X.; Han, W. Effects of high temperature stress on fluorescence parameters of silver leaf tree. Hunan For. Sci. Technol. 2022, 49, 25–30. [Google Scholar]
- Luo, J.; Li, Y.; Li, Y.; Zhao, W.; Xu, Y.; Zhao, S.; Zhang, Z.; Gao, H. Effects of six plant growth regulators on photoinhibition of photosystem II and photosystem I in isolated cucumber leaves under light and temperature stress. Acta Plant Physiol. 2021, 57, 178–186. [Google Scholar]
- Wang, X.; Lei, L.; Yan, X.; Meng, X.; Chen, Y. Processes of chromium (VI) migration and transformation in chromate production site: A case study from the middle of China. Chemosphere 2020, 257, 127282. [Google Scholar] [CrossRef]
- López-Bucio, J.S.; Ravelo-Ortega, G.; López-Bucio, J. Chromium in plant growth and development: Toxicity, tolerance and hormesis. Environ. Pollut. 2022, 312, 120084. [Google Scholar] [CrossRef]
- Guo, R.; Fan, M.; Tao, Y.; Wu, H.; Jiang, C. Root activity and heavy metal migration of chamomile chamomile under lead and cadmium stress. Heilongjiang Agric. Sci. 2020, 311, 42–46. [Google Scholar]
- Yu, X.-Z.; Lin, Y.-J.; Fan, W.-J.; Lu, M.-R. The role of exogenous proline in amelioration of lipid peroxidation in rice seedlings exposed to Cr (VI). Int. Biodeterior. Biodegrad. 2017, 123, 106–112. [Google Scholar] [CrossRef]
- Liu, C.; Liu, Y.; Luo, S.; Cui, L. Effects of different cadmium concentrations on rice root activity and grain quality in cold regions. Anhui Agric. Sci. 2013, 41, 5758–5760. [Google Scholar]
- Yu, S.; Gao, S.; Qu, Y.; Chen, Y.; Wang, G. Toxic effects of cadmium on tomato roots under different soil conditions and its toxic critical value. J. Agric. Environ. Sci. 2014, 33, 640–646. [Google Scholar]
- Xiao, W. Chromium Migration and Transformation Rules and Pollution Diagnostic Indicators in Typical Soils. Ph.D. Thesis, Zhejiang University, Hangzhou, China, 16 November 2014. [Google Scholar]
- Choppala, G.; Kunhikrishnan, A.; Seshadri, B.; Park, J.H.; Bush, R.; Bolan, N. Comparative sorption of chromium species as influenced by pH, surface charge and organic matter content in contaminated soils. J. Geochem. Explor. 2018, 184, 255–260. [Google Scholar] [CrossRef]
- Xiao, W.; Ye, X.; Ye, Z.; Zhang, Q.; Zhao, S.; Chen, D.; Gao, N.; Huang, M. Responses of microbial community composition and function to biochar and irrigation management and the linkage to Cr transformation in paddy soil. Environ. Pollut. 2022, 304, 119232. [Google Scholar] [CrossRef] [PubMed]
- Zeng, F. Physiological and Molecular Mechanisms of Rice Chromium Toxicity and Tolerance. Ph.D. Thesis, Zhejiang University, Hangzhou, China, 16 July 2010. [Google Scholar]
- Wang, X. Study on the Mechanism of Reduced Glutathione (GSH) Alleviating Cadmium Stress in Wheat Seedlings. Master’s Thesis, Northwest A & F University, Xianyang, China, 15 January 2021. [Google Scholar]
- Gupta, P.; Seth, C.S. 24-Epibrassinolide Regulates Functional Components of Nitric Oxide Signalling and Antioxidant Defense Pathways to Alleviate Salinity Stress in Brassica juncea L. cv. Varuna. J. Plant Growth Regul. 2022, 1, 1–16. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Bhuyan, M.H.M.B.; Anee, T.I.; Parvin, K.; Nahar, K.; Mahmud, J.A.; Fujita, M. Regulation of ascorbate-glutathione pathway in mitigating oxidative damage in plants under abiotic stress. Antioxidants 2019, 8, 384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qiu, B. Genetic Analysis of Rice Stress Tolerance to Chromium Stress and Mechanism of Reduced Glutathione Alleviating Chromium Toxicity. Ph.D. Thesis, Zhejiang University, Hangzhou, China, 15 August 2012. [Google Scholar]
- Jan, S.; Noman, A.; Kaya, C.; Ashraf, M.; Alyemeni, M.N.; Ahmad, P. 24-Epibrassinolide alleviates the injurious effects of Cr (VI) toxicity in tomato plants: Insights into growth, physio-biochemical attributes, antioxidant activity and regulation of Ascorbate—Glutathione and Glyoxalase cycles. J. Plant Growth Regul. 2020, 39, 1587–1604. [Google Scholar] [CrossRef]
Treatment Time (d) | Irrigation Moisture | Cr (VI) Concentration (mg/L) | Plant Height (cm) | Plant Height Inhibition Rate (%) | Stem Diameter (mm) | Stem Diameter Inhibition Rate (%) |
---|---|---|---|---|---|---|
10 | DN | CK | 22.5 ± 0.72 a | 8.77 ± 0.21 a | ||
20 | 21.3 ± 0.72 a | 5.33 | 8.7 ± 0.1 abc | 0.76 | ||
40 | 18.73 ± 0.57 b | 16.74 | 8.47 ± 0.12 cd | 3.42 | ||
NS | CK | 22.17 ± 0.49 a | - | 8.73 ± 0.15 ab | ||
20 | 18.67 ± 0.68 b | 15.79 | 8.5 ± 0.1 bcd | 2.67 | ||
40 | 16.23 ± 0.7 c | 26.77 | 8.4 ± 0.1 d | 3.82 | ||
DS | CK | 22.33 ± 1.07 a | - | 8.67 ± 0.06 abc | ||
20 | 19.23 ± 0.45 b | 13.88 | 8.47 ± 0.15 cd | 2.31 | ||
40 | 17.33 ± 0.55 c | 22.39 | 8.4 ± 0.1 d | 3.08 | ||
40 | DN | CK | 92.3 ± 1.74 a | 11.43 ± 0.25 a | ||
20 | 83.23 ± 1.48 b | 9.82 | 11.17 ± 0.06 abc | 2.33 | ||
40 | 69.73 ± 1.04 d | 24.45 | 11.03 ± 0.15 bcd | 3.5 | ||
NS | CK | 91.6 ± 1.73 a | - | 11.33 ± 0.25 ab | ||
20 | 76.3 ± 0.8 c | 16.70 | 10.93 ± 0.15 cd | 3.53 | ||
40 | 65.47 ± 1.4 e | 28.53 | 10.83 ± 0.15 cde | 4.41 | ||
DS | CK | 83.37 ± 0.9 b | - | 10.87 ± 0.25 cde | ||
20 | 70.6 ± 1.47 d | 15.31 | 10.53 ± 0.21 de | 3.07 | ||
40 | 64.53 ± 0.87 e | 22.59 | 10.7 ± 0.2 e | 3.68 | ||
70 | DN | CK | 140.03 ± 3.01 a | 12.77 ± 0.06 a | ||
20 | 129.4 ± 1.05 b | 7.59 | 12.3 ± 0.2 b | 3.66 | ||
40 | 109.23 ± 1.29 e | 21.99 | 12.03 ± 0.06 bcd | 5.74 | ||
NS | CK | 139.7 ± 1.41 a | - | 12.73 ± 0.15 a | ||
20 | 118.43 ± 0.83 d | 15.64 | 12.17 ± 0.31 bc | 4.45 | ||
40 | 102.4 ± 0.7 f | 22.81 | 11.93 ± 0.06 cde | 6.28 | ||
DS | CK | 126.57 ± 2.15 c | - | 12.27 ± 0.25 b | ||
20 | 106.77 ± 1.19 e | 15.22 | 11.73 ± 0.15 de | 4.35 | ||
40 | 98.2 ± 1.47 g | 22.41 | 11.67 ± 0.06 e | 4.89 |
Photosynthetic Gas Exchange Parameters | Treatment Time (d) | Water Management | CK | Cr 20 mg/L | Cr 40 mg/L |
---|---|---|---|---|---|
Net Photosynthetic Rate (μmol/m2·s) | 10 | DN | 19.2 ± 0.96 a | 14.73 ± 0.51 b | 11.56 ± 0.48 c |
NS | 19 ± 0.98 a | 12.12 ± 1.05 c | 9.23 ± 0.73 d | ||
DS | 13.96 ± 1.54 b | 9.56 ± 1.52 d | 6.79 ± 1.09 e | ||
40 | DN | 24.32 ± 1.12 a | 19.52 ± 0.46 bc | 16.13 ± 0.35 ef | |
NS | 24.22 ± 1.1 a | 18.14 ± 1.25 cd | 14.34 ± 1.23 fg | ||
DS | 21.29 ± 1.31 b | 17.53 ± 0.93 de | 14.06 ± 1.43 g | ||
70 | DN | 18.6 ± 0.54 a | 14.17 ± 0.9 b | 11.77 ± 0.75 c | |
NS | 18.16 ± 1 a | 10.17 ± 1.02 d | 9.38 ± 0.92 d | ||
DS | 13.94 ± 1.12 b | 8.71 ± 1.07 d | 6.9 ± 0.66 e | ||
Stomatal conductivity (mmol·m−2·s−1) | 10 | DN | 0.177 ± 0.005 a | 0.126 ± 0.011 b | 0.116 ± 0.005 bc |
NS | 0.169 ± 0.013 a | 0.118 ± 0.014 bc | 0.098 ± 0.016 cd | ||
DS | 0.131 ± 0.017 b | 0.109 ± 0.015 bc | 0.085 ± 0.008 d | ||
40 | DN | 0.183 ± 0.016 a | 0.143 ± 0.013 bc | 0.124 ± 0.008 bcd | |
NS | 0.182 ± 0.016 a | 0.138 ± 0.009 bc | 0.119 ± 0.019 cd | ||
DS | 0.15 ± 0.013 b | 0.124 ± 0.012 bcd | 0.105 ± 0.014 d | ||
70 | DN | 0.101 ± 0.007 a | 0.073 ± 0.004 bc | 0.064 ± 0.007 c | |
NS | 0.097 ± 0.007 a | 0.064 ± 0.003 c | 0.049 ± 0.004 d | ||
DS | 0.081 ± 0.011 b | 0.053 ± 0.004 d | 0.043 ± 0.004 d | ||
Intercellular CO2 Concentration (μmol/mol) | 10 | DN | 228.7 ± 15.97 a | 200.16 ± 17.52 ab | 163.49 ± 19.5 cde |
NS | 225.49 ± 17.25 a | 191.74 ± 16.27 bc | 155.87 ± 17.39 de | ||
DS | 182.08 ± 16.38 bcd | 167.51 ± 22.77 bcde | 147.29 ± 14.94 e | ||
40 | DN | 273.84 ± 24.18 a | 238.79 ± 16.91 ab | 213.15 ± 26.66 bc | |
NS | 272.93 ± 22.5 a | 231.44 ± 18.14 bc | 207.63 ± 24.05 bc | ||
DS | 244 ± 22.26 ab | 217.99 ± 17.75 bc | 192.75 ± 20.76 c | ||
70 | DN | 176.43 ± 15.26 a | 150.15 ± 19.67 abc | 124.49 ± 12.42 cd | |
NS | 176.4 ± 16.15 a | 147.33 ± 19.8 abc | 120.74 ± 11.32 cd | ||
DS | 163.66 ± 16.05 ab | 136.98 ± 16.92 bcd | 115.19 ± 14.79 d | ||
Transpiration Rate (μmol/m2·s) | 10 | DN | 2.64 ± 0.22 a | 2.1 ± 0.15 b | 1.8 ± 0.24 bcd |
NS | 2.61 ± 0.21 a | 1.97 ± 0.18 bc | 1.62 ± 0.24 cd | ||
DS | 2.13 ± 0.21 b | 1.69 ± 0.23 cd | 1.46 ± 0.19 d | ||
40 | DN | 3.69 ± 0.17 a | 3.36 ± 0.16 ab | 2.99 ± 0.19 bcd | |
NS | 3.66 ± 0.19 a | 3.23 ± 0.19 b | 2.82 ± 0.25 cd | ||
DS | 3.13 ± 0.19 bc | 2.98 ± 0.28 bcd | 2.66 ± 0.23 d | ||
70 | DN | 2.42 ± 0.29 a | 1.99 ± 0.25 b | 1.66 ± 0.04 bcd | |
NS | 2.41 ± 0.3 a | 1.83 ± 0.19 bc | 1.52 ± 0.17 cd | ||
DS | 1.96 ± 0.17 b | 1.57 ± 0.21 cd | 1.34 ± 0.11 d |
Chlorophyll Fluorescence Parameters | Treatment Time (d) | Water Management | CK | Cr 20 mg/L | Cr 40 mg/L |
---|---|---|---|---|---|
Fo | 10 | DN | 0.225 ± 0.016 d | 0.249 ± 0.006 cd | 0.276 ± 0.02 bc |
NS | 0.226 ± 0.014 d | 0.264 ± 0.011 bc | 0.292 ± 0.019 ab | ||
DS | 0.264 ± 0.013 bc | 0.278 ± 0.017 bc | 0.314 ± 0.021 a | ||
40 | DN | 0.189 ± 0.012 e | 0.229 ± 0.01 d | 0.258 ± 0.012 abc | |
NS | 0.198 ± 0.017 e | 0.246 ± 0.013 bcd | 0.271 ± 0.019 ab | ||
DS | 0.241 ± 0.011 cd | 0.25 ± 0.015 bcd | 0.282 ± 0.012 a | ||
70 | DN | 0.25 ± 0.014 d | 0.318 ± 0.01 c | 0.333 ± 0.009 bc | |
NS | 0.251 ± 0.011 d | 0.331 ± 0.029 bc | 0.358 ± 0.012 ab | ||
DS | 0.31 ± 0.016 c | 0.328 ± 0.025 bc | 0.37 ± 0.027 a | ||
Fm | 10 | DN | 1.444 ± 0.062 a | 1.291 ± 0.061 b | 1.19 ± 0.029 bc |
NS | 1.431 ± 0.065 a | 1.245 ± 0.074 bc | 1.121 ± 0.075 cd | ||
DS | 1.178 ± 0.078 bc | 1.126 ± 0.068 cd | 1.014 ± 0.074 d | ||
40 | DN | 1.779 ± 0.182 a | 1.601 ± 0.042 b | 1.511 ± 0.017 bc | |
NS | 1.773 ± 0.163 a | 1.485 ± 0.059 bc | 1.41 ± 0.053 c | ||
DS | 1.476 ± 0.064 bc | 1.395 ± 0.051 c | 1.343 ± 0.057 c | ||
70 | DN | 1.362 ± 0.067 a | 1.216 ± 0.055 bc | 1.078 ± 0.056 cd | |
NS | 1.357 ± 0.072 a | 1.16 ± 0.098 bcd | 1.071 ± 0.095 d | ||
DS | 1.245 ± 0.089 ab | 1.148 ± 0.093 bcd | 1.06 ± 0.04 d | ||
Fv/Fm | 10 | DN | 0.844 ± 0.017 a | 0.807 ± 0.006 b | 0.768 ± 0.018 cd |
NS | 0.841 ± 0.016 a | 0.788 ± 0.011 bc | 0.738 ± 0.029 d | ||
DS | 0.775 ± 0.026 bc | 0.752 ± 0.03 cd | 0.69 ± 0.003 e | ||
40 | DN | 0.894 ± 0.006 a | 0.857 ± 0.007 b | 0.829 ± 0.01 cd | |
NS | 0.888 ± 0.013 a | 0.834 ± 0.015 bc | 0.807 ± 0.021 de | ||
DS | 0.837 ± 0.014 bc | 0.821 ± 0.017 cd | 0.79 ± 0.013 e | ||
70 | DN | 0.816 ± 0.018 a | 0.738 ± 0.012 bc | 0.69 ± 0.012 cde | |
NS | 0.815 ± 0.017 a | 0.712 ± 0.043 bcd | 0.664 ± 0.039 de | ||
DS | 0.751 ± 0.017 b | 0.712 ± 0.043 bcd | 0.65 ± 0.039 e |
Organs | Treatment Time (d) | Water Management | CK | Cr 20 mg/L | Cr 40 mg/L |
---|---|---|---|---|---|
Root | 20 | DN | 36.915 ± 1.954 e | 42.296 ± 2.197 de | 55.099 ± 4.183 c |
NS | 36.563 ± 2.489 e | 74.323 ± 5.431 b | 90.784 ± 5.431 a | ||
DS | 40.959 ± 1.847 de | 47.022 ± 2.409 d | 61.037 ± 4.262 c | ||
50 | DN | 40.024 ± 6.117 f | 57.49 ± 4.041 e | 69.312 ± 2.781 cd | |
NS | 41 ± 4.818 f | 86.561 ± 6.624 b | 103.137 ± 7.757 a | ||
DS | 41.532 ± 4.356 f | 61.265 ± 6.836 de | 78.218 ± 5.273 bc | ||
Stem | 20 | DN | 36.915 ± 1.954 e | 42.296 ± 2.197 cd | 55.099 ± 4.183 bc |
NS | 36.563 ± 2.489 de | 74.323 ± 5.431 ab | 90.784 ± 5.431 a | ||
DS | 40.959 ± 1.847 de | 47.022 ± 2.409 bc | 61.037 ± 4.262 a | ||
50 | DN | 40.024 ± 6.117 e | 57.49 ± 4.041 d | 69.312 ± 2.781 b | |
NS | 41 ± 4.818 e | 86.561 ± 6.624 bc | 103.137 ± 7.757 a | ||
DS | 41.532 ± 4.356 e | 61.265 ± 6.836 c | 78.218 ± 5.273 a | ||
Leaf | 20 | DN | 36.915 ± 1.954 f | 42.296 ± 2.197 e | 55.099 ± 4.183 bc |
NS | 36.563 ± 2.489 f | 74.323 ± 5.431 c | 90.784 ± 5.431 a | ||
DS | 40.959 ± 1.847 f | 47.022 ± 2.409 d | 61.037 ± 4.262 b | ||
50 | DN | 40.024 ± 6.117 e | 57.49 ± 4.041 d | 69.312 ± 2.781 bc | |
NS | 41 ± 4.818 e | 86.561 ± 6.624 b | 103.137 ± 7.757 a | ||
DS | 41.532 ± 4.356 e | 61.265 ± 6.836 cd | 78.218 ± 5.273 b |
Treatment Time (d) | Water Management | CK | Cr 20 mg/L | Cr 40 mg/L |
---|---|---|---|---|
10 | DN | 26.32 ± 2.13 a | 21.77 ± 2.37 bc | 18.17 ± 1.87 cde |
NS | 15.17 ± 1.23 ef | 12.31 ± 2.76 f | 11.27 ± 1.58 f | |
DS | 24.95 ± 2.49 ab | 19.91 ± 2.58 cd | 16.94 ± 2.23 de | |
40 | DN | 32.69 ± 1.74 a | 25.98 ± 2.81 bc | 23.24 ± 2.01 cd |
NS | 20.15 ± 2.9 de | 16.16 ± 2.57 ef | 14.23 ± 3.32 f | |
DS | 30.33 ± 1.77 ab | 24.06 ± 2.6 cd | 21.66 ± 3.64 cd | |
70 | DN | 34.12 ± 3.62 a | 27.31 ± 3.29 c | 24.94 ± 3.58 bcd |
NS | 27.11 ± 4.11 bc | 21.07 ± 3.65 cd | 18.78 ± 2.82 d | |
DS | 31.03 ± 3.14 ab | 25.68 ± 4.09 bc | 22.38 ± 3.62 cd |
Treatment Time (d) | Water Management | Cr Content in the SUBSTRATE (mg/kg) | Cr content in the Water Discharged (mg/L) | Cr (VI) Content in the Water Discharged (mg/L) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
CK | Cr 20 mg/L | Cr 40 mg/L | CK | Cr 20 mg/L | Cr 40 mg/L | CK | Cr 20 mg/L | Cr 40 mg/L | ||
10 | DN | 6.74 ± 1.57 d | 42.82 ± 3.16 bc | 66.55 ± 5.23 a | 0.06 ± 0.02 d | 0.24 ± 0.03 c | 0.43 ± 0.05 b | 0.03 ± 0.01 d | 0.08 ± 0.01 c | 0.15 ± 0.02 b |
NS | 3.8 ± 0.59 d | 39.79 ± 5.46 c | 62.78 ± 6.16 a | 0.03 ± 0.01 d | 0.3 ± 0.04 c | 0.56 ± 0.03 a | 0.03 ± 0.01 d | 0.16 ± 0.01 b | 0.19 ± 0.01 a | |
DS | 7.21 ± 1.4 d | 47.89 ± 3.8 b | 69.23 ± 5.86 a | 0.07 ± 0.03 d | 0.27 ± 0.06 c | 0.5 ± 0.07 ab | 0.03 ± 0.01 d | 0.15 ± 0.02 b | 0.15 ± 0.02 b | |
40 | DN | 8.69 ± 1.48 c | 76 ± 4.37 b | 141.87 ± 6.59 a | 0.08 ± 0.03 e | 0.36 ± 0.04 d | 0.65 ± 0.05 b | 0.04 ± 0.01 d | 0.14 ± 0.02 c | 0.19 ± 0.02 b |
NS | 4.79 ± 0.59 c | 72.88 ± 9.11 b | 136.16 ± 7.28 a | 0.04 ± 0.02 e | 0.45 ± 0.04 c | 0.77 ± 0.05 a | 0.04 ± 0.02 d | 0.22 ± 0.02 b | 0.31 ± 0.02 a | |
DS | 9.95 ± 0.96 c | 82.27 ± 6.09 b | 147.45 ± 10.94 a | 0.1 ± 0.03 e | 0.41 ± 0.09 cd | 0.69 ± 0.05 ab | 0.05 ± 0.01 d | 0.2 ± 0.02 b | 0.2 ± 0.02 b | |
70 | DN | 9.7 ± 1.17 d | 135.27 ± 5.44 c | 183.44 ± 11.62 ab | 0.11 ± 0.05 e | 0.44 ± 0.04 d | 0.72 ± 0.06 b | 0.05 ± 0.02 e | 0.19 ± 0.02 d | 0.24 ± 0.02 c |
NS | 4.95 ± 0.62 d | 129.67 ± 8.4 c | 174.67 ± 7.81 b | 0.04 ± 0.01 e | 0.57 ± 0.02 c | 0.86 ± 0.06 a | 0.04 ± 0.01 e | 0.29 ± 0.02 b | 0.38 ± 0.02 a | |
DS | 10.62 ± 0.83 d | 140.47 ± 8.47 c | 189.78 ± 10.48 a | 0.12 ± 0.04 e | 0.53 ± 0.06 c | 0.79 ± 0.08 ab | 0.05 ± 0.01 e | 0.24 ± 0.02 c | 0.25 ± 0.02 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nong, Y.; Liu, X.; Peng, Z.; Li, L.; Cheng, X.; Wang, X.; Li, Z.; Li, Z.; Li, S. Effects of Domestic Sewage on the Photosynthesis and Chromium Migration of Coix lacryma-jobi L. in Chromium-Contaminated Constructed Wetlands. Sustainability 2023, 15, 10250. https://doi.org/10.3390/su151310250
Nong Y, Liu X, Peng Z, Li L, Cheng X, Wang X, Li Z, Li Z, Li S. Effects of Domestic Sewage on the Photosynthesis and Chromium Migration of Coix lacryma-jobi L. in Chromium-Contaminated Constructed Wetlands. Sustainability. 2023; 15(13):10250. https://doi.org/10.3390/su151310250
Chicago/Turabian StyleNong, Yu, Xinyi Liu, Zi Peng, Liangxiang Li, Xiran Cheng, Xueli Wang, Zhengwen Li, Zhigang Li, and Suli Li. 2023. "Effects of Domestic Sewage on the Photosynthesis and Chromium Migration of Coix lacryma-jobi L. in Chromium-Contaminated Constructed Wetlands" Sustainability 15, no. 13: 10250. https://doi.org/10.3390/su151310250
APA StyleNong, Y., Liu, X., Peng, Z., Li, L., Cheng, X., Wang, X., Li, Z., Li, Z., & Li, S. (2023). Effects of Domestic Sewage on the Photosynthesis and Chromium Migration of Coix lacryma-jobi L. in Chromium-Contaminated Constructed Wetlands. Sustainability, 15(13), 10250. https://doi.org/10.3390/su151310250